Repaglinide (BioDeep_00000397569)

Main id: BioDeep_00000002032

 

natural product


代谢物信息卡片


Repaglinide

化学式: C27H36N2O4 (452.2675)
中文名称: 瑞格列奈
谱图信息: 最多检出来源 Danio rerio(blood) 24.8%

分子结构信息

SMILES: C1(=C(C=CC(=C1)CC(N[C@H](C2=CC=CC=C2N3CCCCC3)CC(C)C)=O)C(O)=O)OCC
InChI: InChI=1S/C27H36N2O4/c1-4-33-25-17-20(12-13-22(25)27(31)32)18-26(30)28-23(16-19(2)3)21-10-6-7-11-24(21)29-14-8-5-9-15-29/h6-7,10-13,17,19,23H,4-5,8-9,14-16,18H2,1-3H3,(H,28,30)(H,31,32)

描述信息

C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent
A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins
D007004 - Hypoglycemic Agents
CONFIDENCE standard compound; INTERNAL_ID 2189
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3349

同义名列表

2 个代谢物同义名

Repaglinide; Repaglinide



数据库引用编号

50 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ABCB1, ALB, CAT, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP3A4, KCNQ1
Peripheral membrane protein 2 CYP1B1, CYP2B6
Endoplasmic reticulum membrane 7 CYP1B1, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP3A4
Nucleus 1 ALB
cytosol 2 ALB, CAT
centrosome 1 ALB
Cell membrane 5 ABCB1, ABCC8, DPP4, KCNQ1, SLCO1B1
lamellipodium 1 DPP4
Multi-pass membrane protein 6 ABCB1, ABCC8, KCNA3, KCNJ11, KCNQ1, SLCO1B1
cell junction 1 DPP4
cell surface 2 ABCB1, DPP4
glutamatergic synapse 2 KCNA3, KCNJ11
Golgi apparatus 1 ALB
Golgi membrane 1 INS
lysosomal membrane 2 DPP4, GAA
neuronal cell body 2 KCNJ11, KCNQ1
presynaptic membrane 3 ABCC8, KCNA3, KCNJ11
sarcolemma 1 ABCC8
Lysosome 2 GAA, KCNQ1
acrosomal vesicle 1 KCNJ11
endosome 1 KCNJ11
plasma membrane 12 ABCB1, ABCC8, CYP2C19, CYP2C8, CYP2C9, DPP4, GAA, GCG, KCNA3, KCNJ11, KCNQ1, SLCO1B1
synaptic vesicle membrane 1 ABCC8
Membrane 12 ABCB1, ABCC8, CAT, CYP1B1, CYP2D6, CYP3A4, DPP4, GAA, KCNA3, KCNJ11, KCNQ1, SLCO1B1
apical plasma membrane 3 ABCB1, DPP4, KCNQ1
axon 1 KCNA3
basolateral plasma membrane 2 KCNQ1, SLCO1B1
extracellular exosome 5 ABCB1, ALB, CAT, DPP4, GAA
Lysosome membrane 1 GAA
endoplasmic reticulum 3 ALB, CYP2D6, KCNQ1
extracellular space 4 ALB, GCG, IL6, INS
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 1 KCNA3
intercalated disc 1 KCNJ11
intercellular canaliculus 1 DPP4
mitochondrion 3 CAT, CYP1B1, CYP2D6
protein-containing complex 3 ABCC8, ALB, CAT
intracellular membrane-bounded organelle 9 CAT, CYP1B1, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, CYP3A4, GAA
Microsome membrane 5 CYP1B1, CYP2B6, CYP2C9, CYP2D6, CYP3A4
Secreted 6 ALB, DPP4, GAA, GCG, IL6, INS
extracellular region 7 ALB, CAT, DPP4, GAA, GCG, IL6, INS
Single-pass membrane protein 2 CYP2D6, DPP4
mitochondrial matrix 1 CAT
anchoring junction 2 ALB, DPP4
T-tubule 1 KCNJ11
Early endosome 1 KCNQ1
Single-pass type II membrane protein 1 DPP4
postsynaptic membrane 1 KCNA3
Apical cell membrane 3 ABCB1, DPP4, KCNQ1
Membrane raft 3 DPP4, KCNA3, KCNQ1
focal adhesion 2 CAT, DPP4
axolemma 1 KCNJ11
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
lateral plasma membrane 1 KCNQ1
Late endosome 1 KCNQ1
neuron projection 1 KCNQ1
ciliary basal body 1 ALB
ciliary base 1 KCNQ1
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 1 ALB
Basolateral cell membrane 2 KCNQ1, SLCO1B1
[Isoform 2]: Cell membrane 1 KCNA3
nuclear envelope 1 KCNJ11
Endomembrane system 1 DPP4
endosome lumen 1 INS
monoatomic ion channel complex 2 KCNJ11, KCNQ1
Cytoplasmic vesicle membrane 1 KCNQ1
cell body fiber 1 KCNJ11
inward rectifying potassium channel 2 ABCC8, KCNJ11
tertiary granule membrane 1 GAA
basal plasma membrane 1 SLCO1B1
voltage-gated potassium channel complex 2 KCNA3, KCNQ1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 3 CAT, GCG, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ALB, GCG, IL6, INS
platelet alpha granule lumen 1 ALB
endocytic vesicle 1 DPP4
transport vesicle 2 INS, KCNQ1
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
calyx of Held 1 KCNA3
Basal cell membrane 1 SLCO1B1
ficolin-1-rich granule membrane 1 GAA
external side of apical plasma membrane 1 ABCB1
[Isoform 1]: Cell membrane 1 KCNA3
potassium ion-transporting ATPase complex 1 ABCC8
lamellipodium membrane 1 DPP4
[Glucagon-like peptide 1]: Secreted 1 GCG
catalase complex 1 CAT
Cell projection, lamellipodium membrane 1 DPP4
interleukin-6 receptor complex 1 IL6
Cell projection, invadopodium membrane 1 DPP4
autolysosome lumen 1 GAA
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
[Dipeptidyl peptidase 4 soluble form]: Secreted 1 DPP4
lumenal side of membrane 1 KCNQ1
ciliary transition fiber 1 ALB
basolateral part of cell 1 KCNQ1


文献列表

  • Yangchen Tang, Mengli Yan, Zemin Fang, Song Jin, Tingjuan Xu. Effects of metformin, saxagliptin and repaglinide on gut microbiota in high-fat diet/streptozocin-induced type 2 diabetic mice. BMJ open diabetes research & care. 2024 May; 12(3):. doi: 10.1136/bmjdrc-2023-003837. [PMID: 38719505]
  • Hany S M Ali, Nader Namazi, Hossein M Elbadawy, Abdelaziz A A El-Sayed, Sameh A Ahmed, Rawan Bafail, Mohannad A Almikhlafi, Yaser M Alahmadi. Repaglinide-Solid Lipid Nanoparticles in Chitosan Patches for Transdermal Application: Box-Behnken Design, Characterization, and In Vivo Evaluation. International journal of nanomedicine. 2024; 19(?):209-230. doi: 10.2147/ijn.s438564. [PMID: 38223883]
  • Shahinaze A Fouad, Mahmoud H Teaima, Mostafa I Gebril, Fathy I Abd Allah, Mohamed A El-Nabarawi, Sammar Fathy Elhabal. Formulation of novel niosomal repaglinide chewable tablets using coprocessed excipients: in vitro characterization, optimization and enhanced hypoglycemic activity in rats. Drug delivery. 2023 Dec; 30(1):2181747. doi: 10.1080/10717544.2023.2181747. [PMID: 36803255]
  • Roham Foroumadi, Maryam Baeeri, Sara Asgarian, Zahra Emamgholipour, Fereshteh Goli, Loghman Firoozpour, Mohammad Keykhaei, Mahdi Gholami, Ahmad R Dehpour, Mohammad Abdollahi, Alireza Foroumadi. Antidiabetic and neuroprotective effects of a novel repaglinide analog. Journal of biochemical and molecular toxicology. 2022 Sep; 36(9):e23125. doi: 10.1002/jbt.23125. [PMID: 35702883]
  • Matthias Hoch, Tirtha Sengupta, Florence Hourcade-Potelleret. Pharmacokinetic drug interactions of asciminib with the sensitive cytochrome P450 probe substrates midazolam, warfarin, and repaglinide in healthy participants. Clinical and translational science. 2022 06; 15(6):1406-1416. doi: 10.1111/cts.13252. [PMID: 35293131]
  • Susan T Ovbude, Pingyang Tao, Zhao Li, David S Hage. High-Performance affinity chromatographic studies of repaglinide and nateglinide interactions with normal and glyoxal- or methylglyoxal-modified human albumin serum. Journal of pharmaceutical and biomedical analysis. 2021 Jul; 201(?):114097. doi: 10.1016/j.jpba.2021.114097. [PMID: 33933705]
  • Christine M Bowman, Buyun Chen, Jonathan Cheong, Liling Liu, Yuan Chen, Jialin Mao. Improving the Translation of Organic Anion Transporting Polypeptide Substrates using HEK293 Cell Data in the Presence and Absence of Human Plasma via Physiologically Based Pharmacokinetic Modeling. Drug metabolism and disposition: the biological fate of chemicals. 2021 07; 49(7):530-539. doi: 10.1124/dmd.120.000315. [PMID: 33958385]
  • Fumitaka Okajima, Hitoshi Sugihara, Naoya Emoto. Efficacy and Safety of Miglitol- or Repaglinide-Based Combination Therapy with Alogliptin for Drug-Naïve Patients with Type 2 Diabetes: An Open-Label, Single-Center, Parallel, Randomized Controlled Pilot Study. Journal of Nippon Medical School = Nippon Ika Daigaku zasshi. 2021 Mar; 88(1):71-79. doi: 10.1272/jnms.jnms.2021_88-205. [PMID: 32475902]
  • Amit Kumar Patel, Manoj Kumar Mishra, Jitendra Gupta, Saurav Ghoshal, Reena Gupta, Krishna Kushwaha. Guar Gum-Based Floating Microspheres of Repaglinide Using 32 Factorial Design: Fabrication, Optimization, Characterization, and In Vivo Buoyancy Behavior in Albino Rats. Assay and drug development technologies. 2021 Feb; 19(2):63-74. doi: 10.1089/adt.2020.1006. [PMID: 33090876]
  • Saba Albetawi, Amer Abdalhafez, Ala Abu-Zaid. A Review on Recent Controlled Release Strategies for Oral Drug Delivery of Repaglinide (a BCS Class II Drug). Pharmaceutical nanotechnology. 2021; 9(5):326-338. doi: 10.2174/2211738510666211221165318. [PMID: 34939558]
  • Lei Wu, Lin Zhao, Xitong Su, Peng Zhang, Guixia Ling. Repaglinide-loaded nanostructured lipid carriers with different particle sizes for improving oral absorption: preparation, characterization, pharmacokinetics, and in situ intestinal perfusion. Drug delivery. 2020 Dec; 27(1):400-409. doi: 10.1080/10717544.2019.1689313. [PMID: 31729898]
  • Parisa Pishdad, Reza Pishdad, Gholam Reza Pishdad, Yunes Panahi. A time to revisit the two oldest prandial anti-diabetes agents: acarbose and repaglinide. Endocrine. 2020 11; 70(2):307-313. doi: 10.1007/s12020-020-02396-0. [PMID: 32621047]
  • Keigo Nakayama, Hidetaka Kamimura, Hiroshi Suemizu, Nao Yoneda, Megumi Nishiwaki, Kazuhiko Iwamoto, Mari Mizunaga, Tamotsu Negoro, Soichiro Ito, Hiroshi Yamazaki, Yukihiro Nomura. Predicted values for human total clearance of a variety of typical compounds with differently humanized-liver mouse plasma data. Drug metabolism and pharmacokinetics. 2020 Aug; 35(4):389-396. doi: 10.1016/j.dmpk.2020.05.004. [PMID: 32690433]
  • Huan Jin, Yanna Zhu, Changyuan Wang, Qiang Meng, Jingjing Wu, Pengyuan Sun, Xiaodong Ma, Huijun Sun, Xiaokui Huo, Kexin Liu, Aiping Tan. Molecular pharmacokinetic mechanism of the drug-drug interaction between genistein and repaglinide mediated by P-gp. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 May; 125(?):110032. doi: 10.1016/j.biopha.2020.110032. [PMID: 32187961]
  • Reza Pishdad, Parisa Pishdad, Gholam Reza Pishdad. Acarbose versus Repaglinide in Diabetes Treatment: A New Appraisal of Two Old Rivals. The American journal of the medical sciences. 2020 04; 359(4):212-217. doi: 10.1016/j.amjms.2020.01.011. [PMID: 32200914]
  • Anna Gumieniczek, Anna Berecka-Rycerz, Tomasz Mroczek, And Krzysztof Wojtanowski. Determination of Chemical Stability of Two Oral Antidiabetics, Metformin and Repaglinide in the Solid State and Solutions Using LC-UV, LC-MS, and FT-IR Methods. Molecules (Basel, Switzerland). 2019 Dec; 24(24):. doi: 10.3390/molecules24244430. [PMID: 31817112]
  • Denise Türk, Nina Hanke, Sarah Wolf, Sebastian Frechen, Thomas Eissing, Thomas Wendl, Matthias Schwab, Thorsten Lehr. Physiologically Based Pharmacokinetic Models for Prediction of Complex CYP2C8 and OATP1B1 (SLCO1B1) Drug-Drug-Gene Interactions: A Modeling Network of Gemfibrozil, Repaglinide, Pioglitazone, Rifampicin, Clarithromycin and Itraconazole. Clinical pharmacokinetics. 2019 12; 58(12):1595-1607. doi: 10.1007/s40262-019-00777-x. [PMID: 31129789]
  • Poonam Giri, Prashant Delvadia, Meera K Ladani, Namrata Prajapati, Lakshmikant Gupta, Nirmal Patel, Vipul Joshi, Shyamkumar Giri, Mukul R Jain, Nuggehally R Srinivas, Pankaj R Patel. Lack of inhibition of CYP2C8 by saroglitazar magnesium: In vivo assessment using montelukast, rosiglitazone, pioglitazone, repaglinide and paclitaxel as victim drugs in Wistar rats. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2019 Mar; 130(?):107-113. doi: 10.1016/j.ejps.2019.01.005. [PMID: 30633968]
  • Ewa Klara Stuermer, M Besser, N Terberger, V Koester, H S Bachmann, A L Severing. Side effects of frequently used oral antidiabetics on wound healing in vitro. Naunyn-Schmiedeberg's archives of pharmacology. 2019 03; 392(3):371-380. doi: 10.1007/s00210-018-01597-9. [PMID: 30535571]
  • Jing Wang, Zhi-Yi Zhang, Sharon Lu, Dan Powers, Vikram Kansra, Xiaodong Wang. Effects of rolapitant administered orally on the pharmacokinetics of dextromethorphan (CYP2D6), tolbutamide (CYP2C9), omeprazole (CYP2C19), efavirenz (CYP2B6), and repaglinide (CYP2C8) in healthy subjects. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer. 2019 Mar; 27(3):819-827. doi: 10.1007/s00520-018-4331-x. [PMID: 30084103]
  • Jin Li, Hui Li, Qixiong Li, Ying Xue. Repaglinide inhibits cyclosporine A-induced renal tubular toxicity by affecting apoptosis and Bax and Bcl-2 expression. Turkish journal of medical sciences. 2018 Aug; 48(4):880-885. doi: 10.3906/sag-1707-44. [PMID: 30121055]
  • Qi Pei, Jun-Yan Liu, Ji-Ye Yin, Guo-Ping Yang, Shi-Kun Liu, Yi Zheng, Pan Xie, Cheng-Xian Guo, Mi Luo, Hong-Hao Zhou, Xi Li, Zhao-Qian Liu. Repaglinide-irbesartan drug interaction: effects of SLCO1B1 polymorphism on repaglinide pharmacokinetics and pharmacodynamics in Chinese population. European journal of clinical pharmacology. 2018 Aug; 74(8):1021-1028. doi: 10.1007/s00228-018-2477-6. [PMID: 29748863]
  • Hea-Young Cho, Lien Ngo, Sang-Ki Kim, Yoonho Choi, Yong-Bok Lee. Bioequivalence of a fixed-dose repaglinide/metformin combination tablet and equivalent doses of repaglinide and metformin tablets
. International journal of clinical pharmacology and therapeutics. 2018 Jun; 56(6):292-300. doi: 10.5414/cp203199. [PMID: 29648532]
  • Zhenhai Shang, Feifei Han, Xueyan Zhou, Zejun Bao, Jing Zhu, Tao Wang, Qian Lu, Lei Du, Wei Li, Dongmei Lv, Xiaoxing Yin. A variant of GRK5 is associated with the therapeutic efficacy of repaglinide in Chinese Han patients with type 2 diabetes mellitus. Drug development research. 2018 05; 79(3):129-135. doi: 10.1002/ddr.21426. [PMID: 29663513]
  • Ramachandra Sangana, Helen Gu, Dung Yu Chun, Heidi J Einolf. Evaluation of Clinical Drug Interaction Potential of Clofazimine Using Static and Dynamic Modeling Approaches. Drug metabolism and disposition: the biological fate of chemicals. 2018 01; 46(1):26-32. doi: 10.1124/dmd.117.077834. [PMID: 29038231]
  • Hongyan Wei, Ting Zhou, Boyu Tan, Lei Zhang, Mingming Li, Zhijun Xiao, Feng Xu. Impact of chronic unpredicted mild stress-induced depression on repaglinide fate via glucocorticoid signaling pathway. Oncotarget. 2017 Jul; 8(27):44351-44365. doi: 10.18632/oncotarget.17874. [PMID: 28574832]
  • Rajendra Awasthi, Giriraj T Kulkarni, Malipeddi Venkata Ramana, Terezinha de Jesus Andreoli Pinto, Irene Satiko Kikuchi, Daniela Dal Molim Ghisleni, Marina de Souza Braga, Paul De Bank, Kamal Dua. Dual crosslinked pectin-alginate network as sustained release hydrophilic matrix for repaglinide. International journal of biological macromolecules. 2017 Apr; 97(?):721-732. doi: 10.1016/j.ijbiomac.2017.01.050. [PMID: 28115226]
  • Ahmed Alaa Kassem, Sameh Hosam Abd El-Alim, Mona Basha, Abeer Salama. Phospholipid complex enriched micelles: A novel drug delivery approach for promoting the antidiabetic effect of repaglinide. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2017 Mar; 99(?):75-84. doi: 10.1016/j.ejps.2016.12.005. [PMID: 27998799]
  • Mohamed M Amin, Mahmoud S Arbid. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2017 Feb; 42(2):181-192. doi: 10.1139/apnm-2016-0429. [PMID: 28092161]
  • Adenike Okunlola, Amusa Sarafadeen Adebayo, Moji Christianah Adeyeye. Development of repaglinide microspheres using novel acetylated starches of bitter and Chinese yams as polymers. International journal of biological macromolecules. 2017 Jan; 94(Pt A):544-553. doi: 10.1016/j.ijbiomac.2016.10.032. [PMID: 27769931]
  • Juber Akhtar, Hefazat Hussain Siddiqui, Sheeba Fareed, Badruddeen, Mohammad Khalid, Mohammed Aqil. Nanoemulsion: for improved oral delivery of repaglinide. Drug delivery. 2016 Jul; 23(6):2026-34. doi: 10.3109/10717544.2015.1077290. [PMID: 27187792]
  • Thirumaleswara Goud, Srinivas Maddi, Devanna Nayakanti, Rajendra Prasad Thatipamula. Altered pharmacokinetics and pharmacodynamics of repaglinide by ritonavir in rats with healthy, diabetic and impaired hepatic function. Drug metabolism and personalized therapy. 2016 06; 31(2):123-30. doi: 10.1515/dmpt-2015-0046. [PMID: 27166727]
  • Hossein Ali Ebrahimi, Yousef Javadzadeh, Mehrdad Hamidi, Mohammad Barzegar Jalali. Development and characterization of a novel lipohydrogel nanocarrier: repaglinide as a lipophilic model drug. The Journal of pharmacy and pharmacology. 2016 Apr; 68(4):450-8. doi: 10.1111/jphp.12537. [PMID: 27114047]
  • Weiqi Chen, Lifei Wang, Gary J Van Berkel, Vilmos Kertesz, Jinping Gan. Quantitation of repaglinide and metabolites in mouse whole-body thin tissue sections using droplet-based liquid microjunction surface sampling-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of chromatography. A. 2016 Mar; 1439(?):137-143. doi: 10.1016/j.chroma.2015.10.093. [PMID: 26589943]
  • Roland Elling, Marco Simon Spehl, Ariane Wohlfarth, Volker Auwaerter, Maren Hermanns-Clausen. Prolonged hypoglycemia after a suicidal ingestion of repaglinide with unexpected slow plasma elimination. Clinical toxicology (Philadelphia, Pa.). 2016; 54(2):158-60. doi: 10.3109/15563650.2015.1122793. [PMID: 26692235]
  • Riccardo Candido. [Antidiabetic Drugs and the Kidney]. Giornale italiano di nefrologia : organo ufficiale della Societa italiana di nefrologia. 2016 Mal; 33(S68):. doi: NULL. [PMID: 27960013]
  • Hiroshi Kamiyama, Kazutaka Aoki, Shigeru Nakajima, Kazuaki Shinoda, Kazunari Kamiko, Masataka Taguri, Yasuo Terauchi. Effect of Switching from Sulphonylurea to Repaglinide Twice or Three Times Daily for 4 Months on Glycemic Control in Japanese Patients with Type 2 Diabetes. Internal medicine (Tokyo, Japan). 2016; 55(13):1697-703. doi: 10.2169/internalmedicine.55.6566. [PMID: 27374668]
  • Bonaventure Chukwunonso Obi, Theophine Chinwuba Okoye, Victor Eshu Okpashi, Christiana Nonye Igwe, Edwin Olisah Alumanah. Comparative Study of the Antioxidant Effects of Metformin, Glibenclamide, and Repaglinide in Alloxan-Induced Diabetic Rats. Journal of diabetes research. 2016; 2016(?):1635361. doi: 10.1155/2016/1635361. [PMID: 26824037]
  • Qingqing Xiao, Liling Tang, Ruijuan Xu, Wei Qian, Jin Yang. Physiologically based pharmacokinetics model predicts the lack of inhibition by repaglinide on the metabolism of pioglitazone. Biopharmaceutics & drug disposition. 2015 Dec; 36(9):603-12. doi: 10.1002/bdd.1987. [PMID: 26296069]
  • Hossein Ali Ebrahimi, Yousef Javadzadeh, Mehrdad Hamidi, Mohammad Barzegar Jalali. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2015 Sep; 23(?):46. doi: 10.1186/s40199-015-0128-3. [PMID: 26392174]
  • Ele Ferrannini, Ralph A DeFronzo. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. European heart journal. 2015 Sep; 36(34):2288-96. doi: 10.1093/eurheartj/ehv239. [PMID: 26063450]
  • Wei He, Shijing Huang, Chunyan Zhou, Lin Cao, Jing Yao, Jianping Zhou, Guangji Wang, Lifang Yin. Bilayer matrix tablets for prolonged actions of metformin hydrochloride and repaglinide. AAPS PharmSciTech. 2015 Apr; 16(2):344-53. doi: 10.1208/s12249-014-0229-1. [PMID: 25319054]
  • Lei Zheng, Jing Wang, Yufen Wang, Zhaorui Song, Yaqing Dong, Yongmei Yin, Sergei A Eremin, Meng Meng, Rimo Xi. A sensitive chemiluminescent immunoassay for point-of-care testing of repaglinide in natural dietary supplements and serum. Analytical and bioanalytical chemistry. 2015 Mar; 407(7):1973-80. doi: 10.1007/s00216-015-8462-3. [PMID: 25656849]
  • Feng Li, Dan Xu, Nan Shu, Zeyu Zhong, Mian Zhang, Can Liu, Zhaoli Ling, Li Liu, Xiaodong Liu. Co-administration of paroxetine increased the systemic exposure of pravastatin in diabetic rats due to the decrease in liver distribution. Xenobiotica; the fate of foreign compounds in biological systems. 2015; 45(9):794-802. doi: 10.3109/00498254.2015.1019592. [PMID: 25915109]
  • Jin-Fang Song, Tao Wang, Jing Zhu, Xue-Yan Zhou, Qian Lu, Hao Guo, Fan Zhang, Yan Wang, Wei Li, Dan-Dan Wang, Ya-Wen Cui, Dong-Mei Lv, Xiao-Xing Yin. PPARD rs2016520 polymorphism affects repaglinide response in Chinese Han patients with type 2 diabetes mellitus. Clinical and experimental pharmacology & physiology. 2015 Jan; 42(1):27-32. doi: 10.1111/1440-1681.12314. [PMID: 25311380]
  • Meina Liu, Wen Cao, Yinghua Sun, Zhonggui He. Preparation, characterization and in vivo evaluation of formulation of repaglinide with hydroxypropyl-β-cyclodextrin. International journal of pharmaceutics. 2014 Dec; 477(1-2):159-66. doi: 10.1016/j.ijpharm.2014.10.038. [PMID: 25455768]
  • Jinjin Yin, Houliang Deng, Shumin Qin, Waijiao Tang, Lu Zeng, Benjie Zhou. Comparison of repaglinide and metformin versus metformin alone for type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes research and clinical practice. 2014 Sep; 105(3):e10-5. doi: 10.1016/j.diabres.2014.06.009. [PMID: 25005849]
  • Michael Gertz, Nikolaos Tsamandouras, Carolina Säll, J Brian Houston, Aleksandra Galetin. Reduced physiologically-based pharmacokinetic model of repaglinide: impact of OATP1B1 and CYP2C8 genotype and source of in vitro data on the prediction of drug-drug interaction risk. Pharmaceutical research. 2014 Sep; 31(9):2367-82. doi: 10.1007/s11095-014-1333-3. [PMID: 24623479]
  • Raghavendra V Kulkarni, Foram S Patel, H M Nanjappaiah, Akram A Naikawadi. In vitro and in vivo evaluation of novel interpenetrated polymer network microparticles containing repaglinide. International journal of biological macromolecules. 2014 Aug; 69(?):514-22. doi: 10.1016/j.ijbiomac.2014.06.011. [PMID: 24950312]
  • Chao Qin, Wei He, Chunli Zhu, Mengmeng Wu, Zhu Jin, Qiang Zhang, Guangji Wang, Lifang Yin. Controlled release of metformin hydrochloride and repaglinide from sandwiched osmotic pump tablet. International journal of pharmaceutics. 2014 May; 466(1-2):276-85. doi: 10.1016/j.ijpharm.2014.03.002. [PMID: 24607209]
  • Chea-Ha Kim, Soo-Hyun Park, Yun-Beom Sim, Sung-Su Kim, Su-Jin Kim, Su-Min Lim, Jun-Sub Jung, Hong-Won Suh. Effects of nateglinide and repaglinide administered intracerebroventricularly on the CA3 hippocampal neuronal cell death and hyperglycemia induced by kainic acid in mice. Brain research bulletin. 2014 May; 104(?):36-41. doi: 10.1016/j.brainresbull.2014.02.003. [PMID: 24704461]
  • Tao Wang, Yan Wang, Dong-Mei Lv, Jin-Fang Song, Qian Lu, Xing Gao, Fan Zhang, Hao Guo, Wei Li, Xiao-Xing Yin. Effects of NOS1AP rs12742393 polymorphism on repaglinide response in Chinese patients with type 2 diabetes mellitus. Pharmacotherapy. 2014 Feb; 34(2):131-9. doi: 10.1002/phar.1379. [PMID: 24338736]
  • Yan-Rong Ma, Yan Zhou, Guo-Qiang Zhang, Zhi Rao, Jing Huang, Yu-hui Wei, Xin-An Wu. [Simultaneous determination of repaglinide and pravastatin sodium in rat plasma by LC-ms/MS and its application on pharmacokinetic interactions study]. Yao xue xue bao = Acta pharmaceutica Sinica. 2014 Jan; 49(1):72-7. doi: NULL. [PMID: 24783509]
  • J Ma, L Y Liu, P H Wu, Y Liao, T Tao, W Liu. Comparison of metformin and repaglinide monotherapy in the treatment of new onset type 2 diabetes mellitus in China. Journal of diabetes research. 2014; 2014(?):294017. doi: 10.1155/2014/294017. [PMID: 24772445]
  • Carolina Cieniak, Rui Liu, Alexandra Fottinger, Sheila A M Smiley, Jose A Guerrero-Analco, Steffany A L Bennett, Pierre S Haddad, Alain Cuerrier, Ammar Saleem, John T Arnason, Brian C Foster. In vitro inhibition of metabolism but not transport of gliclazide and repaglinide by Cree medicinal plant extracts. Journal of ethnopharmacology. 2013 Dec; 150(3):1087-95. doi: 10.1016/j.jep.2013.10.029. [PMID: 24184081]
  • Cho-Ming Loi, Dennis A Smith, Deepak Dalvie. Which metabolites circulate?. Drug metabolism and disposition: the biological fate of chemicals. 2013 May; 41(5):933-51. doi: 10.1124/dmd.112.050278. [PMID: 23454828]
  • Jie Zhu, Min Song, Hong-Yi Tan, Li-Hua Huang, Zhi-Jun Huang, Chang Liu, Zhi-Min Fu, Yuan-Yuan Huang, Zhi-Rong Tan, Xiao-Ping Chen, Hong Yuan, Guo-Ping Yang. Effect of pitavastatin in different SLCO1B1 backgrounds on repaglinide pharmacokinetics and pharmacodynamics in healthy Chinese males. Pakistan journal of pharmaceutical sciences. 2013 May; 26(3):577-84. doi: NULL. [PMID: 23625433]
  • Manthena V S Varma, Jian Lin, Yi-An Bi, Charles J Rotter, Odette A Fahmi, Justine L Lam, Ayman F El-Kattan, Theunis C Goosen, Yurong Lai. Quantitative prediction of repaglinide-rifampicin complex drug interactions using dynamic and static mechanistic models: delineating differential CYP3A4 induction and OATP1B1 inhibition potential of rifampicin. Drug metabolism and disposition: the biological fate of chemicals. 2013 May; 41(5):966-74. doi: 10.1124/dmd.112.050583. [PMID: 23393219]
  • Xiao-Rong Liang, Xiao-Jian Dai, Yi-Fan Zhang, Jue-Fang Ding, Xiao-Yan Chen, Da-Fang Zhong. Liquid chromatography-tandem mass spectrometry simultaneous determination of repaglinide and metformin in human plasma and its application to bioequivalence study. Yao xue xue bao = Acta pharmaceutica Sinica. 2013 Apr; 48(4):547-53. doi: NULL. [PMID: 23833944]
  • Kuldeep Sharma, Gopal Pawar, Swetha Yadam, Sanjeev Giri, Sriram Rajagopal, Ramesh Mullangi. LC-MS/MS-ESI method for simultaneous quantitation of metformin and repaglinidie in rat plasma and its application to pharmacokinetic study in rats. Biomedical chromatography : BMC. 2013 Mar; 27(3):356-64. doi: 10.1002/bmc.2799. [PMID: 22865648]
  • Toshiyuki Kudo, Akihiro Hisaka, Yuichi Sugiyama, Kiyomi Ito. Analysis of the repaglinide concentration increase produced by gemfibrozil and itraconazole based on the inhibition of the hepatic uptake transporter and metabolic enzymes. Drug metabolism and disposition: the biological fate of chemicals. 2013 Feb; 41(2):362-71. doi: 10.1124/dmd.112.049460. [PMID: 23139378]
  • Jin-Seok Choi, In Choi, Dong-Hyun Choi. Effects of nifedipine on the pharmacokinetics of repaglinide in rats: possible role of CYP3A4 and P-glycoprotein inhibition by nifedipine. Pharmacological reports : PR. 2013; 65(5):1422-30. doi: 10.1016/s1734-1140(13)71502-0. [PMID: 24399740]
  • Siddhodhan S Bodade, Karimunnisa Sameer Shaikh, Meghana S Kamble, Praveen D Chaudhari. A study on ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug delivery. 2013; 20(1):40-6. doi: 10.3109/10717544.2012.752420. [PMID: 23311652]
  • Yanguang Cao, William J Jusko. Applications of minimal physiologically-based pharmacokinetic models. Journal of pharmacokinetics and pharmacodynamics. 2012 Dec; 39(6):711-23. doi: 10.1007/s10928-012-9280-2. [PMID: 23179857]
  • Andreas Holstein, Winfried Beil, Peter Kovacs. CYP2C metabolism of oral antidiabetic drugs--impact on pharmacokinetics, drug interactions and pharmacogenetic aspects. Expert opinion on drug metabolism & toxicology. 2012 Dec; 8(12):1549-63. doi: 10.1517/17425255.2012.722619. [PMID: 23153186]
  • Li-Fang Yin, Shi-Jing Huang, Chun-Li Zhu, Shu-Hui Zhang, Qiang Zhang, Xi-Jing Chen, Qing-Wang Liu. In vitro and in vivo studies on a novel solid dispersion of repaglinide using polyvinylpyrrolidone as the carrier. Drug development and industrial pharmacy. 2012 Nov; 38(11):1371-80. doi: 10.3109/03639045.2011.652635. [PMID: 22296267]
  • Zhi-Cheng Gong, Qiong Huang, Xing-Ping Dai, Guang-Hua Lei, Hong-Bin Lu, Ji-Ye Yin, Xiao-Jing Xu, Jian Qu, Qi Pei, Min Dong, Bo-Ting Zhou, Jie Shen, Gan Zhou, Hong-Hao Zhou, Zhao-Qian Liu. NeuroD1 A45T and PAX4 R121W polymorphisms are associated with plasma glucose level of repaglinide monotherapy in Chinese patients with type 2 diabetes. British journal of clinical pharmacology. 2012 Sep; 74(3):501-9. doi: 10.1111/j.1365-2125.2012.04202.x. [PMID: 22296034]
  • Gabriel Navarrete-Vazquez, Marleth Ramírez-Martínez, Samuel Estrada-Soto, Carlos Nava-Zuazo, Paolo Paoli, Guido Camici, Jaime Escalante-García, José L Medina-Franco, Fabian López-Vallejo, Rolffy Ortiz-Andrade. Synthesis, in vitro and in silico screening of ethyl 2-(6-substituted benzo[d]thiazol-2-ylamino)-2-oxoacetates as protein-tyrosine phosphatase 1B inhibitors. European journal of medicinal chemistry. 2012 Jul; 53(?):346-55. doi: 10.1016/j.ejmech.2012.04.025. [PMID: 22583779]
  • Makula Chandra Sekhar, P Jaya Chandra Reddy. Influence of atorvastatin on the pharmacodynamic and pharmacokinetic activity of repaglinide in rats and rabbits. Molecular and cellular biochemistry. 2012 May; 364(1-2):159-64. doi: 10.1007/s11010-011-1214-6. [PMID: 22227917]
  • Hannah M Jones, Hugh A Barton, Yurong Lai, Yi-An Bi, Emi Kimoto, Sarah Kempshall, Sonya C Tate, Ayman El-Kattan, J Brian Houston, Aleksandra Galetin, Katherine S Fenner. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. Drug metabolism and disposition: the biological fate of chemicals. 2012 May; 40(5):1007-17. doi: 10.1124/dmd.111.042994. [PMID: 22344703]
  • J Honkalammi, M Niemi, P J Neuvonen, J T Backman. Gemfibrozil is a strong inactivator of CYP2C8 in very small multiple doses. Clinical pharmacology and therapeutics. 2012 May; 91(5):846-55. doi: 10.1038/clpt.2011.313. [PMID: 22472994]
  • Xing-Ping Dai, Qiong Huang, Ji-Ye Yin, Yu Guo, Zhi-Cheng Gong, Min-Xiang Lei, Tie-Jian Jiang, Hong-Hao Zhou, Zhao-Qian Liu. KCNQ1 gene polymorphisms are associated with the therapeutic efficacy of repaglinide in Chinese type 2 diabetic patients. Clinical and experimental pharmacology & physiology. 2012 May; 39(5):462-8. doi: 10.1111/j.1440-1681.2012.05701.x. [PMID: 22414228]
  • H-W M Breuer, P Ptak. [Hypoglycemia - frequency, causes, induced costs]. Deutsche medizinische Wochenschrift (1946). 2012 May; 137(19):988-92. doi: 10.1055/s-0031-1299014. [PMID: 22549254]
  • Erik Sjögren, Ulf Bredberg, Hans Lennernäs. The pharmacokinetics and hepatic disposition of repaglinide in pigs: mechanistic modeling of metabolism and transport. Molecular pharmaceutics. 2012 Apr; 9(4):823-41. doi: 10.1021/mp200218p. [PMID: 22352317]
  • Petra Kühner, Renate Prager, Damian Stephan, Ulrich Russ, Marcus Winkler, David Ortiz, Joseph Bryan, Ulrich Quast. Importance of the Kir6.2 N-terminus for the interaction of glibenclamide and repaglinide with the pancreatic K(ATP) channel. Naunyn-Schmiedeberg's archives of pharmacology. 2012 Mar; 385(3):299-311. doi: 10.1007/s00210-011-0709-8. [PMID: 22083559]
  • Giorgina Barbara Piccoli, Laura Davico Bonino, Paola Campisi, Federica Neve Vigotti, Martina Ferraresi, Federica Fassio, Isabelle Brocheriou, Francesco Porpiglia, Gabriella Restagno. Chronic kidney disease, severe arterial and arteriolar sclerosis and kidney neoplasia: on the spectrum of kidney involvement in MELAS syndrome. BMC nephrology. 2012 Feb; 13(?):9. doi: 10.1186/1471-2369-13-9. [PMID: 22353239]
  • Cheng Li, Dong-Hyun Choi, Jun-Shik Choi. Effects of efonidipine on the pharmacokinetics and pharmacodynamics of repaglinide: possible role of CYP3A4 and P-glycoprotein inhibition by efonidipine. Journal of pharmacokinetics and pharmacodynamics. 2012 Feb; 39(1):99-108. doi: 10.1007/s10928-011-9234-0. [PMID: 22210483]
  • Ping Zhao, Manuela de L T Vieira, Joseph A Grillo, Pengfei Song, Ta-Chen Wu, Jenny H Zheng, Vikram Arya, Eva Gil Berglund, Arthur J Atkinson, Yuichi Sugiyama, K Sandy Pang, Kellie S Reynolds, Darrell R Abernethy, Lei Zhang, Lawrence J Lesko, Shiew-Mei Huang. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. Journal of clinical pharmacology. 2012 Jan; 52(1 Suppl):91S-108S. doi: 10.1177/0091270011415528. [PMID: 22232759]
  • Nalinee Poolsup, Naeti Suksomboon, Wanwaree Setwiwattanakul. Efficacy of various antidiabetic agents as add-on treatments to metformin in type 2 diabetes mellitus: systematic review and meta-analysis. ISRN endocrinology. 2012; 2012(?):798146. doi: 10.5402/2012/798146. [PMID: 22619731]
  • Najah R Hadi, Fadhil Al-Amran, Mohammad A A Hussein, Fadhil A Rezeg. Evaluation of the effects of glimepiride (Amaryl) and repaglinide (novoNorm) on atherosclerosis progression in high cholesterol-fed male rabbits. Journal of cardiovascular disease research. 2012 Jan; 3(1):5-11. doi: 10.4103/0975-3583.91592. [PMID: 22346138]
  • Anna Gumieniczek, Beata Owczarek, Bernadeta Pawlikowska. Oxidative/nitrosative stress and protein damages in aqueous humor of hyperglycemic rabbits: effects of two oral antidiabetics, pioglitazone and repaglinide. Experimental diabetes research. 2012; 2012(?):653678. doi: 10.1155/2012/653678. [PMID: 22474428]
  • Shan Wang, Yan-Mei Se, Zhao-Qian Liu, Ming-Xiang Lei, Hao-BoYang, Zhi-Xiang Sun, Sheng-Dan Nie, Xiao-min Zeng, Jing Wu. Effect of genetic polymorphism of UCP2-866 G/A on repaglinide response in Chinese patients with type 2 diabetes. Die Pharmazie. 2012 Jan; 67(1):74-9. doi: . [PMID: 22393835]
  • Patrícia Severino, Tatiana Andreani, Ana Sofia Macedo, Joana F Fangueiro, Maria Helena A Santana, Amélia M Silva, Eliana B Souto. Current State-of-Art and New Trends on Lipid Nanoparticles (SLN and NLC) for Oral Drug Delivery. Journal of drug delivery. 2012; 2012(?):750891. doi: 10.1155/2012/750891. [PMID: 22175030]
  • Anne Zanchi, Roger Lehmann, Jacques Philippe. Antidiabetic drugs and kidney disease--recommendations of the Swiss Society for Endocrinology and Diabetology. Swiss medical weekly. 2012; 142(?):w13629. doi: 10.4414/smw.2012.13629. [PMID: 22987488]
  • Qian Xiang, Yi Min Cui, Xia Zhao, Liang Yan, Ying Zhou. The Influence of MDR1 G2677T/a genetic polymorphisms on the pharmacokinetics of repaglinide in healthy Chinese volunteers. Pharmacology. 2012; 89(1-2):105-10. doi: 10.1159/000336345. [PMID: 22398664]
  • Weiqing Wang, Ruifang Bu, Qing Su, Jianying Liu, Guang Ning. Randomized study of repaglinide alone and in combination with metformin in Chinese subjects with type 2 diabetes naive to oral antidiabetes therapy. Expert opinion on pharmacotherapy. 2011 Dec; 12(18):2791-9. doi: 10.1517/14656566.2011.602341. [PMID: 21780853]
  • Shuyu Xie, Fenghua Wang, Yan Wang, Luyan Zhu, Zhao Dong, Xiaofang Wang, Xihe Li, Wenzhong Zhou. Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles. Particle and fibre toxicology. 2011 Nov; 8(?):33. doi: 10.1186/1743-8977-8-33. [PMID: 22098626]
  • J W Stephens, T B Bodvarsdottir, K Wareham, S L Prior, R M Bracken, G D Lowe, A Rumley, G Dunseath, S Luzio, C F Deacon, J J Holst, S C Bain. Effects of short-term therapy with glibenclamide and repaglinide on incretin hormones and oxidative damage associated with postprandial hyperglycaemia in people with type 2 diabetes mellitus. Diabetes research and clinical practice. 2011 Nov; 94(2):199-206. doi: 10.1016/j.diabres.2011.07.014. [PMID: 21835486]
  • Johanna Honkalammi, Mikko Niemi, Pertti J Neuvonen, Janne T Backman. Dose-dependent interaction between gemfibrozil and repaglinide in humans: strong inhibition of CYP2C8 with subtherapeutic gemfibrozil doses. Drug metabolism and disposition: the biological fate of chemicals. 2011 Oct; 39(10):1977-86. doi: 10.1124/dmd.111.040931. [PMID: 21778352]
  • Lan Fan, Gan Zhou, Dong Guo, Ya-Li Liu, Wang-Qing Chen, Zhao-Qian Liu, Zhi-Rong Tan, Deng Sheng, Hong-Hao Zhou, Wei Zhang. The pregnane X receptor agonist St John's Wort has no effects on the pharmacokinetics and pharmacodynamics of repaglinide. Clinical pharmacokinetics. 2011 Sep; 50(9):605-11. doi: 10.2165/11587310-000000000-00000. [PMID: 21827215]
  • P Mayer, B Haas, J Celner, H Enzmann, A Pfeifer. Glitazone-like action of glimepiride and glibenclamide in primary human adipocytes. Diabetes, obesity & metabolism. 2011 Sep; 13(9):791-9. doi: 10.1111/j.1463-1326.2011.01409.x. [PMID: 21477042]
  • Fei-Feng Sheng, Xing-Ping Dai, Jian Qu, Guang-Hua Lei, Hong-Bin Lu, Jing Wu, Xiao-Jing Xu, Qi Pei, Min Dong, Ying-Zi Liu, Hong-Hao Zhou, Zhao-Qian Liu. NAMPT -3186C/T polymorphism affects repaglinide response in Chinese patients with Type 2 diabetes mellitus. Clinical and experimental pharmacology & physiology. 2011 Aug; 38(8):550-4. doi: 10.1111/j.1440-1681.2011.05548.x. [PMID: 21631570]
  • Abhijit A Date, Nimish Vador, Aarti Jagtap, Mangal S Nagarsenker. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery. Nanotechnology. 2011 Jul; 22(27):275102. doi: 10.1088/0957-4484/22/27/275102. [PMID: 21606564]
  • Manoj K Rawat, Achint Jain, Sanjay Singh. Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. Journal of pharmaceutical sciences. 2011 Jun; 100(6):2366-78. doi: 10.1002/jps.22435. [PMID: 21491449]
  • Manoj K Rawat, Achint Jain, Sanjay Singh. In vivo and cytotoxicity evaluation of repaglinide-loaded binary solid lipid nanoparticles after oral administration to rats. Journal of pharmaceutical sciences. 2011 Jun; 100(6):2406-17. doi: 10.1002/jps.22454. [PMID: 21491451]
  • Anna Gumieniczek, Lukasz Komsta, Marita Rachid Chehab. Effects of two oral antidiabetics, pioglitazone and repaglinide, on aconitase inactivation, inflammation and oxidative/nitrosative stress in tissues under alloxan-induced hyperglycemia. European journal of pharmacology. 2011 May; 659(1):89-93. doi: 10.1016/j.ejphar.2010.12.039. [PMID: 21237149]
  • Dorota Tomalik-Scharte, Uwe Fuhr, Martin Hellmich, Dorothee Frank, Oxana Doroshyenko, Alexander Jetter, Julia C Stingl. Effect of the CYP2C8 genotype on the pharmacokinetics and pharmacodynamics of repaglinide. Drug metabolism and disposition: the biological fate of chemicals. 2011 May; 39(5):927-32. doi: 10.1124/dmd.110.036921. [PMID: 21270106]
  • P Barrington, J Y Chien, H D H Showalter, K Schneck, S Cui, F Tibaldi, B Ellis, T A Hardy. A 5-week study of the pharmacokinetics and pharmacodynamics of LY2189265, a novel, long-acting glucagon-like peptide-1 analogue, in patients with type 2 diabetes. Diabetes, obesity & metabolism. 2011 May; 13(5):426-33. doi: 10.1111/j.1463-1326.2011.01364.x. [PMID: 21251178]
  • J Honkalammi, M Niemi, P J Neuvonen, J T Backman. Mechanism-based inactivation of CYP2C8 by gemfibrozil occurs rapidly in humans. Clinical pharmacology and therapeutics. 2011 Apr; 89(4):579-86. doi: 10.1038/clpt.2010.358. [PMID: 21368757]