Diprenorphine (BioDeep_00000008876)

   


代谢物信息卡片


Diprenorphine

化学式: C26H35NO4 (425.2566)
中文名称: 地利洛非
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C)(C1CC23CCC1(C4C25CCN(C3CC6=C5C(=C(C=C6)O)O4)CC7CC7)OC)O
InChI: InChI=1S/C26H35NO4/c1-23(2,29)18-13-24-8-9-26(18,30-3)22-25(24)10-11-27(14-15-4-5-15)19(24)12-16-6-7-17(28)21(31-22)20(16)25/h6-7,15,18-19,22,28-29H,4-5,8-14H2,1-3H3/t18-,19-,22-,24-,25+,26-/m1/s1

描述信息

D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists
C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist
Same as: D07863

同义名列表

3 个代谢物同义名

Diprenorphine; CHEMBL353979; Diprenorphine



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ABCB1, ARR3, GTPBP4, HTT, NT5C2, POMC, RPS17
Peripheral membrane protein 2 COQ10A, CYP27A1
Endosome membrane 1 HTT
Mitochondrion membrane 2 ABCG2, CYP27A1
Nucleus 2 GTPBP4, HTT
autophagosome 1 HTT
cytosol 5 GTPBP4, HTT, NT5C2, RPS17, SST
dendrite 5 HTT, MAOB, OPRM1, PDYN, PNOC
mitochondrial membrane 1 ABCG2
nucleoplasm 5 ABCG2, ATP2B1, GTPBP4, HTT, RPS17
Cell membrane 8 ABCB1, ABCG2, ATP2B1, GPRC5A, HTT, OPRD1, OPRL1, OPRM1
Cytoplasmic side 1 MAOB
Cell projection, axon 1 OPRM1
Multi-pass membrane protein 9 ABCB1, ABCG2, ATP2B1, GPRC5A, HTT, OPRD1, OPRL1, OPRM1, RHO
Synapse 7 ARR3, ATP2B1, HTT, OPRM1, PDYN, PNOC, RPS17
cell surface 1 ABCB1
glutamatergic synapse 1 ATP2B1
Golgi apparatus 3 HTT, OPRM1, RHO
Golgi membrane 1 RHO
mitochondrial inner membrane 2 COQ10A, CYP27A1
neuronal cell body 4 MAOB, PDYN, PNOC, SST
presynaptic membrane 3 ATP2B1, HTT, OPRD1
Cytoplasm, cytosol 1 NT5C2
endosome 1 OPRM1
plasma membrane 11 ABCB1, ABCG2, ATP2B1, GPRC5A, HTT, OPRD1, OPRL1, OPRM1, PDYN, PNOC, RHO
synaptic vesicle membrane 2 ATP2B1, OPRD1
Membrane 8 ABCB1, ABCG2, ATP2B1, GTPBP4, OPRD1, OPRM1, RHO, RPS17
apical plasma membrane 2 ABCB1, ABCG2
axon 2 HTT, OPRM1
basolateral plasma membrane 1 ATP2B1
extracellular exosome 3 ABCB1, ATP2B1, GPRC5A
endoplasmic reticulum 2 HTT, OPRM1
extracellular space 2 POMC, SST
perinuclear region of cytoplasm 2 GTPBP4, HTT
mitochondrion 3 COQ10A, CYP27A1, MAOB
protein-containing complex 1 HTT
intracellular membrane-bounded organelle 2 ATP2B1, GPRC5A
Secreted 4 PDYN, PNOC, POMC, SST
extracellular region 4 PDYN, PNOC, POMC, SST
Mitochondrion outer membrane 1 MAOB
mitochondrial outer membrane 1 MAOB
hippocampal mossy fiber to CA3 synapse 1 PDYN
mitochondrial matrix 1 CYP27A1
ciliary membrane 1 RHO
photoreceptor inner segment 2 ARR3, RHO
photoreceptor outer segment 2 ARR3, RHO
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nuclear membrane 1 GTPBP4
perikaryon 1 OPRM1
cytoplasmic vesicle 1 OPRL1
nucleolus 3 GPRC5A, GTPBP4, RPS17
Early endosome 1 HTT
cell-cell junction 1 RHO
vesicle 1 GPRC5A
postsynaptic membrane 1 HTT
Apical cell membrane 2 ABCB1, ABCG2
Mitochondrion inner membrane 2 COQ10A, CYP27A1
Matrix side 1 COQ10A
Membrane raft 2 ABCG2, HTT
Cell junction, focal adhesion 1 HTT
focal adhesion 2 HTT, RPS17
GABA-ergic synapse 1 SST
secretory granule 1 POMC
lateral plasma membrane 1 ATP2B1
Late endosome 1 HTT
receptor complex 1 GPRC5A
Cell projection, neuron projection 1 HTT
neuron projection 4 HTT, OPRD1, OPRL1, OPRM1
cell projection 1 ATP2B1
centriole 1 HTT
Cell projection, cilium, photoreceptor outer segment 2 ARR3, RHO
brush border membrane 1 ABCG2
Nucleus, nucleolus 2 GTPBP4, RPS17
sperm midpiece 1 RHO
Basolateral cell membrane 1 ATP2B1
Endomembrane system 1 HTT
Cytoplasmic vesicle membrane 2 GPRC5A, HTT
Cell projection, dendrite 1 OPRM1
Golgi-associated vesicle membrane 1 RHO
Presynaptic cell membrane 1 ATP2B1
synaptic membrane 1 PNOC
secretory granule lumen 1 POMC
axon terminus 3 OPRD1, PDYN, PNOC
Photoreceptor inner segment membrane 1 RHO
small-subunit processome 1 RPS17
mitochondrial envelope 1 MAOB
postsynaptic density membrane 1 OPRD1
immunological synapse 1 ATP2B1
neuronal dense core vesicle 3 OPRD1, PDYN, SST
Single-pass type IV membrane protein 1 MAOB
ribonucleoprotein complex 1 RPS17
external side of apical plasma membrane 2 ABCB1, ABCG2
photoreceptor outer segment membrane 1 RHO
sperm head plasma membrane 1 RHO
dendrite membrane 1 OPRD1
postsynaptic cytosol 1 HTT
cytosolic ribosome 1 RPS17
presynaptic cytosol 1 HTT
photoreceptor disc membrane 1 RHO
ribosome 1 RPS17
inclusion body 1 HTT
rod photoreceptor outer segment 1 RHO
cytosolic small ribosomal subunit 1 RPS17
photoreceptor ribbon synapse 1 ATP2B1
serotonergic synapse 1 HTT
[Isoform 12]: Cytoplasm 1 OPRM1
spine apparatus 1 OPRD1
[Huntingtin]: Cytoplasm 1 HTT
[Huntingtin, myristoylated N-terminal fragment]: Cytoplasmic vesicle, autophagosome 1 HTT


文献列表

  • Kanako Miyano, Yuki Yoshida, Shigeto Hirayama, Hideki Takahashi, Haruka Ono, Yoshiyuki Meguro, Sei Manabe, Akane Komatsu, Miki Nonaka, Takaaki Mizuguchi, Hideaki Fujii, Yoshikazu Higami, Minoru Narita, Yasuhito Uezono. Oxytocin Is a Positive Allosteric Modulator of κ-Opioid Receptors but Not δ-Opioid Receptors in the G Protein Signaling Pathway. Cells. 2021 10; 10(10):. doi: 10.3390/cells10102651. [PMID: 34685631]
  • Shreya S Bellampalli, Yingshi Ji, Aubin Moutal, Song Cai, E M Kithsiri Wijeratne, Maria A Gandini, Jie Yu, Aude Chefdeville, Angie Dorame, Lindsey A Chew, Cynthia L Madura, Shizhen Luo, Gabriella Molnar, May Khanna, John M Streicher, Gerald W Zamponi, A A Leslie Gunatilaka, Rajesh Khanna. Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve injury-associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain. 2019 Jan; 160(1):117-135. doi: 10.1097/j.pain.0000000000001385. [PMID: 30169422]
  • Katy J Sutcliffe, Graeme Henderson, Eamonn Kelly, Richard B Sessions. Drug Binding Poses Relate Structure with Efficacy in the μ Opioid Receptor. Journal of molecular biology. 2017 06; 429(12):1840-1851. doi: 10.1016/j.jmb.2017.05.009. [PMID: 28502792]
  • Nicolas Tournier, Héric Valette, Marie-Anne Peyronneau, Wadad Saba, Sébastien Goutal, Bertrand Kuhnast, Frédéric Dollé, Jean-Michel Scherrmann, Salvatore Cisternino, Michel Bottlaender. Transport of selected PET radiotracers by human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2): an in vitro screening. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2011 Mar; 52(3):415-23. doi: 10.2967/jnumed.110.079608. [PMID: 21321274]
  • Chrisostom Ayebazibwe, Frank N Mwiine, Kirsten Tjørnehøj, Sheila N Balinda, Vincent B Muwanika, Anna R Ademun Okurut, Graham J Belsham, Preben Normann, Hans R Siegismund, Soren Alexandersen. The role of African buffalos (Syncerus caffer) in the maintenance of foot-and-mouth disease in Uganda. BMC veterinary research. 2010 Dec; 6(?):54. doi: 10.1186/1746-6148-6-54. [PMID: 21143994]
  • Henning A Haga, Sandra Wenger, Silje Hvarnes, Oystein Os, Christer M Rolandsen, Erling J Solberg. Plasma lactate concentrations in free-ranging moose (Alces alces) immobilized with etorphine. Veterinary anaesthesia and analgesia. 2009 Nov; 36(6):555-61. doi: 10.1111/j.1467-2995.2009.00498.x. [PMID: 19845927]
  • Aurore André, Gérald Gaibelet, Laurent Le Guyader, Michèle Welby, André Lopez, Chantal Lebrun. Membrane partitioning of various delta-opioid receptor forms before and after agonist activations: the effect of cholesterol. Biochimica et biophysica acta. 2008 Jun; 1778(6):1483-92. doi: 10.1016/j.bbamem.2008.03.017. [PMID: 18423369]
  • Peng Huang, Wei Xu, Su-In Yoon, Chongguang Chen, Parkson Lee-Gau Chong, Ellen M Unterwald, Lee-Yuan Liu-Chen. Agonist treatment did not affect association of mu opioid receptors with lipid rafts and cholesterol reduction had opposite effects on the receptor-mediated signaling in rat brain and CHO cells. Brain research. 2007 Dec; 1184(?):46-56. doi: 10.1016/j.brainres.2007.09.096. [PMID: 17980352]
  • Kenneth M Wannemacher, Prem N Yadav, Richard D Howells. A select set of opioid ligands induce up-regulation by promoting the maturation and stability of the rat kappa-opioid receptor in human embryonic kidney 293 cells. The Journal of pharmacology and experimental therapeutics. 2007 Nov; 323(2):614-25. doi: 10.1124/jpet.107.125500. [PMID: 17720886]
  • Alexander Hammers, Marie-Claude Asselin, Federico E Turkheimer, Rainer Hinz, Safiye Osman, Gary Hotton, David J Brooks, John S Duncan, Matthias J Koepp. Balancing bias, reliability, noise properties and the need for parametric maps in quantitative ligand PET: [(11)C]diprenorphine test-retest data. NeuroImage. 2007 Oct; 38(1):82-94. doi: 10.1016/j.neuroimage.2007.06.035. [PMID: 17764977]
  • Peng Huang, Wei Xu, Su-In Yoon, Chongguang Chen, Parkson Lee-Gau Chong, Lee-Yuan Liu-Chen. Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochemical pharmacology. 2007 Feb; 73(4):534-49. doi: 10.1016/j.bcp.2006.10.032. [PMID: 17141202]
  • Hui Zhao, Horace H Loh, P Y Law. Adenylyl cyclase superactivation induced by long-term treatment with opioid agonist is dependent on receptor localized within lipid rafts and is independent of receptor internalization. Molecular pharmacology. 2006 Apr; 69(4):1421-32. doi: 10.1124/mol.105.020024. [PMID: 16415176]
  • G Henriksen, M E Spilker, T Sprenger, A I Hauser, S Platzer, H Boecker, T R Toelle, M Schwaiger, H-J Wester. Gender dependent rate of metabolism of the opioid receptor-PET ligand [18F]fluoroethyldiprenorphine. Nuklearmedizin. Nuclear medicine. 2006; 45(5):197-200. doi: 10.1055/s-0038-1625219. [PMID: 17043729]
  • Sarah von Spiczak, Alan L Whone, Alexander Hammers, Marie-Claude Asselin, Federico Turkheimer, Tobias Tings, Svenja Happe, Walter Paulus, Claudia Trenkwalder, David J Brooks. The role of opioids in restless legs syndrome: an [11C]diprenorphine PET study. Brain : a journal of neurology. 2005 Apr; 128(Pt 4):906-17. doi: 10.1093/brain/awh441. [PMID: 15728657]
  • Jan K Melichar, Susan P Hume, Tim M Williams, Mark R C Daglish, Lindsay G Taylor, Rabia Ahmad, Andrea L Malizia, David J Brooks, Judith S Myles, Anne Lingford-Hughes, David J Nutt. Using [11C]diprenorphine to image opioid receptor occupancy by methadone in opioid addiction: clinical and preclinical studies. The Journal of pharmacology and experimental therapeutics. 2005 Jan; 312(1):309-15. doi: 10.1124/jpet.104.072686. [PMID: 15347732]
  • Bénédicte G Perret, Renaud Wagner, Sandra Lecat, Karl Brillet, Gwénaël Rabut, Bernard Bucher, Franc Pattus. Expression of EGFP-amino-tagged human mu opioid receptor in Drosophila Schneider 2 cells: a potential expression system for large-scale production of G-protein coupled receptors. Protein expression and purification. 2003 Sep; 31(1):123-32. doi: 10.1016/s1046-5928(03)00140-2. [PMID: 12963349]
  • J Mark Quillan, Kurt W Carlson, Chunyan Song, Danxin Wang, Wolfgang Sadée. Differential effects of mu-opioid receptor ligands on Ca(2+) signaling. The Journal of pharmacology and experimental therapeutics. 2002 Sep; 302(3):1002-12. doi: 10.1124/jpet.302.3.1002. [PMID: 12183657]
  • M Shapira, O Keren, M Gafni, Y Sarne. Divers pathways mediate delta-opioid receptor down regulation within the same cell. Brain research. Molecular brain research. 2001 Nov; 96(1-2):142-50. doi: 10.1016/s0169-328x(01)00283-2. [PMID: 11731019]
  • N A Martin, M T Terruso, P L Prather. Agonist Activity of the delta-antagonists TIPP and TIPP-psi in cellular models expressing endogenous or transfected delta-opioid receptors. The Journal of pharmacology and experimental therapeutics. 2001 Jul; 298(1):240-8. doi: . [PMID: 11408548]
  • R El Kouhen, A L Burd, L J Erickson-Herbrandson, C Y Chang, P Y Law, H H Loh. Phosphorylation of Ser363, Thr370, and Ser375 residues within the carboxyl tail differentially regulates mu-opioid receptor internalization. The Journal of biological chemistry. 2001 Apr; 276(16):12774-80. doi: 10.1074/jbc.m009571200. [PMID: 11278523]
  • A Hasbi, S Allouche, F Sichel, L Stanasila, D Massotte, G Landemore, J Polastron, P Jauzac. Internalization and recycling of delta-opioid receptor are dependent on a phosphorylation-dephosphorylation mechanism. The Journal of pharmacology and experimental therapeutics. 2000 Apr; 293(1):237-47. doi: NULL. [PMID: 10734175]
  • M Gutiérrez, L Menéndez, A Hidalgo, A Baamonde. Study of the density of opioid receptors in the male mouse brain at different stages of sexual maturation. Methods and findings in experimental and clinical pharmacology. 1999 Sep; 21(7):459-62. doi: NULL. [PMID: 10544387]
  • H K Kramer, E J Simon. Role of protein kinase C (PKC) in agonist-induced mu-opioid receptor down-regulation: II. Activation and involvement of the alpha, epsilon, and zeta isoforms of PKC. Journal of neurochemistry. 1999 Feb; 72(2):594-604. doi: 10.1046/j.1471-4159.1999.0720594.x. [PMID: 9930731]
  • H K Kramer, E J Simon. Role of protein kinase C (PKC) in agonist-induced mu-opioid receptor down-regulation: I. PKC translocation to the membrane of SH-SY5Y neuroblastoma cells is induced by mu-opioid agonists. Journal of neurochemistry. 1999 Feb; 72(2):585-93. doi: 10.1046/j.1471-4159.1999.0720585.x. [PMID: 9930730]
  • S Panagiotou, A Hatzoglou, F Calvo, P M Martin, E Castanas. Modulation of the estrogen-regulated proteins cathepsin D and pS2 by opioid agonists in hormone-sensitive breast cancer cell lines (MCF7 and T47D): evidence for an interaction between the two systems. Journal of cellular biochemistry. 1998 Dec; 71(3):416-28. doi: 10.1002/(sici)1097-4644(19981201)71:3<416::aid-jcb10>3.0.co;2-y. [PMID: 9831078]
  • J G Li, R B Raffa, P Cheung, T B Tzeng, L Y Liu-Chen. Apparent thermodynamic parameters of ligand binding to the cloned rat mu-opioid receptor. European journal of pharmacology. 1998 Aug; 354(2-3):227-37. doi: 10.1016/s0014-2999(98)00444-0. [PMID: 9754924]
  • R A Weeks, V J Cunningham, P Piccini, S Waters, A E Harding, D J Brooks. 11C-diprenorphine binding in Huntington's disease: a comparison of region of interest analysis with statistical parametric mapping. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1997 Sep; 17(9):943-9. doi: 10.1097/00004647-199709000-00003. [PMID: 9307607]
  • A D Blake, G Bot, S Li, J C Freeman, T Reisine. Differential agonist regulation of the human kappa-opioid receptor. Journal of neurochemistry. 1997 May; 68(5):1846-52. doi: 10.1046/j.1471-4159.1997.68051846.x. [PMID: 9109509]
  • X Zhu, C Wang, Z Cheng, Y Wu, D Zhou, G Pei. The carboxyl terminus of mouse delta-opioid receptor is not required for agonist-dependent activation. Biochemical and biophysical research communications. 1997 Mar; 232(2):513-6. doi: 10.1006/bbrc.1997.6324. [PMID: 9125212]
  • A D Blake, G Bot, J C Freeman, T Reisine. Differential opioid agonist regulation of the mouse mu opioid receptor. The Journal of biological chemistry. 1997 Jan; 272(2):782-90. doi: 10.1074/jbc.272.2.782. [PMID: 8995364]
  • P Y Law, T M McGinn, K M Campbell, L E Erickson, H H Loh. Agonist activation of delta-opioid receptor but not mu-opioid receptor potentiates fetal calf serum or tyrosine kinase receptor-mediated cell proliferation in a cell-line-specific manner. Molecular pharmacology. 1997 Jan; 51(1):152-60. doi: 10.1124/mol.51.1.152. [PMID: 9016358]
  • A Hatzoglou, E Bakogeorgou, E Papakonstanti, C Stournaras, D S Emmanouel, E Castanas. Identification and characterization of opioid and somatostatin binding sites in the opossum kidney (OK) cell line and their effect on growth. Journal of cellular biochemistry. 1996 Dec; 63(4):410-21. doi: 10.1002/(sici)1097-4644(19961215)63:4\%3c410::aid-jcb3\%3e3.0.co;2-w. [PMID: 8978457]
  • M C Prevett, V J Cunningham, D J Brooks, D R Fish, J S Duncan. Opiate receptors in idiopathic generalised epilepsy measured with [11C]diprenorphine and positron emission tomography. Epilepsy research. 1994 Sep; 19(1):71-7. doi: 10.1016/0920-1211(94)90090-6. [PMID: 7813416]
  • A K Jones, V J Cunningham, S K Ha-Kawa, T Fujiwara, Q Liyii, S K Luthra, J Ashburner, S Osman, T Jones. Quantitation of [11C]diprenorphine cerebral kinetics in man acquired by PET using presaturation, pulse-chase and tracer-only protocols. Journal of neuroscience methods. 1994 Mar; 51(2):123-34. doi: 10.1016/0165-0270(94)90002-7. [PMID: 8051944]
  • Y Iwasaki, M B Gaskill, G L Robertson. The effect of selective opioid antagonists on vasopressin secretion in the rat. Endocrinology. 1994 Jan; 134(1):55-62. doi: 10.1210/endo.134.1.8275969. [PMID: 8275969]
  • Y Iwasaki, M B Gaskill, C A Boss, G L Robertson. The effect of the nonselective opioid antagonist diprenorphine on vasopressin secretion in the rat. Endocrinology. 1994 Jan; 134(1):48-54. doi: 10.1210/endo.134.1.8275962. [PMID: 8275962]
  • V U Dissanayake, J Hughes, J C Hunter. Opioid binding sites in the guinea pig and rat kidney: radioligand homogenate binding and autoradiography. Molecular pharmacology. 1991 Jul; 40(1):93-100. doi: NULL. [PMID: 1649966]
  • H D Allescher, S Ahmad, M Classen, E E Daniel. Interaction of trimebutine and Jo-1196 (fedotozine) with opioid receptors in the canine ileum. The Journal of pharmacology and experimental therapeutics. 1991 May; 257(2):836-42. doi: . [PMID: 1851839]
  • B Sadzot, J C Price, H S Mayberg, K H Douglass, R F Dannals, J R Lever, H T Ravert, A A Wilson, H N Wagner, M A Feldman. Quantification of human opiate receptor concentration and affinity using high and low specific activity [11C]diprenorphine and positron emission tomography. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1991 Mar; 11(2):204-19. doi: 10.1038/jcbfm.1991.52. [PMID: 1847703]
  • C Y Shiue, L Q Bai, R R Teng, C D Arnett, S L Dewey, A P Wolf, D W McPherson, J S Fowler, J Logan, M J Holland. A comparison of the brain uptake of N-(cyclopropyl[11C]methyl)norbuprenorphine ([11C]buprenorphine) and N-(cyclopropyl[11C]methyl)nordiprenorphine ([11C]diprenorphine) in baboon using PET. International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology. 1991; 18(3):281-8. doi: 10.1016/0883-2897(91)90123-3. [PMID: 2071440]
  • H D Allescher, S Ahmad, P Kostka, C Y Kwan, E E Daniel. Distribution of opioid receptors in canine small intestine: implications for function. The American journal of physiology. 1989 Jun; 256(6 Pt 1):G966-74. doi: 10.1152/ajpgi.1989.256.6.g966. [PMID: 2544102]
  • S Ott, T Costa, A Herz. Opioid receptors of neuroblastoma cells are in two domains of the plasma membrane that differ in content of G proteins. Journal of neurochemistry. 1989 Feb; 52(2):619-26. doi: 10.1111/j.1471-4159.1989.tb09164.x. [PMID: 2536079]
  • R Simantov, R Levy. Neuronal activation regulates the expression of opioid receptors: possible role of glial-derived factors and voltage-dependent ion channels. Journal of neurochemistry. 1989 Jan; 52(1):305-9. doi: 10.1111/j.1471-4159.1989.tb10931.x. [PMID: 2535711]
  • A Ratka, W Sutanto, E R De Kloet. Long-lasting glucocorticoid suppression of opioid-induced antinociception. Neuroendocrinology. 1988 Oct; 48(4):439-44. doi: 10.1159/000125046. [PMID: 3211285]
  • H D Allescher, S Ahmad, E E Daniel, J Dent, F Kostolanska, J E Fox. Inhibitory opioid receptors in canine pylorus. The American journal of physiology. 1988 Sep; 255(3 Pt 1):G352-60. doi: 10.1152/ajpgi.1988.255.3.g352. [PMID: 2844101]
  • H Murase, K Kamikubo, M Murayama, K Yasuda, K Tsurumi, K Miura. [Characterization of adrenal medullary opioid receptors. I. Binding of opioids to adrenal medullary opioid receptors]. Nihon Naibunpi Gakkai zasshi. 1987 Jun; 63(6):727-40. doi: 10.1507/endocrine1927.63.6_727. [PMID: 2822499]
  • C Klein, R Levy, R Simantov. Subcellular compartmentation of opioid receptors: modulation by enkephalin and alkaloids. Journal of neurochemistry. 1986 Apr; 46(4):1137-44. doi: 10.1111/j.1471-4159.1986.tb00628.x. [PMID: 3005505]
  • M J Millan, M H Millan, A Członkowski, V Höllt, C W Pilcher, A Herz, F C Colpaert. A model of chronic pain in the rat: response of multiple opioid systems to adjuvant-induced arthritis. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1986 Apr; 6(4):899-906. doi: 10.1523/jneurosci.06-04-00899.1986. [PMID: 2871141]
  • T Costa, M Wüster, C Gramsch, A Herz. Multiple states of opioid receptors may modulate adenylate cyclase in intact neuroblastoma X glioma hybrid cells. Molecular pharmacology. 1985 Aug; 28(2):146-54. doi: NULL. [PMID: 2991735]
  • M L Richards, W Sadée. In vivo binding of benzomorphans to mu, delta and kappa opioid receptors: comparison with urine output in the rat. The Journal of pharmacology and experimental therapeutics. 1985 May; 233(2):425-32. doi: NULL. [PMID: 2987482]
  • T M Cho, B L Ge, C Yamato, A P Smith, H H Loh. Isolation of opiate binding components by affinity chromatography and reconstitution of binding activities. Proceedings of the National Academy of Sciences of the United States of America. 1983 Sep; 80(17):5176-80. doi: 10.1073/pnas.80.17.5176. [PMID: 6310562]
  • D C Perry, K B Mullis, S Oie, W Sadée. Opiate antagonist receptor binding in vivo: evidence for a new receptor binding model. Brain research. 1980 Oct; 199(1):49-61. doi: 10.1016/0006-8993(80)90229-2. [PMID: 6250676]
  • C J Hillidge. The influence of neuroleptanalgesia on the serum activity of muscle enzymes in ponies. Equine veterinary journal. 1978 Jan; 10(1):60-4. doi: 10.1111/j.2042-3306.1978.tb02217.x. [PMID: 631108]