3-deoxy-D-manno-octulosonate (BioDeep_00000004607)
Secondary id: BioDeep_00000172544, BioDeep_00001869711
human metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C8H14O8 (238.0688644)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(feces) 23.91%
分子结构信息
SMILES: C(C(C(C(C(CO)O)O)O)O)C(=O)C(=O)O
InChI: InChI=1S/C8H14O8/c9-2-5(12)7(14)6(13)3(10)1-4(11)8(15)16/h3,5-7,9-10,12-14H,1-2H2,(H,15,16)/t3-,5-,6-,7-/m1/s1
描述信息
3-deoxy-d-manno-octulosonate, also known as kdo or 2-dehydro-3-deoxy-D-octonate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-deoxy-d-manno-octulosonate is soluble (in water) and a moderately acidic compound (based on its pKa). 3-deoxy-d-manno-octulosonate can be found in a number of food items such as peppermint, okra, horseradish tree, and hazelnut, which makes 3-deoxy-d-manno-octulosonate a potential biomarker for the consumption of these food products. 3-deoxy-d-manno-octulosonate may be a unique E.coli metabolite.
同义名列表
19 个代谢物同义名
(4R,5R,6R,7R)-4,5,6,7,8-pentahydroxy-2-oxooctanoic acid; oligo-alpha(2,8)-3-Deoxy-D-manno-2-octulosonic acid; 3-Deoxy-D-manno-oct-2-ulopyranosonic acid; 3-Deoxy-manno-oct-2-ulopyranosonic acid; 3-Deoxy-D-manno-2-octulosonic acid; Keto-3-deoxy-D-manno-octulosonate; 2-Dehydro-3-deoxy-D-octonic acid; 3-Deoxy-D-manno-octulosonic acid; 3-Deoxy-D-manno-2-octulosonate; 3-deoxy-D-manno-octulosonate; 2-Dehydro-3-deoxy-D-octonate; 3-deoxyoct-2-ulosonic acid; 3-Deoxyoctulosonic acid; Ketodeoxyoctonic acid; 3-Deoxyoctulosonate; Ketodeoxyoctonate; kdo Sugar acid; KDO; 3-Deoxy-D-manno-octulosonate
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:32817
- KEGG: C01187
- PubChem: 119228
- PubChem: 817
- HMDB: HMDB0304125
- Metlin: METLIN63650
- foodb: FDB030420
- chemspider: 106511
- CAS: 10149-14-1
- PMhub: MS000017142
- ChEBI: CHEBI:16064
- PubChem: 4413
- 3DMET: B04780
- NIKKAJI: J34.222J
- RefMet: Kdo
- PubChem: 445569
- KNApSAcK: 16064
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
224 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- CMP-KDO biosynthesis II (from D-arabinose 5-phosphate):
3-deoxy-D-manno-octulosonate + CTP ⟶ CMP-3-deoxy-D-manno-octulosonate + diphosphate
- CMP-KDO biosynthesis I:
D-arabinose 5-phosphate ⟶ D-ribulose-5-phosphate
WikiPathways(0)
Plant Reactome(222)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
3-deoxy-D-manno-octulosonate + CTP ⟶ CMP-3-deoxy-D-manno-octulosonate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
3-deoxy-D-manno-octulosonate + CTP ⟶ CMP-3-deoxy-D-manno-octulosonate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
3-deoxy-D-manno-octulosonate + CTP ⟶ CMP-3-deoxy-D-manno-octulosonate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
3-deoxy-D-manno-octulosonate + CTP ⟶ CMP-3-deoxy-D-manno-octulosonate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
3-deoxy-D-manno-octulosonate + CTP ⟶ CMP-3-deoxy-D-manno-octulosonate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- CMP-3-deoxy-D-manno-octulosonate biosynthesis:
D-arabinose 5-phosphate + H2O + PEP ⟶ 3-deoxy-D-manno-octulosonate 8-P + Pi
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Addison G DeBoer, Lei Lei, Chunfu Yang, Craig A Martens, Sarah L Anzick, Sophia Antonioli-Schmit, Robert J Suchland, Grant McClarty, Harlan D Caldwell, Daniel D Rockey. TargeTron Inactivation of Chlamydia trachomatis gseA Results in a Lipopolysaccharide 3-Deoxy-d-Manno-Oct-2-Ulosonic Acid-Deficient Strain That Is Cytotoxic for Cells.
Infection and immunity.
2023 May; ?(?):e0009623. doi:
10.1128/iai.00096-23
. [PMID: 37255490] - Gianluigi De Benedetto, Francesca Micoli, Silvia Londero, Laura Salvini, Luisa Sturiale, Domenico Garozzo, Neil Ravenscroft, Carlo Giannelli, Paola Cescutti. Characterization of the Salmonella Typhimurium core oligosaccharide and its reducing end 3-deoxy-d-manno-oct-2-ulosonic acid used for conjugate vaccine production.
Carbohydrate research.
2019 Jul; 481(?):43-51. doi:
10.1016/j.carres.2019.05.014
. [PMID: 31228656] - Wei Huang, Ying-Yu Zhou, Xing-Ling Pan, Xian-Yang Zhou, Jin-Cai Lei, Dong-Mei Liu, Yue Chu, Jin-Song Yang. Stereodirecting Effect of C5-Carboxylate Substituents on the Glycosylation Stereochemistry of 3-Deoxy-d- manno-oct-2-ulosonic Acid (Kdo) Thioglycoside Donors: Stereoselective Synthesis of α- and β-Kdo Glycosides.
Journal of the American Chemical Society.
2018 03; 140(10):3574-3582. doi:
10.1021/jacs.7b09461
. [PMID: 29481074] - Marina Harper, Amy Wright, Frank St Michael, Jianjun Li, Deanna Deveson Lucas, Mark Ford, Ben Adler, Andrew D Cox, John D Boyce. Characterization of Two Novel Lipopolysaccharide Phosphoethanolamine Transferases in Pasteurella multocida and Their Role in Resistance to Cathelicidin-2.
Infection and immunity.
2017 11; 85(11):. doi:
10.1128/iai.00557-17
. [PMID: 28874446] - Liuqing Wen, Yuan Zheng, Tiehai Li, Peng George Wang. Enzymatic synthesis of 3-deoxy-d-manno-octulosonic acid (KDO) and its application for LPS assembly.
Bioorganic & medicinal chemistry letters.
2016 Jun; 26(12):2825-2828. doi:
10.1016/j.bmcl.2016.04.061
. [PMID: 27173798] - Olga G Ovchinnikova, Evan Mallette, Akihiko Koizumi, Todd L Lowary, Matthew S Kimber, Chris Whitfield. Bacterial β-Kdo glycosyltransferases represent a new glycosyltransferase family (GT99).
Proceedings of the National Academy of Sciences of the United States of America.
2016 May; 113(22):E3120-9. doi:
10.1073/pnas.1603146113
. [PMID: 27199480] - Akintunde Emiola, Steven S Andrews, Carolin Heller, John George. Crosstalk between the lipopolysaccharide and phospholipid pathways during outer membrane biogenesis in Escherichia coli.
Proceedings of the National Academy of Sciences of the United States of America.
2016 Mar; 113(11):3108-13. doi:
10.1073/pnas.1521168113
. [PMID: 26929331] - Marie Dumont, Arnaud Lehner, Boris Vauzeilles, Julien Malassis, Alan Marchant, Kevin Smyth, Bruno Linclau, Aurélie Baron, Jordi Mas Pons, Charles T Anderson, Damien Schapman, Ludovic Galas, Jean-Claude Mollet, Patrice Lerouge. Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-D-manno-oct-2-ulosonic acid.
The Plant journal : for cell and molecular biology.
2016 Feb; 85(3):437-47. doi:
10.1111/tpj.13104
. [PMID: 26676799] - Tetsuto Nakagawa, Yoshimi Shimada, Nadejda V Pavlova, Su-Chen Li, Yu-Teh Li. Cloning and expression of 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase from oyster hepatopancreas†.
Glycobiology.
2015 Dec; 25(12):1431-40. doi:
10.1093/glycob/cwv074
. [PMID: 26362869] - Uwe Mamat, Kathleen Wilke, David Bramhill, Andra Beate Schromm, Buko Lindner, Thomas Andreas Kohl, José Luis Corchero, Antonio Villaverde, Lana Schaffer, Steven Robert Head, Chad Souvignier, Timothy Charles Meredith, Ronald Wesley Woodard. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins.
Microbial cell factories.
2015 Apr; 14(?):57. doi:
10.1186/s12934-015-0241-5
. [PMID: 25890161] - Marie Dumont, Arnaud Lehner, Sophie Bouton, Marie Christine Kiefer-Meyer, Aline Voxeur, Jérôme Pelloux, Patrice Lerouge, Jean-Claude Mollet. The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein.
Annals of botany.
2014 Oct; 114(6):1177-88. doi:
10.1093/aob/mcu093
. [PMID: 24825296] - Erica J Rubin, John P O'Brien, Petko L Ivanov, Jennifer S Brodbelt, M Stephen Trent. Identification of a broad family of lipid A late acyltransferases with non-canonical substrate specificity.
Molecular microbiology.
2014 Mar; 91(5):887-99. doi:
10.1111/mmi.12501
. [PMID: 24372821] - Lisa M Willis, Chris Whitfield. KpsC and KpsS are retaining 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferases involved in synthesis of bacterial capsules.
Proceedings of the National Academy of Sciences of the United States of America.
2013 Dec; 110(51):20753-8. doi:
10.1073/pnas.1312637110
. [PMID: 24302764] - Jolanta Lodowska, Daniel Wolny, Ludmiła Węglarz. The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) as a characteristic component of bacterial endotoxin -- a review of its biosynthesis, function, and placement in the lipopolysaccharide core.
Canadian journal of microbiology.
2013 Oct; 59(10):645-55. doi:
10.1139/cjm-2013-0490
. [PMID: 24102217] - Malin Vonkavaara, Shaikh Terkis Islam Pavel, Kathrin Hölzl, Roland Nordfelth, Anders Sjöstedt, Svenja Stöven. Francisella is sensitive to insect antimicrobial peptides.
Journal of innate immunity.
2013; 5(1):50-9. doi:
10.1159/000342468
. [PMID: 23037919] - Gulden Camci-Unal, Rahman M Mizanur, Yonghai Chai, Nicola L B Pohl. Synthesis of a 3-deoxy-D-manno-octulosonic acid (KDO) building block from D-glucose via fermentation.
Organic & biomolecular chemistry.
2012 Aug; 10(30):5856-60. doi:
10.1039/c2ob25168j
. [PMID: 22505005] - Yukari Fujimoto, Atsushi Shimoyama, Yasuo Suda, Koichi Fukase. Synthesis and immunomodulatory activities of Helicobacter pylori lipophilic terminus of lipopolysaccharide including lipid A.
Carbohydrate research.
2012 Jul; 356(?):37-43. doi:
10.1016/j.carres.2012.03.013
. [PMID: 22486825] - Ken Shiraiwa, Shen Yuan, Ayako Fujiyama, Yosuke Matsuo, Takashi Tanaka, Zhi-Hong Jiang, Isao Kouno. Benzyl benzoate glycoside and 3-deoxy-D-manno-2-octulosonic acid derivatives from Solidago decurrens.
Journal of natural products.
2012 Jan; 75(1):88-92. doi:
10.1021/np2007582
. [PMID: 22185651] - Simon Ittig, Buko Lindner, Marco Stenta, Pablo Manfredi, Evelina Zdorovenko, Yuriy A Knirel, Matteo dal Peraro, Guy R Cornelis, Ulrich Zähringer. The lipopolysaccharide from Capnocytophaga canimorsus reveals an unexpected role of the core-oligosaccharide in MD-2 binding.
PLoS pathogens.
2012; 8(5):e1002667. doi:
10.1371/journal.ppat.1002667
. [PMID: 22570611] - Maor Bar-Peled, Breeanna R Urbanowicz, Malcolm A O'Neill. The Synthesis and Origin of the Pectic Polysaccharide Rhamnogalacturonan II - Insights from Nucleotide Sugar Formation and Diversity.
Frontiers in plant science.
2012; 3(?):92. doi:
10.3389/fpls.2012.00092
. [PMID: 22639675] - Masaru Kobayashi, Nagisa Kouzu, Akina Inami, Kiminori Toyooka, Yuki Konishi, Ken Matsuoka, Toru Matoh. Characterization of Arabidopsis CTP:3-deoxy-D-manno-2-octulosonate cytidylyltransferase (CMP-KDO synthetase), the enzyme that activates KDO during rhamnogalacturonan II biosynthesis.
Plant & cell physiology.
2011 Oct; 52(10):1832-43. doi:
10.1093/pcp/pcr120
. [PMID: 21893514] - Yasunori Isshiki, Seiichi Kondo. Characterization of the carbohydrate backbone of Vibrio parahaemolyticus O6 lipopolysaccharides.
Microbiology and immunology.
2011 Aug; 55(8):539-51. doi:
10.1111/j.1348-0421.2011.00355.x
. [PMID: 21639862] - D Kocíncová, J S Lam. Structural diversity of the core oligosaccharide domain of Pseudomonas aeruginosa lipopolysaccharide.
Biochemistry. Biokhimiia.
2011 Jul; 76(7):755-60. doi:
10.1134/s0006297911070054
. [PMID: 21999536] - Hak Suk Chung, Christian R H Raetz. Dioxygenases in Burkholderia ambifaria and Yersinia pestis that hydroxylate the outer Kdo unit of lipopolysaccharide.
Proceedings of the National Academy of Sciences of the United States of America.
2011 Jan; 108(2):510-5. doi:
10.1073/pnas.1016462108
. [PMID: 21178073] - Joanna Kubler-Kielb. Conjugation of LPS-derived oligosaccharides to proteins using oxime chemistry.
Methods in molecular biology (Clifton, N.J.).
2011; 751(?):317-27. doi:
10.1007/978-1-61779-151-2_20
. [PMID: 21674340] - L Cipolla, A Polissi, C Airoldi, L Gabrielli, S Merlo, F Nicotra. New targets for antibacterial design: Kdo biosynthesis and LPS machinery transport to the cell surface.
Current medicinal chemistry.
2011; 18(6):830-52. doi:
10.2174/092986711794927676
. [PMID: 21182480] - Christopher M Stead, Jinshi Zhao, Christian R H Raetz, M Stephen Trent. Removal of the outer Kdo from Helicobacter pylori lipopolysaccharide and its impact on the bacterial surface.
Molecular microbiology.
2010 Nov; 78(4):837-52. doi:
10.1111/j.1365-2958.2010.07304.x
. [PMID: 20659292] - Flavien Dardelle, Arnaud Lehner, Yasmina Ramdani, Muriel Bardor, Patrice Lerouge, Azeddine Driouich, Jean-Claude Mollet. Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall.
Plant physiology.
2010 Aug; 153(4):1563-76. doi:
10.1104/pp.110.158881
. [PMID: 20547702] - Martial Séveno, Emilie Séveno-Carpentier, Aline Voxeur, Laurence Menu-Bouaouiche, Christophe Rihouey, Frédéric Delmas, Christian Chevalier, Azeddine Driouich, Patrice Lerouge. Characterization of a putative 3-deoxy-D-manno-2-octulosonic acid (Kdo) transferase gene from Arabidopsis thaliana.
Glycobiology.
2010 May; 20(5):617-28. doi:
10.1093/glycob/cwq011
. [PMID: 20124190] - Gabriela Bugla-Płoskońska, Jacek Rybka, Bozena Futoma-Kołoch, Agnieszka Cisowska, Andrzej Gamian, Włodzimierz Doroszkiewicz. Sialic acid-containing lipopolysaccharides of Salmonella O48 strains--potential role in camouflage and susceptibility to the bactericidal effect of normal human serum.
Microbial ecology.
2010 Apr; 59(3):601-13. doi:
10.1007/s00248-009-9600-2
. [PMID: 19844648] - Adrienn Pálvölgyi, Veronika Deák, Véréna Poinsot, Tibor Nagy, Enik Nagy, Ildikó Kerepesi, Péter Putnoky. Genetic analysis of the rkp-3 gene region in Sinorhizobium meliloti 41: rkpY directs capsular polysaccharide synthesis to KR5 antigen production.
Molecular plant-microbe interactions : MPMI.
2009 Nov; 22(11):1422-30. doi:
10.1094/mpmi-22-11-1422
. [PMID: 19810811] - Silvia Sommaruga, Luca De Gioia, Paolo Tortora, Alessandra Polissi. Structure prediction and functional analysis of KdsD, an enzyme involved in lipopolysaccharide biosynthesis.
Biochemical and biophysical research communications.
2009 Oct; 388(2):222-7. doi:
10.1016/j.bbrc.2009.07.154
. [PMID: 19664604] - Jessica V Hankins, M Stephen Trent. Secondary acylation of Vibrio cholerae lipopolysaccharide requires phosphorylation of Kdo.
The Journal of biological chemistry.
2009 Sep; 284(38):25804-12. doi:
10.1074/jbc.m109.022772
. [PMID: 19617350] - Gracjana Klein, Buko Lindner, Werner Brabetz, Helmut Brade, Satish Raina. Escherichia coli K-12 Suppressor-free Mutants Lacking Early Glycosyltransferases and Late Acyltransferases: minimal lipopolysaccharide structure and induction of envelope stress response.
The Journal of biological chemistry.
2009 Jun; 284(23):15369-89. doi:
10.1074/jbc.m900490200
. [PMID: 19346244] - Hussein Masoud, Malcolm B Perry, Jean-Robert Brisson, Dusan Uhrin, Jianjun Li, James C Richards. Structural elucidation of the novel core oligosaccharide from LPS of Burkholderia cepacia serogroup O4.
Glycobiology.
2009 May; 19(5):462-71. doi:
10.1093/glycob/cwn155
. [PMID: 19141607] - Constance M John, Mingfeng Liu, Gary A Jarvis. Profiles of structural heterogeneity in native lipooligosaccharides of Neisseria and cytokine induction.
Journal of lipid research.
2009 Mar; 50(3):424-438. doi:
10.1194/jlr.m800184-jlr200
. [PMID: 18832773] - Mark J Karbarz, David A Six, Christian R H Raetz. Purification and characterization of the lipid A 1-phosphatase LpxE of Rhizobium leguminosarum.
The Journal of biological chemistry.
2009 Jan; 284(1):414-425. doi:
10.1074/jbc.m808390200
. [PMID: 18984595] - Jolanta Lodowska, Daniel Wolny, Marzena Jaworska-Kik, Zofia Dzierzewicz, Ludmiła Weglarz. Interstrain diversity of 2-keto-3-deoxyoctonate content in lipopolysaccharides of Desulfovibrio desulfuricans.
Polish journal of microbiology.
2009; 58(1):21-7. doi:
. [PMID: 19469282]
- Chen Katz, Eliora Z Ron. Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli.
Journal of bacteriology.
2008 Nov; 190(21):7117-22. doi:
10.1128/jb.00871-08
. [PMID: 18776015] - Johanna M Schwingel, Frank St Michael, Andrew D Cox, Hussein Masoud, James C Richards, Anthony A Campagnari. A unique glycosyltransferase involved in the initial assembly of Moraxella catarrhalis lipooligosaccharides.
Glycobiology.
2008 Jun; 18(6):447-55. doi:
10.1093/glycob/cwn021
. [PMID: 18337458] - Cory L Brooks, Sven Müller-Loennies, Lore Brade, Paul Kosma, Tomoko Hirama, C Roger MacKenzie, Helmut Brade, Stephen V Evans. Exploration of specificity in germline monoclonal antibody recognition of a range of natural and synthetic epitopes.
Journal of molecular biology.
2008 Mar; 377(2):450-68. doi:
10.1016/j.jmb.2008.01.018
. [PMID: 18272175] - Sanaa Fadel, Adrian Eley. Is lipopolysaccharide a factor in infectivity of Chlamydia trachomatis?.
Journal of medical microbiology.
2008 Mar; 57(Pt 3):261-266. doi:
10.1099/jmm.0.47237-0
. [PMID: 18287286] - Uwe Mamat, Timothy C Meredith, Parag Aggarwal, Annika Kühl, Paul Kirchhoff, Buko Lindner, Anna Hanuszkiewicz, Jennifer Sun, Otto Holst, Ronald W Woodard. Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d-manno-oct-2-ulosonic acid-depleted Escherichia coli.
Molecular microbiology.
2008 Feb; 67(3):633-48. doi:
10.1111/j.1365-2958.2007.06074.x
. [PMID: 18093093] - Yanghui Zhang, Jidnyasa Gaekwad, Margreet A Wolfert, Geert-Jan Boons. Innate immune responses of synthetic lipid A derivatives of Neisseria meningitidis.
Chemistry (Weinheim an der Bergstrasse, Germany).
2008; 14(2):558-69. doi:
10.1002/chem.200701165
. [PMID: 17943705] - Frédéric Delmas, Martial Séveno, Julian G B Northey, Michel Hernould, Patrice Lerouge, Peter McCourt, Christian Chevalier. The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation.
Journal of experimental botany.
2008; 59(10):2639-47. doi:
10.1093/jxb/ern118
. [PMID: 18503041] - Vandana Chandan, Susan M Logan, Blair A Harrison, Evgenii Vinogradov, Annie Aubry, Jacek Stupak, Jianjun Li, Eleonora Altman. Characterization of a waaF mutant of Helicobacter pylori strain 26695 provides evidence that an extended lipopolysaccharide structure has a limited role in the invasion of gastric cancer cells.
Biochemistry and cell biology = Biochimie et biologie cellulaire.
2007 Oct; 85(5):582-90. doi:
10.1139/o07-056
. [PMID: 17901900] - Silvia Vilches, Rocío Canals, Markus Wilhelms, Maria Teresa Saló, Yuriy A Knirel, Evgeny Vinogradov, Susana Merino, Juan M Tomás. Mesophilic Aeromonas UDP-glucose pyrophosphorylase (GalU) mutants show two types of lipopolysaccharide structures and reduced virulence.
Microbiology (Reading, England).
2007 Aug; 153(Pt 8):2393-2404. doi:
10.1099/mic.0.2007/006437-0
. [PMID: 17660404] - Shanta M Zimmer, Susu M Zughaier, Yih-Ling Tzeng, David S Stephens. Human MD-2 discrimination of meningococcal lipid A structures and activation of TLR4.
Glycobiology.
2007 Aug; 17(8):847-56. doi:
10.1093/glycob/cwm057
. [PMID: 17545685] - Thomas Paccalet, Muriel Bardor, Christophe Rihouey, Frédéric Delmas, Christian Chevalier, Marc-André D'Aoust, Loïc Faye, Louis Vézina, Véronique Gomord, Patrice Lerouge. Engineering of a sialic acid synthesis pathway in transgenic plants by expression of bacterial Neu5Ac-synthesizing enzymes.
Plant biotechnology journal.
2007 Jan; 5(1):16-25. doi:
10.1111/j.1467-7652.2006.00211.x
. [PMID: 17207253] - L A Sharypova, G Chataigné, N Fraysse, A Becker, V Poinsot. Overproduction and increased molecular weight account for the symbiotic activity of the rkpZ-modified K polysaccharide from Sinorhizobium meliloti Rm1021.
Glycobiology.
2006 Dec; 16(12):1181-93. doi:
10.1093/glycob/cwl042
. [PMID: 16957092] - Hamid Hakimi, Ian Geary, Allan Pacey, Adrian Eley. Spermicidal activity of bacterial lipopolysaccharide is only partly due to lipid A.
Journal of andrology.
2006 Nov; 27(6):774-9. doi:
10.2164/jandrol.106.000083
. [PMID: 16809274] - Sylvestre Grizot, Michèle Salem, Vanida Vongsouthi, Lionel Durand, François Moreau, Hirofumi Dohi, Stéphane Vincent, Sonia Escaich, Arnaud Ducruix. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose.
Journal of molecular biology.
2006 Oct; 363(2):383-94. doi:
10.1016/j.jmb.2006.07.057
. [PMID: 16963083] - Jolanta Lukasiewicz, Tomasz Niedziela, Wojciech Jachymek, Lennart Kenne, Czeslaw Lugowski. Structure of the lipid A-inner core region and biological activity of Plesiomonas shigelloides O54 (strain CNCTC 113/92) lipopolysaccharide.
Glycobiology.
2006 Jun; 16(6):538-50. doi:
10.1093/glycob/cwj094
. [PMID: 16490765] - Reinhard Zeleny, Daniel Kolarich, Richard Strasser, Friedrich Altmann. Sialic acid concentrations in plants are in the range of inadvertent contamination.
Planta.
2006 Jun; 224(1):222-7. doi:
10.1007/s00425-005-0206-8
. [PMID: 16395581] - Suparna Kanjilal-Kolar, Shib Sankar Basu, Margaret I Kanipes, Ziqiang Guan, Teresa A Garrett, Christian R H Raetz. Expression cloning of three Rhizobium leguminosarum lipopolysaccharide core galacturonosyltransferases.
The Journal of biological chemistry.
2006 May; 281(18):12865-78. doi:
10.1074/jbc.m513864200
. [PMID: 16497674] - Timothy C Meredith, Parag Aggarwal, Uwe Mamat, Buko Lindner, Ronald W Woodard. Redefining the requisite lipopolysaccharide structure in Escherichia coli.
ACS chemical biology.
2006 Feb; 1(1):33-42. doi:
10.1021/cb0500015
. [PMID: 17163638] - Anna Skorupska, Monika Janczarek, Małgorzata Marczak, Andrzej Mazur, Jaroslaw Król. Rhizobial exopolysaccharides: genetic control and symbiotic functions.
Microbial cell factories.
2006 Feb; 5(?):7. doi:
10.1186/1475-2859-5-7
. [PMID: 16483356] - Cristina L Marolda, Piya Lahiry, Enrique Vinés, Soledad Saldías, Miguel A Valvano. Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide.
Methods in molecular biology (Clifton, N.J.).
2006; 347(?):237-52. doi:
10.1385/1-59745-167-3:237
. [PMID: 17072014] - Alba Silipo, Antonio Molinaro, Luisa Sturiale, J Maxwell Dow, Gitte Erbs, Rosa Lanzetta, Mari-Anne Newman, Michelangelo Parrilli. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris.
The Journal of biological chemistry.
2005 Sep; 280(39):33660-8. doi:
10.1074/jbc.m506254200
. [PMID: 16048996] - Cristina De Castro, Antonio Molinaro, Rosa Lanzetta, Otto Holst, Michelangelo Parrilli. The linkage between O-specific caryan and core region in the lipopolysaccharide of Burkholderia caryophylli is furnished by a primer monosaccharide.
Carbohydrate research.
2005 Aug; 340(11):1802-7. doi:
10.1016/j.carres.2005.05.010
. [PMID: 15979052] - Daxin Peng, Biswa P Choudhury, Ronald S Petralia, Russell W Carlson, Xin-Xing Gu. Roles of 3-deoxy-D-manno-2-octulosonic acid transferase from Moraxella catarrhalis in lipooligosaccharide biosynthesis and virulence.
Infection and immunity.
2005 Jul; 73(7):4222-30. doi:
10.1128/iai.73.7.4222-4230.2005
. [PMID: 15972513] - C Michael Reynolds, Suzanne R Kalb, Robert J Cotter, Christian R H Raetz. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant.
The Journal of biological chemistry.
2005 Jun; 280(22):21202-11. doi:
10.1074/jbc.m500964200
. [PMID: 15795227] - Rabindranath Bera, Abhijit Nayak, Asish Kumar Sen, Biswa Pronab Chowdhury, Ranjan Bhadra. Isolation and characterisation of the lipopolysaccharide from Acidiphilium strain GS18h/ATCC55963, a soil isolate of Indian copper mine.
FEMS microbiology letters.
2005 May; 246(2):183-90. doi:
10.1016/j.femsle.2005.04.001
. [PMID: 15899404] - Christopher Stead, An Tran, Donald Ferguson, Sara McGrath, Robert Cotter, Stephen Trent. A novel 3-deoxy-D-manno-octulosonic acid (Kdo) hydrolase that removes the outer Kdo sugar of Helicobacter pylori lipopolysaccharide.
Journal of bacteriology.
2005 May; 187(10):3374-83. doi:
10.1128/jb.187.10.3374-3383.2005
. [PMID: 15866922] - Ulrich Seydel, Andra B Schromm, Lore Brade, Sabine Gronow, Jörg Andrä, Mareike Müller, Michel H J Koch, Koichi Fukase, Mikayo Kataoka, Masaya Hashimoto, Shoichi Kusumoto, Klaus Brandenburg. Physicochemical characterization of carboxymethyl lipid A derivatives in relation to biological activity.
The FEBS journal.
2005 Jan; 272(2):327-40. doi:
10.1111/j.1742-4658.2004.04471.x
. [PMID: 15654872] - Luisa Sturiale, Domenico Garozzo, Alba Silipo, Rosa Lanzetta, Michelangelo Parrilli, Antonio Molinaro. New conditions for matrix-assisted laser desorption/ionization mass spectrometry of native bacterial R-type lipopolysaccharides.
Rapid communications in mass spectrometry : RCM.
2005; 19(13):1829-34. doi:
10.1002/rcm.1994
. [PMID: 15945032] - N Fraysse, B Lindner, Z Kaczynski, L Sharypova, O Holst, K Niehaus, V Poinsot. Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor.
Glycobiology.
2005 Jan; 15(1):101-8. doi:
10.1093/glycob/cwh142
. [PMID: 15355932] - Evelina L Zdorovenko, Evgeny Vinogradov, Galina M Zdorovenko, Buko Lindner, Olga V Bystrova, Alexander S Shashkov, Klaus Rudolph, Ulrich Zähringer, Yuriy A Knirel. Structure of the core oligosaccharide of a rough-type lipopolysaccharide of Pseudomonas syringae pv. phaseolicola.
European journal of biochemistry.
2004 Dec; 271(23-24):4968-77. doi:
10.1111/j.1432-1033.2004.04467.x
. [PMID: 15606785] - Alba Silipo, Serena Leone, Antonio Molinaro, Rosa Lanzetta, Michelangelo Parrilli. The structure of the phosphorylated carbohydrate backbone of the lipopolysaccharide of the phytopathogen bacterium Pseudomonas tolaasii.
Carbohydrate research.
2004 Sep; 339(13):2241-8. doi:
10.1016/j.carres.2004.06.015
. [PMID: 15337452] - Alba Silipo, Serena Leone, Rosa Lanzetta, Michelangelo Parrilli, Luisa Sturiale, Domenico Garozzo, Evgeny L Nazarenko, Raisa P Gorshkova, Elena P Ivanova, Natalya M Gorshkova, Antonio Molinaro. The complete structure of the lipooligosaccharide from the halophilic bacterium Pseudoalteromonas issachenkonii KMM 3549T.
Carbohydrate research.
2004 Aug; 339(11):1985-93. doi:
10.1016/j.carres.2004.05.008
. [PMID: 15261592] - Ulrich Zähringer, Buko Lindner, Yuriy A Knirel, Willem M R van den Akker, Rosemarie Hiestand, Holger Heine, Christoph Dehio. Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T.
The Journal of biological chemistry.
2004 May; 279(20):21046-54. doi:
10.1074/jbc.m313370200
. [PMID: 14766898] - Yuriy A Knirel, Evgeny Vinogradov, Natalia Jimenez, Susana Merino, Juan M Tomás. Structural studies on the R-type lipopolysaccharide of Aeromonas hydrophila.
Carbohydrate research.
2004 Mar; 339(4):787-93. doi:
10.1016/j.carres.2003.12.008
. [PMID: 14980820] - Amanda L Horstman, Susanne J Bauman, Meta J Kuehn. Lipopolysaccharide 3-deoxy-D-manno-octulosonic acid (Kdo) core determines bacterial association of secreted toxins.
The Journal of biological chemistry.
2004 Feb; 279(9):8070-5. doi:
10.1074/jbc.m308633200
. [PMID: 14660669] - Susu M Zughaier, Yih-Ling Tzeng, Shanta M Zimmer, Anup Datta, Russell W Carlson, David S Stephens. Neisseria meningitidis lipooligosaccharide structure-dependent activation of the macrophage CD14/Toll-like receptor 4 pathway.
Infection and immunity.
2004 Jan; 72(1):371-80. doi:
10.1128/iai.72.1.371-380.2004
. [PMID: 14688118] - Mario A Monteiro, Maria Fortuna-Nevin, John Farley, Viliam Pavliak. Phase-variation of the truncated lipo-oligosaccharide of Neisseria meningitidis NMB phosphoglucomutase isogenic mutant NMB-R6.
Carbohydrate research.
2003 Nov; 338(24):2905-12. doi:
10.1016/j.carres.2003.08.014
. [PMID: 14667712] - Noritaka Hashii, Yasunori Isshiki, Takehiro Iguchi, Seiichi Kondo. Structural characterization of the carbohydrate backbone of the lipopolysaccharide of Vibrio parahaemolyticus O-untypeable strain KX-V212 isolated from a patient.
Carbohydrate research.
2003 Nov; 338(23):2711-9. doi:
10.1016/j.carres.2003.06.003
. [PMID: 14670729] - Antonio Molinaro, Cristina De Castro, Rosa Lanzetta, Michelangelo Parrilli, Aida Raio, Astolfo Zoina. Structural elucidation of a novel core oligosaccharide backbone of the lipopolysaccharide from the new bacterial species Agrobacterium larrymoorei.
Carbohydrate research.
2003 Nov; 338(23):2721-30. doi:
10.1016/s0008-6215(03)00316-1
. [PMID: 14670730] - Nicole R Luke, Simon Allen, Bradford W Gibson, Anthony A Campagnari. Identification of a 3-deoxy-D-manno-octulosonic acid biosynthetic operon in Moraxella catarrhalis and analysis of a KdsA-deficient isogenic mutant.
Infection and immunity.
2003 Nov; 71(11):6426-34. doi:
10.1128/iai.71.11.6426-6434.2003
. [PMID: 14573664] - S N Chatterjee, Keya Chaudhuri. Lipopolysaccharides of Vibrio cholerae. I. Physical and chemical characterization.
Biochimica et biophysica acta.
2003 Oct; 1639(2):65-79. doi:
10.1016/j.bbadis.2003.08.004
. [PMID: 14559113] - O V Bystrova, A S Shashkov, N A Kocharova, Y A Knirel, U Zähringer, G B Pier. Elucidation of the structure of the lipopolysaccharide core and the linkage between the core and the O-antigen in Pseudomonas aeruginosa immunotype 5 using strong alkaline degradation of the lipopolysaccharide.
Biochemistry. Biokhimiia.
2003 Aug; 68(8):918-25. doi:
10.1023/a:1025759217501
. [PMID: 12948393] - Noritaka Hashii, Yasunori Isshiki, Takehiro Iguchi, Seiichi Kondo. Structural analysis of the carbohydrate backbone of Vibrio parahaemolyticus O2 lipopolysaccharides.
Carbohydrate research.
2003 May; 338(10):1063-71. doi:
10.1016/s0008-6215(03)00078-8
. [PMID: 12706972] - L D Varbanets, V N Vasil'ev, O S Brovarskaia. [Characterization of lipopolysaccharides from Ralstonia solanacearum].
Mikrobiologiia.
2003 Jan; 72(1):19-25. doi:
"
. [PMID: 12698787] - Yih-Ling Tzeng, Anup Datta, Christy Strole, V S Kumar Kolli, Matthew R Birck, William P Taylor, Russell W Carlson, Ronald W Woodard, David S Stephens. KpsF is the arabinose-5-phosphate isomerase required for 3-deoxy-D-manno-octulosonic acid biosynthesis and for both lipooligosaccharide assembly and capsular polysaccharide expression in Neisseria meningitidis.
The Journal of biological chemistry.
2002 Jul; 277(27):24103-13. doi:
10.1074/jbc.m200931200
. [PMID: 11956197] - Yih-Ling Tzeng, Anup Datta, V Kumar Kolli, Russell W Carlson, David S Stephens. Endotoxin of Neisseria meningitidis composed only of intact lipid A: inactivation of the meningococcal 3-deoxy-D-manno-octulosonic acid transferase.
Journal of bacteriology.
2002 May; 184(9):2379-88. doi:
10.1128/jb.184.9.2379-2388.2002
. [PMID: 11948150] - H Fujishima, A Nishimura, M Wachi, H Takagi, T Hirasawa, H Teraoka, K Nishimori, T Kawabata, K Nishikawa, K Nagai. kdsA mutations affect FtsZ-ring formation in Escherichia coli K-12.
Microbiology (Reading, England).
2002 Jan; 148(Pt 1):103-12. doi:
10.1099/00221287-148-1-103
. [PMID: 11782503] - A Hussein, L Skultéty, R Toman. Structural analyses of the lipopolysaccharides from Chlamydophila psittaci strain 6BC and Chlamydophila pneumoniae strain Kajaani 6.
Carbohydrate research.
2001 Nov; 336(3):213-23. doi:
10.1016/s0008-6215(01)00263-4
. [PMID: 11705470] - E Vinogradov, M Cedzynski, A Ziolkowski, A Swierzko. The structure of the core region of the lipopolysaccharide from Klebsiella pneumoniae O3. 3-deoxy-alpha-D-manno-octulosonic acid (alpha-Kdo) residue in the outer part of the core, a common structural element of Klebsiella pneumoniae O1, O2, O3, O4, O5, O8, and O12 lipopolysaccharides.
European journal of biochemistry.
2001 Mar; 268(6):1722-9. doi:
10.1046/j.1432-1033.2001.02047.x
. [PMID: 11248692] - C Oertelt, B Lindner, M Skurnik, O Holst. Isolation and structural characterization of an R-form lipopolysaccharide from Yersinia enterocolitica serotype O:8.
European journal of biochemistry.
2001 Feb; 268(3):554-64. doi:
10.1046/j.1432-1327.2001.01891.x
. [PMID: 11168394] - M I Kanipes, S Lin, R J Cotter, C R Raetz. Ca2+-induced phosphoethanolamine transfer to the outer 3-deoxy-D-manno-octulosonic acid moiety of Escherichia coli lipopolysaccharide. A novel membrane enzyme dependent upon phosphatidylethanolamine.
The Journal of biological chemistry.
2001 Jan; 276(2):1156-63. doi:
10.1074/jbc.m009019200
. [PMID: 11042192] - C Noah, W Brabetz, S Gronow, H Brade. Cloning, sequencing, and functional analysis of three glycosyltransferases involved in the biosynthesis of the inner core region of Klebsiella pneumoniae lipopolysaccharide.
Journal of endotoxin research.
2001; 7(1):25-33. doi:
"
. [PMID: 11521078] - S P Gaucher, M T Cancilla, N J Phillips, B W Gibson, J A Leary. Mass spectral characterization of lipooligosaccharides from Haemophilus influenzae 2019.
Biochemistry.
2000 Oct; 39(40):12406-14. doi:
10.1021/bi001181k
. [PMID: 11015221] - S Rund, B Lindner, H Brade, O Holst. Structural analysis of the lipopolysaccharide from Chlamydophila psittaci strain 6BC.
European journal of biochemistry.
2000 Sep; 267(18):5717-26. doi:
10.1046/j.1432-1327.2000.01635.x
. [PMID: 10971582] - A Hussein, V Pätoprstý, R Toman. Chlamydia psittaci lipopolysaccharide. A reinvestigation of its chemical composition and structure.
Acta virologica.
1999 Dec; 43(6):381-6. doi:
"
. [PMID: 10825928] - S Rund, B Lindner, H Brade, O Holst. Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2.
The Journal of biological chemistry.
1999 Jun; 274(24):16819-24. doi:
10.1074/jbc.274.24.16819
. [PMID: 10358025] - M M Olsthoorn, J Haverkamp, J E Thomas-Oates. Mass spectrometric analysis of Klebsiella pneumoniae ssp. pneumoniae rough strain R20 (O1-: K20-) lipopolysaccharide preparations: identification of novel core oligosaccharide components and three 3-deoxy-D-manno-oct-2-ulopyranosonic artifacts.
Journal of mass spectrometry : JMS.
1999 Jun; 34(6):622-36. doi:
10.1002/(sici)1096-9888(199906)34:6<622::aid-jms814>3.0.co;2-v
. [PMID: 10394628] - A G Walsh, L L Burrows, J S Lam. Genetic and biochemical characterization of an operon involved in the biosynthesis of 3-deoxy-D-manno-octulosonic acid in Pseudomonas aeruginosa.
FEMS microbiology letters.
1999 Apr; 173(1):27-33. doi:
10.1111/j.1574-6968.1999.tb13480.x
. [PMID: 10220877] - E V Vinogradov, B O Petersen, J E Thomas-Oates, J Duus, H Brade, O Holst. Characterization of a novel branched tetrasaccharide of 3-deoxy-D-manno-oct-2-ulopyranosonic acid. The structure of the carbohydrate backbone of the lipopolysaccharide from Acinetobacter baumannii strain nctc 10303 (atcc 17904).
The Journal of biological chemistry.
1998 Oct; 273(43):28122-31. doi:
10.1074/jbc.273.43.28122
. [PMID: 9774431] - S Minka, M Bruneteau. [Isolation and chemical characterization of type R lipopolysaccharides of a hypovirulent strain of Yersinia pestis].
Canadian journal of microbiology.
1998 May; 44(5):477-81. doi:
"
. [PMID: 9741973] - K A White, I A Kaltashov, R J Cotter, C R Raetz. A mono-functional 3-deoxy-D-manno-octulosonic acid (Kdo) transferase and a Kdo kinase in extracts of Haemophilus influenzae.
The Journal of biological chemistry.
1997 Jun; 272(26):16555-63. doi:
10.1074/jbc.272.26.16555
. [PMID: 9195966]