Catharanthine (BioDeep_00000002639)

   

natural product PANOMIX_OTCML-2023


代谢物信息卡片


methyl (1R,15R,18R)-17-ethyl-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8,16-pentaene-1-carboxylate

化学式: C21H24N2O2 (336.1838)
中文名称: 长春质碱, 泻花碱
谱图信息: 最多检出来源 Viridiplantae(plant) 82.69%

分子结构信息

SMILES: C1=CC=C2C(=C1)C3=C(N2)[C@@]4([C@@]5([N@](CC3)C[C@](C4)(C=C5CC)[H])[H])C(=O)OC
InChI: InChI=1S/C21H24N2O2/c1-3-14-10-13-11-21(20(24)25-2)18-16(8-9-23(12-13)19(14)21)15-6-4-5-7-17(15)22-18/h4-7,10,13,19,22H,3,8-9,11-12H2,1-2H3

描述信息

Catharanthine is an organic heteropentacyclic compound and monoterpenoid indole alkaloid produced by the medicinal plant Catharanthus roseus via strictosidine. It is a bridged compound, an organic heteropentacyclic compound, a methyl ester, a monoterpenoid indole alkaloid, a tertiary amino compound and an alkaloid ester. It is a conjugate base of a catharanthine(1+).
Catharanthine is a natural product found in Catharanthus trichophyllus, Tabernaemontana catharinensis, and other organisms with data available.
An organic heteropentacyclic compound and monoterpenoid indole alkaloid produced by the medicinal plant Catharanthus roseus via strictosidine.
D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids
Annotation level-1
Catharanthine is an alkaloid isolated from Catharanthus roseus, inhibits voltage-operated L-type Ca2+ channel, with anti-cancer and blood pressure-lowering activity[1].
Catharanthine is an alkaloid isolated from Catharanthus roseus, inhibits voltage-operated L-type Ca2+ channel, with anti-cancer and blood pressure-lowering activity[1].

同义名列表

26 个代谢物同义名

methyl (1R,15R,18R)-17-ethyl-3,13-diazapentacyclo[13.3.1.02,10.04,9.013,18]nonadeca-2(10),4,6,8,16-pentaene-1-carboxylate; (6R,6aR,9R,11R)-Methyl 7-ethyl-6,6a,9,10,12,13-hexahydro-5H-6,9-methanopyrido[1,2:1,2]azepino[4,5-b]indole-6-carboxylate; (6R,6aR,9R,11R)-Methyl7-ethyl-6,6a,9,10,12,13-hexahydro-5H-6,9-methanopyrido[1,2:1,2]azepino[4,5-b]indole-6-carboxylate; IBOGAMINE-18-CARBOXYLIC ACID, 3,4-DIDEHYDRO-, METHYL ESTER,(2.ALPHA.,5.BETA.,6.ALPHA.,18.BETA.)-; Ibogamine-18-carboxylic acid, 3,4-didehydro-, methyl ester, (2-alpha,5-beta,6-alpha,18-beta)-; Ibogamine-18-carboxylic acid, 3,4-didehydro-, methyl ester, (2alpha,5beta,6alpha,18beta)-; Methyl (2-alpha,5-beta,6-alpha,18-beta)-3,4-didehydroibogamine-18-carboxylate; Methyl (2alpha,5beta,6alpha)-3,4-didehydroibogamine-18beta-carboxylate; catharanthine monohydrochloride, (2alpha,5beta,6alpha,18beta)-isomer; catharanthine sulfate, (2alpha,5beta,6alpha,18beta)-isomer; (+)-3, 4-Didehydrocoronaridine; (+)-3,4-Didehydrocoronaridine; Catharanthine, >=95\\% (HPLC); CMKFQVZJOWHHDV-NQZBTDCJSA-N; Catharanthine, (+)-; Catharanthine Base; CATHARANTHINE [MI]; (+)-Catharanthine; UNII-WT0YJV846J; Catharanthine; Catharanthin; WT0YJV846J; 1ST168797; NCGC00385182-01_C21H24N2O2_Ibogamine-18-carboxylic acid, 3,4-didehydro-, methyl ester, (5beta,18beta)-; methyl(5A)-3,4-didehydroibogamine-18-carboxylate; Catharanthine



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(1)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(2)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

74 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ABCB1, BCL2, CASP3, CASP7, CAT, FDPS, FST, KEAP1, LPO, TUBB4B, ZMYND8
Peripheral membrane protein 2 ACHE, GBA1
Endosome membrane 1 SLC6A4
Endoplasmic reticulum membrane 2 BCL2, REEP6
Nucleus 11 ACHE, BCL2, CASP3, CASP7, FST, GABPA, KEAP1, REEP6, SHOX2, TUBB4B, ZMYND8
cytosol 8 BCL2, CASP3, CASP7, CAT, FDPS, GSR, KEAP1, TUBB4B
trans-Golgi network 1 GBA1
nucleoplasm 6 CASP3, CASP7, FDPS, GABPA, KEAP1, ZMYND8
Cell membrane 4 ABCB1, ACHE, SLC6A2, SLC6A4
Multi-pass membrane protein 4 ABCB1, REEP6, SLC6A2, SLC6A4
Synapse 2 ACHE, SLC6A4
cell surface 4 ABCB1, ACHE, CD200, SLC6A2
dendritic shaft 1 ZMYND8
glutamatergic synapse 1 CASP3
Golgi apparatus 2 ACHE, GBA1
lysosomal membrane 1 GBA1
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, CD200
presynaptic membrane 2 SLC6A2, SLC6A4
Cytoplasm, cytosol 1 CASP7
Lysosome 1 GBA1
Presynapse 1 SLC6A4
plasma membrane 5 ABCB1, ACHE, CD200, SLC6A2, SLC6A4
synaptic vesicle membrane 1 SLC6A2
Membrane 9 ABCB1, ACHE, BCL2, CAT, CD200, FDPS, REEP6, SLC6A2, SLC6A4
apical plasma membrane 1 ABCB1
axon 2 CD200, SLC6A2
basolateral plasma membrane 1 LPO
extracellular exosome 6 ABCB1, CAT, GBA1, GSR, LPO, TUBB4B
Lysosome membrane 1 GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 4 BCL2, GBA1, KEAP1, REEP6
extracellular space 4 ACHE, CASP7, FST, LPO
lysosomal lumen 1 GBA1
perinuclear region of cytoplasm 1 ACHE
mitochondrion 3 BCL2, CAT, GSR
protein-containing complex 2 BCL2, CAT
intracellular membrane-bounded organelle 1 CAT
postsynaptic density 1 CASP3
Secreted 2 ACHE, LPO
extracellular region 5 ACHE, CAT, FST, LPO, TUBB4B
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 BCL2, CD200
mitochondrial outer membrane 1 BCL2
neuronal cell body membrane 1 SLC6A2
mitochondrial matrix 3 CAT, FDPS, GSR
Extracellular side 1 ACHE
centriolar satellite 1 KEAP1
photoreceptor inner segment 1 REEP6
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 GSR
Extracellular vesicle 1 TUBB4B
dendritic spine 1 ZMYND8
microtubule cytoskeleton 1 TUBB4B
nucleolus 1 ZMYND8
Cytoplasmic vesicle, clathrin-coated vesicle membrane 1 REEP6
clathrin-coated vesicle membrane 1 REEP6
midbody 1 KEAP1
postsynaptic membrane 1 SLC6A4
Apical cell membrane 1 ABCB1
Membrane raft 1 SLC6A4
pore complex 1 BCL2
Cell junction, focal adhesion 1 SLC6A4
Cytoplasm, cytoskeleton 1 TUBB4B
focal adhesion 2 CAT, SLC6A4
microtubule 1 TUBB4B
Peroxisome 2 CAT, FDPS
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Cell projection, neuron projection 1 SLC6A4
neuron projection 2 CD200, SLC6A4
chromatin 3 GABPA, SHOX2, ZMYND8
mitotic spindle 1 TUBB4B
Chromosome 1 ZMYND8
cytoskeleton 1 TUBB4B
Secreted, extracellular space 1 CASP7
actin filament 1 KEAP1
Lipid-anchor, GPI-anchor 1 ACHE
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
Cul3-RING ubiquitin ligase complex 1 KEAP1
Endomembrane system 1 SLC6A4
axonemal microtubule 1 TUBB4B
cell body 1 CD200
side of membrane 1 ACHE
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
azurophil granule lumen 1 TUBB4B
synaptic cleft 1 ACHE
external side of apical plasma membrane 1 ABCB1
death-inducing signaling complex 1 CASP3
site of DNA damage 1 ZMYND8
catalase complex 1 CAT
inclusion body 1 KEAP1
BAD-BCL-2 complex 1 BCL2
[Isoform H]: Cell membrane 1 ACHE
serotonergic synapse 1 SLC6A4


文献列表

  • Dagny Grzech, Benke Hong, Lorenzo Caputi, Prashant D Sonawane, Sarah E O'Connor. Engineering the Biosynthesis of Late-Stage Vinblastine Precursors Precondylocarpine Acetate, Catharanthine, Tabersonine in Nicotiana benthamiana. ACS synthetic biology. 2023 01; 12(1):27-34. doi: 10.1021/acssynbio.2c00434. [PMID: 36516122]
  • Jie Zhang, Lea G Hansen, Olga Gudich, Konrad Viehrig, Lærke M M Lassen, Lars Schrübbers, Khem B Adhikari, Paulina Rubaszka, Elena Carrasquer-Alvarez, Ling Chen, Vasil D'Ambrosio, Beata Lehka, Ahmad K Haidar, Saranya Nallapareddy, Konstantina Giannakou, Marcos Laloux, Dushica Arsovska, Marcus A K Jørgensen, Leanne Jade G Chan, Mette Kristensen, Hanne B Christensen, Suresh Sudarsan, Emily A Stander, Edward Baidoo, Christopher J Petzold, Tune Wulff, Sarah E O'Connor, Vincent Courdavault, Michael K Jensen, Jay D Keasling. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature. 2022 09; 609(7926):341-347. doi: 10.1038/s41586-022-05157-3. [PMID: 36045295]
  • Wenzhu Tang, Xiaoqi Liu, Yuning He, Fan Yang. Enhancement of Vindoline and Catharanthine Accumulation, Antioxidant Enzymes Activities, and Gene Expression Levels in Catharanthus roseus Leaves by Chitooligosaccharides Elicitation. Marine drugs. 2022 Mar; 20(3):. doi: 10.3390/md20030188. [PMID: 35323487]
  • Yang Qu, Olga Safonova, Vincenzo De Luca. Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus. The Plant journal : for cell and molecular biology. 2019 01; 97(2):257-266. doi: 10.1111/tpj.14111. [PMID: 30256480]
  • Gaurav Raj Dwivedi, Rekha Tyagi, Sanchita, Shubhandra Tripathi, Sanghamitra Pati, Santosh K Srivastava, Mahendra P Darokar, Ashok Sharma. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. Journal of biomolecular structure & dynamics. 2018 Dec; 36(16):4270-4284. doi: 10.1080/07391102.2017.1413424. [PMID: 29210342]
  • Lorenzo Caputi, Jakob Franke, Scott C Farrow, Khoa Chung, Richard M E Payne, Trinh-Don Nguyen, Thu-Thuy T Dang, Inês Soares Teto Carqueijeiro, Konstantinos Koudounas, Thomas Dugé de Bernonville, Belinda Ameyaw, D Marc Jones, Ivo Jose Curcino Vieira, Vincent Courdavault, Sarah E O'Connor. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science (New York, N.Y.). 2018 06; 360(6394):1235-1239. doi: 10.1126/science.aat4100. [PMID: 29724909]
  • Yang Qu, Michael E A M Easson, Razvan Simionescu, Josef Hajicek, Antje M K Thamm, Vonny Salim, Vincenzo De Luca. Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proceedings of the National Academy of Sciences of the United States of America. 2018 03; 115(12):3180-3185. doi: 10.1073/pnas.1719979115. [PMID: 29511102]
  • Alison Edge, Yang Qu, Michael L A E Easson, Antje M K Thamm, Kyung Hee Kim, Vincenzo De Luca. A tabersonine 3-reductase Catharanthus roseus mutant accumulates vindoline pathway intermediates. Planta. 2018 Jan; 247(1):155-169. doi: 10.1007/s00425-017-2775-8. [PMID: 28894945]
  • Alexis Kotland, Sébastien Chollet, Catherine Diard, Jean-Marie Autret, Jeremy Meucci, Jean-Hugues Renault, Luc Marchal. Industrial case study on alkaloids purification by pH-zone refining centrifugal partition chromatography. Journal of chromatography. A. 2016 Nov; 1474(?):59-70. doi: 10.1016/j.chroma.2016.10.039. [PMID: 27816224]
  • Roukia Benyammi, Cédric Paris, Majda Khelifi-Slaoui, Djamila Zaoui, Ouarda Belabbassi, Nouara Bakiri, Myassa Meriem Aci, Boualem Harfi, Sonia Malik, Abdullah Makhzoum, Stéphane Desobry, Lakhdar Khelifi. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots. Pharmaceutical biology. 2016 Oct; 54(10):2033-43. doi: 10.3109/13880209.2016.1140213. [PMID: 26983347]
  • Kotaro Yamamoto, Katsutoshi Takahashi, Hajime Mizuno, Aya Anegawa, Kimitsune Ishizaki, Hidehiro Fukaki, Miwa Ohnishi, Mami Yamazaki, Tsutomu Masujima, Tetsuro Mimura. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS. Proceedings of the National Academy of Sciences of the United States of America. 2016 Apr; 113(14):3891-6. doi: 10.1073/pnas.1521959113. [PMID: 27001858]
  • Pengfei Zhou, Jiazeng Yang, Jianhua Zhu, Shuijie He, Wenjin Zhang, Rongmin Yu, Jiachen Zi, Liyan Song, Xuesong Huang. Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Applied microbiology and biotechnology. 2015 Sep; 99(17):7035-45. doi: 10.1007/s00253-015-6651-9. [PMID: 25981997]
  • Chongliang Lin, Jinzhang Cai, Xuezhi Yang, Lufeng Hu, Guanyang Lin. Liquid chromatography mass spectrometry simultaneous determination of vindoline and catharanthine in rat plasma and its application to a pharmacokinetic study. Biomedical chromatography : BMC. 2015 Jan; 29(1):97-102. doi: 10.1002/bmc.3244. [PMID: 24828449]
  • Fang Yu, Vincenzo De Luca. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proceedings of the National Academy of Sciences of the United States of America. 2013 Sep; 110(39):15830-5. doi: 10.1073/pnas.1307504110. [PMID: 24019465]
  • Inês Carqueijeiro, Henrique Noronha, Patrícia Duarte, Hernâni Gerós, Mariana Sottomayor. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant physiology. 2013 Jul; 162(3):1486-96. doi: 10.1104/pp.113.220558. [PMID: 23686419]
  • Qian Chen, Zunwei Chen, Li Lu, Haihong Jin, Lina Sun, Qin Yu, Hongke Xu, Fengxia Yang, Mengna Fu, Shengchao Li, Huizhong Wang, Maojun Xu. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures. Biotechnology progress. 2013 Jul; 29(4):994-1001. doi: 10.1002/btpr.1738. [PMID: 23554409]
  • Francisco Fernández-Pérez, Lorena Almagro, Maria A Pedreño, Laura V Gómez Ros. Synergistic and cytotoxic action of indole alkaloids produced from elicited cell cultures of Catharanthus roseus. Pharmaceutical biology. 2013 Mar; 51(3):304-10. doi: 10.3109/13880209.2012.722646. [PMID: 23137274]
  • Fansong Mu, Liuqing Yang, Wei Wang, Meng Luo, Yujie Fu, Xiaorui Guo, Yuangang Zu. Negative-pressure cavitation extraction of four main vinca alkaloids from Catharanthus roseus leaves. Molecules (Basel, Switzerland). 2012 Jul; 17(8):8742-52. doi: 10.3390/molecules17088742. [PMID: 22832876]
  • Mei-Liang Zhou, Xue-Mei Zhu, Ji-Rong Shao, Yan-Min Wu, Yi-Xiong Tang. An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4. Applied biochemistry and biotechnology. 2012 Apr; 166(7):1674-84. doi: 10.1007/s12010-012-9568-0. [PMID: 22328251]
  • Sarah E O'Connor. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus. Methods in enzymology. 2012; 515(?):189-206. doi: 10.1016/b978-0-12-394290-6.00009-4. [PMID: 22999175]
  • Qinhua Chen, Na Li, Wenpeng Zhang, Jing Chen, Zilin Chen. Simultaneous determination of vinblastine and its monomeric precursors vindoline and catharanthine in Catharanthus roseus by capillary electrophoresis-mass spectrometry. Journal of separation science. 2011 Oct; 34(20):2885-92. doi: 10.1002/jssc.201100359. [PMID: 21735550]
  • Mei-Liang Zhou, Hong-Li Hou, Xue-Mei Zhu, Ji-Rong Shao, Yan-Min Wu, Yi-Xiong Tang. Soybean transcription factor GmMYBZ2 represses catharanthine biosynthesis in hairy roots of Catharanthus roseus. Applied microbiology and biotechnology. 2011 Aug; 91(4):1095-105. doi: 10.1007/s00253-011-3288-1. [PMID: 21590290]
  • Ill-Min Chung, Eun-Hye Kim, Mai Li, Christie A M Peebles, Woo-Suk Jung, Hog-Keun Song, Joung-Kuk Ahn, Ka-Yiu San. Screening 64 cultivars Catharanthus roseus for the production of vindoline, catharanthine, and serpentine. Biotechnology progress. 2011 Jul; 27(4):937-43. doi: 10.1002/btpr.557. [PMID: 21674816]
  • Serkan Sertel, Yujie Fu, Yuangang Zu, Blanka Rebacz, Badireenath Konkimalla, Peter K Plinkert, Alwin Krämer, Jürg Gertsch, Thomas Efferth. Molecular docking and pharmacogenomics of vinca alkaloids and their monomeric precursors, vindoline and catharanthine. Biochemical pharmacology. 2011 Mar; 81(6):723-35. doi: 10.1016/j.bcp.2010.12.026. [PMID: 21219884]
  • C Lopez, B Claude, Ph Morin, J-P Max, R Pena, J-P Ribet. Synthesis and study of a molecularly imprinted polymer for the specific extraction of indole alkaloids from Catharanthus roseus extracts. Analytica chimica acta. 2011 Jan; 683(2):198-205. doi: 10.1016/j.aca.2010.09.051. [PMID: 21167971]
  • Jinghua Yu, Shusheng Yuan, Haihe Pang, Xueke Zhang, Xueying Jia, Zhonghua Tang, Yuangang Zu. [Distribution and accumulation of vindoline, catharanthine and vinblastine in Catharanthus roseus cultivated in China]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Dec; 35(23):3093-6. doi: 10.4268/cjcmm20102301. [PMID: 21355225]
  • Mei-Liang Zhou, Xue-Mei Zhu, Ji-Rong Shao, Yan-Min Wu, Yi-Xiong Tang. Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. Applied microbiology and biotechnology. 2010 Oct; 88(3):737-50. doi: 10.1007/s00253-010-2822-x. [PMID: 20714717]
  • Jonathan Roepke, Vonny Salim, Maggie Wu, Antje M K Thamm, Jun Murata, Kerstin Ploss, Wilhelm Boland, Vincenzo De Luca. Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proceedings of the National Academy of Sciences of the United States of America. 2010 Aug; 107(34):15287-92. doi: 10.1073/pnas.0911451107. [PMID: 20696903]
  • Cui-Ting Wang, Hua Liu, Xiao-Shu Gao, Hong-Xia Zhang. Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant cell reports. 2010 Aug; 29(8):887-94. doi: 10.1007/s00299-010-0874-0. [PMID: 20535474]
  • David M Pereira, Federico Ferreres, Jorge M A Oliveira, Luís Gaspar, Joana Faria, Patrícia Valentão, Mariana Sottomayor, Paula B Andrade. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2010 Jul; 17(8-9):646-52. doi: 10.1016/j.phymed.2009.10.008. [PMID: 19962870]
  • Felipe Vázquez-Flota, Elizabeta Hernández-Domínguez, Ma de Lourdes Miranda-Ham, Miriam Monforte-González. A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnology letters. 2009 Apr; 31(4):591-5. doi: 10.1007/s10529-008-9881-4. [PMID: 19030782]
  • Xiaofen Sun, Yu Chen, Junsong Pan, Yuliang Wang, Kexing Sun, Run Cai, Kexuan Tang. [Analysis of catharanthine content and agronomic traits in Catharanthus roseus]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2009 Jan; 34(2):128-31. doi: ". [PMID: 19385168]
  • Jun Murata, Jonathon Roepke, Heather Gordon, Vincenzo De Luca. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. The Plant cell. 2008 Mar; 20(3):524-42. doi: 10.1105/tpc.107.056630. [PMID: 18326827]
  • Dylan Levac, Jun Murata, Won S Kim, Vincenzo De Luca. Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase. The Plant journal : for cell and molecular biology. 2008 Jan; 53(2):225-36. doi: 10.1111/j.1365-313x.2007.03337.x. [PMID: 18053006]
  • Arvind Verma, Kari Hartonen, Marja-Liisa Riekkola. Optimisation of supercritical fluid extraction of indole alkaloids from Catharanthus roseus using experimental design methodology--comparison with other extraction techniques. Phytochemical analysis : PCA. 2008 Jan; 19(1):52-63. doi: 10.1002/pca.1015. [PMID: 17654538]
  • Shilpa Ramani, Jayabaskaran Chelliah. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC plant biology. 2007 Nov; 7(?):61. doi: 10.1186/1471-2229-7-61. [PMID: 17988378]
  • Lei Yang, Zhonghua Tang, Yuangang Zu. [Simultaneous determination of vindoline, catharanthine and anhydrovinblastine in Catharanthus roseus by high performance liquid chromatography]. Se pu = Chinese journal of chromatography. 2007 Jul; 25(4):550-2. doi: . [PMID: 17970117]
  • Mary Magnotta, Jun Murata, Jianxin Chen, Vincenzo De Luca. Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don by alkaloid and enzymatic profiling. Phytochemistry. 2006 Aug; 67(16):1758-64. doi: 10.1016/j.phytochem.2006.05.018. [PMID: 16806326]
  • M M Gupta, D V Singh, A K Tripathi, R Pandey, R K Verma, S Singh, A K Shasany, S P S Khanuja. Simultaneous determination of vincristine, vinblastine, catharanthine, and vindoline in leaves of catharanthus roseus by high-performance liquid chromatography. Journal of chromatographic science. 2005 Oct; 43(9):450-3. doi: 10.1093/chromsci/43.9.450. [PMID: 16212789]
  • Maojun Xu, Jufang Dong, Muyuan Zhu. Effect of nitric oxide on catharanthine production and growth of Catharanthus roseus suspension cells. Biotechnology and bioengineering. 2005 Feb; 89(3):367-71. doi: 10.1002/bit.20334. [PMID: 15744842]
  • Joanna Ruszkowska, Robert Chrobak, Jerzy T Wróbel, Zbigniew Czarnocki. Novel bisindole derivatives of Catharanthus alkaloids with potential cytotoxic properties. Advances in experimental medicine and biology. 2003; 527(?):643-6. doi: 10.1007/978-1-4615-0135-0_74. [PMID: 15206784]
  • Cyril Tikhomiroff, Ségolène Allais, Maya Klvana, Steve Hisiger, Mario Jolicoeur. Continuous selective extraction of secondary metabolites from Catharanthus roseus hairy roots with silicon oil in a two-liquid-phase bioreactor. Biotechnology progress. 2002 Sep; 18(5):1003-9. doi: 10.1021/bp0255558. [PMID: 12363351]
  • J Zhao, Q Hu, Y Q Guo, W H Zhu. Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Applied microbiology and biotechnology. 2001 Jun; 55(6):693-8. doi: 10.1007/s002530000568. [PMID: 11525616]
  • C W Lee, M L Shuler. The effect of inoculum density and conditioned medium on the production of ajmalicine and catharanthine from immobilized Catharanthus roseus cells. Biotechnology and bioengineering. 2000 Jan; 67(1):61-71. doi: 10.1002/(sici)1097-0290(20000105)67:1<61::aid-bit7>3.0.co;2-j. [PMID: 10581436]
  • T Naaranlahti, M Nordström, S P Lapinjoki, A Huhtikangas, M Lounasmaa. Isolation of Catharanthus alkaloids by solid-phase extraction and semipreparative HPLC. Journal of chromatographic science. 1990 Apr; 28(4):173-4. doi: 10.1093/chromsci/28.4.173. [PMID: 2079546]
  • F DiCosmo, A Quesnel, M Misawa, S G Tallevi. Increased synthesis of ajmalicine and catharanthine by cell suspension cultures of Catharanthus roseus in response to fungal culture-filtrates. Applied biochemistry and biotechnology. 1987 Mar; 14(2):101-6. doi: 10.1007/bf02798428. [PMID: 3619437]
  • . . . . doi: . [PMID: 9654153]