Desmosterol (BioDeep_00000004760)
Secondary id: BioDeep_00000419037
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C27H44O (384.3391974)
中文名称: 3β-羟基-5,24-胆甾二烯
谱图信息:
最多检出来源 Viridiplantae(plant) 0.49%
分子结构信息
SMILES: C/C(C)=C\CC[C@@H](C)[C@H]1CC[C@@]2([H])[C@]3([H])CC=C4C[C@@H](O)CC[C@]4(C)[C@@]3([H])CC[C@]12C
InChI: InChI=1S/C27H44O/c1-18(2)7-6-8-19(3)23-11-12-24-22-10-9-20-17-21(28)13-15-26(20,4)25(22)14-16-27(23,24)5/h7,9,19,21-25,28H,6,8,10-17H2,1-5H3/t19-,21+,22+,23-,24+,25+,26+,27-/m1/s1
描述信息
Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is found in many foods, some of which are fig, sago palm, mexican groundcherry, and pepper (c. frutescens).
Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203).
Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].
Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].
同义名列表
21 个代谢物同义名
(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol; (1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol; 3β-Hydroxy-5,24-cholestadiene, 5,24-Cholestadien-3β-ol; (3beta)-Cholesta-5,24-dien-3-ol; Cholesta-5,24-dien-3.beta.-ol; 3beta-Cholesta-5,24-dien-3-ol; (3Β)-cholesta-5,24-dien-3-ol; Cholesta-5,24-dien-3beta-ol; 3b-Cholesta-5,24-dien-3-ol; 3Β-cholesta-5,24-dien-3-ol; cholest-5,24-dien-3beta-ol; Cholesta-5,24-dien-3b-ol; Cholesta-5,24-dien-3β-ol; 24,25-Dehydrocholesterol; Cholesta-5,24-dien-3-ol; 24-Dehydrocholesterol; 24 Dehydrocholesterol; Desmesterol; Desmosterol; Demosterol; Desmosterol
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:17737
- KEGG: C01802
- PubChem: 439577
- PubChem: 313036
- HMDB: HMDB0002719
- Metlin: METLIN423
- ChEMBL: CHEMBL455876
- Wikipedia: Desmosterol
- MeSH: Desmosterol
- MetaCyc: DESMOSTEROL-CPD
- KNApSAcK: C00023743
- foodb: FDB005374
- chemspider: 388662
- CAS: 313-04-2
- PMhub: MS000017352
- PubChem: 4928
- LipidMAPS: LMST01010016
- PDB-CCD: MHQ
- 3DMET: B01500
- NIKKAJI: J5.659F
- RefMet: Desmosterol
- medchemexpress: HY-113224
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-625
- KNApSAcK: 17737
- LOTUS: LTS0214414
- LOTUS: LTS0197241
分类词条
相关代谢途径
BioCyc(3)
PlantCyc(0)
代谢反应
342 个相关的代谢反应过程信息。
Reactome(65)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
7-dehydroCHOL + H+ + TPNH ⟶ CHOL + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
CHdOL + H+ + Oxygen + TPNH ⟶ 7dhDESOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Bloch pathway:
DESMOL + H+ + TPNH ⟶ CHOL + TPN
BioCyc(11)
- cholesterol biosynthesis III (via desmosterol):
H+ + NADPH + desmosterol ⟶ NADP+ + cholesterol
- superpathway of cholesterol biosynthesis:
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis III (via desmosterol):
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ lanosterol
- superpathway of cholesterol biosynthesis:
24,25-dihydrolanosterol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 4,4-dimethyl-14α-hydroxymethyl-5α-cholesta-8-en-3β-ol + H2O + an oxidized [NADPH-hemoprotein reductase]
- plant sterol biosynthesis II:
4α-methyl-zymosterol ⟶ 4α-methyl-5α-cholesta-7,24-dien-3β-ol
- cholesterol biosynthesis III (via desmosterol):
4,4-dimethyl-14α-formyl-5α-cholesta-8,24-dien-3β-ol + NADPH + O2 ⟶ 4,4-dimethyl-5-α-cholesta-8,14,24-trien-3-β-ol + H2O + NADP+ + formate
- superpathway of cholesterol biosynthesis:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- cholesterol biosynthesis III (via desmosterol):
4,4-dimethyl-14α-formyl-5α-cholesta-8,24-dien-3β-ol + NADPH + O2 ⟶ 4,4-dimethyl-5-α-cholesta-8,14,24-trien-3-β-ol + H2O + NADP+ + formate
- cholesterol biosynthesis III (via desmosterol):
4,4-dimethyl-14α-formyl-5α-cholesta-8,24-dien-3β-ol + NADPH + O2 ⟶ 4,4-dimethyl-5-α-cholesta-8,14,24-trien-3-β-ol + H2O + NADP+ + formate
- superpathway of cholesterol biosynthesis:
H+ + NADPH + desmosterol ⟶ NADP+ + cholesterol
- cholesterol biosynthesis III (via desmosterol):
H+ + NADPH + desmosterol ⟶ NADP+ + cholesterol
WikiPathways(4)
- Cholesterol synthesis disorders:
squalene ⟶ (S)-2,3-epoxysqualene
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
- Cholesterol biosynthesis with skeletal dysplasias:
7-Dehydrodesmosterol ⟶ 7-Dehydrocholesterol
- Cholesterol metabolism:
lanosterol ⟶ 24,25-dihydrolanosterol
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Fatty acid and lipid metabolism:
NAD(P)H + Oxygen + lathosterol ⟶ H2O + NAD(P)+ + Provitamin D3
- Cholesterol biosynthesis III (via desmosterol):
DESMO + TPNH ⟶ CHOL + TPN
INOH(0)
PlantCyc(205)
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine ⟶ 3-dehydrosphinganine + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine ⟶ 3-dehydrosphinganine + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- plant sterol biosynthesis II:
O2 + a reduced [NADPH-hemoprotein reductase] + squalene ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O + an oxidized [NADPH-hemoprotein reductase]
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
(2E,6E)-farnesyl diphosphate + H+ + NAD(P)H ⟶ NAD(P)+ + diphosphate + squalene
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- sphingolipid biosynthesis (plants):
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine (C18) + CO2 + coenzyme A
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
- plant sterol biosynthesis II:
NADP+ + cholesterol ⟶ H+ + NADPH + desmosterol
COVID-19 Disease Map(0)
PathBank(54)
- Steroid Biosynthesis:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Smith-Lemli-Opitz Syndrome (SLOS):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- CHILD Syndrome:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Desmosterolosis:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Ibandronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Simvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Pravastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Rosuvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Alendronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Hypercholesterolemia:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Lovastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Zoledronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Cerivastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Risedronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Pamidronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Fluvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Atorvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Cholesteryl Ester Storage Disease:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Hyper-IgD Syndrome:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Mevalonic Aciduria:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Wolman Disease:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Cholesterol biosynthesis and metabolism CE(14:0):
Desmosterol ⟶ Cholesterol
- Cholesterol biosynthesis and metabolism CE(10:0):
Desmosterol ⟶ Cholesterol
- Cholesterol Biosynthesis and Metabolism CE(12:0):
Cholesterol + Lauroyl-CoA ⟶ CE(12:0) + Coenzyme A
- Cholesterol Biosynthesis and Metabolism CE(16:0):
Cholesterol + Palmityl-CoA ⟶ CE(16:0) + Coenzyme A
- Cholesterol biosynthesis and metabolism CE(18:0):
Desmosterol ⟶ Cholesterol
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- CHILD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Desmosterolosis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Smith-Lemli-Opitz Syndrome (SLOS):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hypercholesterolemia:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Cholesteryl Ester Storage Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyper-IgD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Mevalonic Aciduria:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Wolman Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Cholesterol Biosynthesis and Metabolism:
Cholesterol + long-chain fatty acyl-CoA ⟶ Cholesteryl ester + Coenzyme A
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- CHILD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Desmosterolosis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Smith-Lemli-Opitz Syndrome (SLOS):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hypercholesterolemia:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Cholesteryl Ester Storage Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyper-IgD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Mevalonic Aciduria:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Wolman Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Bloch Pathway (Cholesterol Biosynthesis):
Desmosterol + NADP ⟶ Cholesterol + Hydrogen Ion + NADPH
- Steroid Biosynthesis:
Hydrogen Ion + Lathosterol + Oxygen + ferrocytochrome b5 ⟶ 7-Dehydrocholesterol + Water + ferricytochrome b5
PharmGKB(0)
350 个相关的物种来源信息
- 561729 - Acarnidae: LTS0197241
- 561729 - Acarnidae: LTS0214414
- 220379 - Acarnus: LTS0197241
- 220379 - Acarnus: LTS0214414
- 868094 - Alitta: LTS0197241
- 868094 - Alitta: LTS0214414
- 981110 - Alitta succinea: 10.1016/0039-128X(94)90124-4
- 981110 - Alitta succinea: LTS0197241
- 981110 - Alitta succinea: LTS0214414
- 3563 - Amaranthaceae: LTS0197241
- 3563 - Amaranthaceae: LTS0214414
- 942673 - Amphilectus: LTS0197241
- 942673 - Amphilectus: LTS0214414
- 942674 - Amphilectus fucorum: 10.1016/S0040-4020(01)85914-7
- 942674 - Amphilectus fucorum: LTS0197241
- 942674 - Amphilectus fucorum: LTS0214414
- 73651 - Amphoriscidae: LTS0197241
- 73651 - Amphoriscidae: LTS0214414
- 6340 - Annelida: LTS0197241
- 6340 - Annelida: LTS0214414
- 6101 - Anthozoa: LTS0197241
- 6101 - Anthozoa: LTS0214414
- 7458 - Apidae: LTS0197241
- 7458 - Apidae: LTS0214414
- 7459 - Apis: LTS0197241
- 7459 - Apis: LTS0214414
- 7460 - Apis mellifera:
- 7460 - Apis mellifera: 10.1007/BF01952468
- 7460 - Apis mellifera: 10.1248/CPB.55.1528
- 7460 - Apis mellifera: LTS0197241
- 7460 - Apis mellifera: LTS0214414
- 6499 - Aplysia: LTS0197241
- 6499 - Aplysia: LTS0214414
- 76186 - Aplysia depilans: 10.1007/BF01946725
- 76186 - Aplysia depilans: LTS0197241
- 76186 - Aplysia depilans: LTS0214414
- 6498 - Aplysiidae: LTS0197241
- 6498 - Aplysiidae: LTS0214414
- 121476 - Aplysina: LTS0197241
- 121476 - Aplysina: LTS0214414
- 202113 - Aplysina fistularis: 10.1016/S0040-4039(00)97863-8
- 202113 - Aplysina fistularis: LTS0197241
- 202113 - Aplysina fistularis: LTS0214414
- 121475 - Aplysinidae: LTS0197241
- 121475 - Aplysinidae: LTS0214414
- 4056 - Apocynaceae: LTS0197241
- 4056 - Apocynaceae: LTS0214414
- 6656 - Arthropoda: LTS0197241
- 6656 - Arthropoda: LTS0214414
- 6544 - Bivalvia: LTS0214414
- 7089 - Bombycidae: LTS0197241
- 7089 - Bombycidae: LTS0214414
- 7090 - Bombyx: LTS0197241
- 7090 - Bombyx: LTS0214414
- 7091 - Bombyx mori:
- 7091 - Bombyx mori: 10.1021/JA00851A056
- 7091 - Bombyx mori: 10.1039/C39890000464
- 7091 - Bombyx mori: 10.1039/C39910000688
- 7091 - Bombyx mori: LTS0197241
- 7091 - Bombyx mori: LTS0214414
- 381414 - Boodleopsis: LTS0197241
- 381414 - Boodleopsis: LTS0214414
- 381415 - Boodleopsis pusilla: 10.1016/0031-9422(92)80435-H
- 381415 - Boodleopsis pusilla: LTS0197241
- 381415 - Boodleopsis pusilla: LTS0214414
- 3127 - Bryopsidaceae: LTS0197241
- 3127 - Bryopsidaceae: LTS0214414
- 3128 - Bryopsis: LTS0197241
- 3128 - Bryopsis: LTS0214414
- 3130 - Bryopsis plumosa: 10.1016/0031-9422(92)80435-H
- 3130 - Bryopsis plumosa: LTS0214414
- 27929 - Calcarea: LTS0197241
- 27929 - Calcarea: LTS0214414
- 159502 - Centroceras: LTS0197241
- 159502 - Centroceras: LTS0214414
- 159503 - Centroceras clavulatum: 10.1016/0305-1978(84)90026-7
- 159503 - Centroceras clavulatum: LTS0197241
- 159503 - Centroceras clavulatum: LTS0214414
- 31377 - Ceramiaceae: LTS0197241
- 31377 - Ceramiaceae: LTS0214414
- 31380 - Ceramium: LTS0197241
- 31380 - Ceramium: LTS0214414
- 679013 - Ceramium pacificum:
- 679013 - Ceramium pacificum: 10.1016/0031-9422(75)85354-4
- 679013 - Ceramium pacificum: 10.1016/0305-1978(84)90026-7
- 679013 - Ceramium pacificum: LTS0197241
- 679013 - Ceramium pacificum: LTS0214414
- 1804623 - Chenopodiaceae: LTS0197241
- 1804623 - Chenopodiaceae: LTS0214414
- 3051 - Chlamydomonadaceae: LTS0197241
- 3051 - Chlamydomonadaceae: LTS0214414
- 3052 - Chlamydomonas: LTS0197241
- 3052 - Chlamydomonas: LTS0214414
- 3055 - Chlamydomonas reinhardtii: 10.1016/S0031-9422(00)97543-5
- 3055 - Chlamydomonas reinhardtii: LTS0197241
- 3055 - Chlamydomonas reinhardtii: LTS0214414
- 3166 - Chlorophyceae: LTS0197241
- 3166 - Chlorophyceae: LTS0214414
- 3041 - Chlorophyta: LTS0197241
- 3041 - Chlorophyta: LTS0214414
- 7711 - Chordata: LTS0197241
- 7711 - Chordata: LTS0214414
- 6073 - Cnidaria: LTS0197241
- 6073 - Cnidaria: LTS0214414
- 6564 - Crassostrea: LTS0214414
- 29159 - Crassostrea gigas: 10.1016/S0305-0491(97)00269-1
- 29159 - Crassostrea gigas: LTS0214414
- 55447 - Cymodocea: LTS0197241
- 55447 - Cymodocea: LTS0214414
- 55448 - Cymodocea nodosa: 10.1016/S0031-9422(00)84109-6
- 55448 - Cymodocea nodosa: LTS0197241
- 55448 - Cymodocea nodosa: LTS0214414
- 25926 - Cymodoceaceae: LTS0197241
- 25926 - Cymodoceaceae: LTS0214414
- 6042 - Demospongiae: LTS0197241
- 6042 - Demospongiae: LTS0214414
- 997601 - Dermonema: LTS0197241
- 997601 - Dermonema: LTS0214414
- 31339 - Desmarestia: LTS0197241
- 31339 - Desmarestia: LTS0214414
- 62307 - Desmarestia menziesii: 10.1139/V90-214
- 62307 - Desmarestia menziesii: LTS0197241
- 62307 - Desmarestia menziesii: LTS0214414
- 31338 - Desmarestiaceae: LTS0197241
- 31338 - Desmarestiaceae: LTS0214414
- 268565 - Dichotomaria: LTS0197241
- 268565 - Dichotomaria: LTS0214414
- 268567 - Dichotomaria marginata: 10.1021/NP960016W
- 268567 - Dichotomaria marginata: LTS0197241
- 268567 - Dichotomaria marginata: LTS0214414
- 7586 - Echinodermata: LTS0197241
- 7586 - Echinodermata: LTS0214414
- 7625 - Echinoidea: LTS0197241
- 7625 - Echinoidea: LTS0214414
- 31177 - Echinometra: LTS0197241
- 31177 - Echinometra: LTS0214414
- 105361 - Echinometra lucunter: 10.1248/CPB.31.1366
- 105361 - Echinometra lucunter: LTS0197241
- 105361 - Echinometra lucunter: LTS0214414
- 31176 - Echinometridae: LTS0197241
- 31176 - Echinometridae: LTS0214414
- 328399 - Ellisella: LTS0197241
- 328399 - Ellisella: LTS0214414
- 2651306 - Ellisella paraplexauroides: 10.1016/0305-0491(92)90235-J
- 2651306 - Ellisella paraplexauroides: LTS0197241
- 2651306 - Ellisella paraplexauroides: LTS0214414
- 86559 - Ellisellidae: LTS0197241
- 86559 - Ellisellidae: LTS0214414
- 72179 - Esperiopsidae: LTS0197241
- 72179 - Esperiopsidae: LTS0214414
- 2759 - Eukaryota: LTS0197241
- 2759 - Eukaryota: LTS0214414
- 6151 - Eunicella: LTS0197241
- 6151 - Eunicella: LTS0214414
- 2806 - Florideophyceae: LTS0197241
- 2806 - Florideophyceae: LTS0214414
- 4751 - Fungi: LTS0197241
- 4751 - Fungi: LTS0214414
- 60690 - Galaxaura: LTS0197241
- 60690 - Galaxaura: LTS0214414
- 73096 - Galaxauraceae: LTS0197241
- 73096 - Galaxauraceae: LTS0214414
- 6448 - Gastropoda: LTS0197241
- 6448 - Gastropoda: LTS0214414
- 2811 - Gelidium: LTS0197241
- 2811 - Gelidium: LTS0214414
- 29217 - Gigartinaceae: LTS0197241
- 29217 - Gigartinaceae: LTS0214414
- 37506 - Gorgoniidae: LTS0197241
- 37506 - Gorgoniidae: LTS0214414
- 3633 - Gossypium: LTS0197241
- 3633 - Gossypium: LTS0214414
- 3635 - Gossypium hirsutum: 10.1007/BF02534857
- 3635 - Gossypium hirsutum: LTS0197241
- 3635 - Gossypium hirsutum: LTS0214414
- 379500 - Halimedaceae: LTS0197241
- 379500 - Halimedaceae: LTS0214414
- 121066 - Halopithys: 10.1016/S0031-9422(00)85025-6
- 121066 - Halopithys: LTS0197241
- 121066 - Halopithys: LTS0214414
- 121067 - Halopithys incurva: 10.1016/S0031-9422(00)85025-6
- 9604 - Hominidae: LTS0197241
- 9604 - Hominidae: LTS0214414
- 9605 - Homo: LTS0197241
- 9605 - Homo: LTS0214414
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0197241
- 9606 - Homo sapiens: LTS0214414
- 3103 - Hydrodictyaceae: LTS0197241
- 3103 - Hydrodictyaceae: LTS0214414
- 3106 - Hydrodictyon: LTS0197241
- 3106 - Hydrodictyon: LTS0214414
- 3107 - Hydrodictyon reticulatum: 10.1016/0031-9422(91)80079-G
- 3107 - Hydrodictyon reticulatum: LTS0197241
- 3107 - Hydrodictyon reticulatum: LTS0214414
- 50557 - Insecta: LTS0197241
- 50557 - Insecta: LTS0214414
- 554633 - Isodictyidae: LTS0197241
- 554633 - Isodictyidae: LTS0214414
- 206141 - Kali: LTS0197241
- 206141 - Kali: LTS0214414
- 2116407 - Kali collina: 10.1007/BF00574357
- 2116407 - Kali collinum: 10.1007/BF00574357
- 37507 - Leptogorgia: 10.1016/0305-0491(92)90235-J
- 37507 - Leptogorgia: LTS0197241
- 37507 - Leptogorgia: LTS0214414
- 238994 - Leptogorgia piccola: 10.1016/0305-0491(92)90235-J
- 238994 - Leptogorgia piccola: LTS0197241
- 238994 - Leptogorgia piccola: LTS0214414
- 1528112 - Leptogorgia viminalis: 10.1016/0305-0491(92)90235-J
- 1528112 - Leptogorgia viminalis: LTS0197241
- 1528112 - Leptogorgia viminalis: LTS0214414
- 239013 - Leptogorgia violetta: 10.1016/0305-0491(92)90235-J
- 239013 - Leptogorgia violetta: LTS0197241
- 239013 - Leptogorgia violetta: LTS0214414
- 73652 - Leucilla: LTS0197241
- 73652 - Leucilla: LTS0214414
- 73653 - Leucilla nuttingi: 10.1021/JA00027A038
- 73653 - Leucilla nuttingi: LTS0197241
- 73653 - Leucilla nuttingi: LTS0214414
- 31484 - Liagoraceae: LTS0197241
- 31484 - Liagoraceae: LTS0214414
- 4447 - Liliopsida: LTS0197241
- 4447 - Liliopsida: LTS0214414
- 147004 - Magallana: LTS0214414
- 2171618 - Magallana gigas: 10.1016/S0305-0491(97)00269-1
- 2171618 - Magallana gigas: LTS0214414
- 3398 - Magnoliopsida: LTS0197241
- 3398 - Magnoliopsida: LTS0214414
- 3629 - Malvaceae: LTS0197241
- 3629 - Malvaceae: LTS0214414
- 40674 - Mammalia: LTS0197241
- 40674 - Mammalia: LTS0214414
- 29228 - Mazzaella: LTS0197241
- 29228 - Mazzaella: LTS0214414
- 29232 - Mazzaella laminarioides: 10.1016/0305-1978(84)90026-7
- 29232 - Mazzaella laminarioides: LTS0197241
- 29232 - Mazzaella laminarioides: LTS0214414
- 33208 - Metazoa: LTS0197241
- 33208 - Metazoa: LTS0214414
- 6447 - Mollusca: LTS0197241
- 6447 - Mollusca: LTS0214414
- 4855 - Mortierella: LTS0197241
- 4855 - Mortierella: LTS0214414
- 64518 - Mortierella alpina:
- 64518 - Mortierella alpina: LTS0197241
- 64518 - Mortierella alpina: LTS0214414
- 4854 - Mortierellaceae: LTS0197241
- 4854 - Mortierellaceae: LTS0214414
- 2212732 - Mortierellomycetes: LTS0197241
- 2212732 - Mortierellomycetes: LTS0214414
- 1913637 - Mucoromycota: LTS0197241
- 1913637 - Mucoromycota: LTS0214414
- 44192 - Muricea: LTS0197241
- 44192 - Muricea: LTS0214414
- 1574066 - Muricea californica: LTS0197241
- 1574066 - Muricea californica: LTS0214414
- 10066 - Muridae: LTS0197241
- 10066 - Muridae: LTS0214414
- 10088 - Mus: LTS0197241
- 10088 - Mus: LTS0214414
- 10090 - Mus musculus: LTS0197241
- 10090 - Mus musculus: LTS0214414
- 10090 - Mus musculus: NA
- 42114 - Neanthes: LTS0197241
- 42114 - Neanthes: LTS0214414
- 39820 - Nereididae: LTS0197241
- 39820 - Nereididae: LTS0214414
- 2696291 - Ochrophyta: LTS0197241
- 2696291 - Ochrophyta: LTS0214414
- 6563 - Ostreidae: LTS0214414
- 2821 - Palmaria: LTS0197241
- 2821 - Palmaria: LTS0214414
- 2822 - Palmaria palmata: 10.1016/0031-9422(83)83040-4
- 2822 - Palmaria palmata: 10.1016/S0031-9422(00)91357-8
- 2822 - Palmaria palmata: LTS0197241
- 2822 - Palmaria palmata: LTS0214414
- 2820 - Palmariaceae: LTS0197241
- 2820 - Palmariaceae: LTS0214414
- 2870 - Phaeophyceae: LTS0197241
- 2870 - Phaeophyceae: LTS0214414
- 44191 - Plexauridae: LTS0197241
- 44191 - Plexauridae: LTS0214414
- 6341 - Polychaeta: LTS0197241
- 6341 - Polychaeta: LTS0214414
- 283513 - Polymastia: 10.1016/S0040-4039(00)97863-8
- 283513 - Polymastia: LTS0197241
- 283513 - Polymastia: LTS0214414
- 283556 - Polymastia pachymastia: 10.1016/S0040-4039(00)97863-8
- 283556 - Polymastia pachymastia: LTS0197241
- 283556 - Polymastia pachymastia: LTS0214414
- 283512 - Polymastiidae: LTS0197241
- 283512 - Polymastiidae: LTS0214414
- 6040 - Porifera: LTS0197241
- 6040 - Porifera: LTS0214414
- 1743242 - Pseudopotamilla occelata: 10.1248/CPB.21.323
- 2803 - Rhodomelaceae: LTS0197241
- 2803 - Rhodomelaceae: LTS0214414
- 2763 - Rhodophyta: LTS0197241
- 2763 - Rhodophyta: LTS0214414
- 2794 - Rhodymenia: LTS0197241
- 31501 - Rhodymeniaceae: LTS0197241
- 57638 - Rissoella: LTS0197241
- 57638 - Rissoella: LTS0214414
- 257596 - Rissoella verruculosa: 10.1016/0031-9422(83)80230-1
- 257596 - Rissoella verruculosa: LTS0197241
- 257596 - Rissoella verruculosa: LTS0214414
- 257593 - Rissoellaceae: LTS0197241
- 257593 - Rissoellaceae: LTS0214414
- 569446 - Salpa: LTS0197241
- 569446 - Salpa: LTS0214414
- 569448 - Salpa thompsoni: 10.1248/CPB.34.4562
- 569448 - Salpa thompsoni: LTS0197241
- 569448 - Salpa thompsoni: LTS0214414
- 34759 - Salpidae: LTS0197241
- 34759 - Salpidae: LTS0214414
- 151233 - Salsola: LTS0197241
- 151233 - Salsola: LTS0214414
- 525237 - Salsola collina: 10.1007/BF00574357
- 525237 - Salsola collina: LTS0197241
- 525237 - Salsola collina: LTS0214414
- 35493 - Streptophyta: LTS0197241
- 35493 - Streptophyta: LTS0214414
- 34493 - Tethya: LTS0197241
- 34493 - Tethya: LTS0214414
- 281732 - Tethya aurantium:
- 281732 - Tethya aurantium: 10.1016/S0040-4039(00)97863-8
- 281732 - Tethya aurantium: 10.1021/JA00027A038
- 281732 - Tethya aurantium: LTS0197241
- 281732 - Tethya aurantium: LTS0214414
- 45120 - Tethyidae: LTS0197241
- 45120 - Tethyidae: LTS0214414
- 30304 - Thaliacea: LTS0197241
- 30304 - Thaliacea: LTS0214414
- 58023 - Tracheophyta: LTS0197241
- 58023 - Tracheophyta: LTS0214414
- 35435 - Udoteaceae: LTS0197241
- 35435 - Udoteaceae: LTS0214414
- 33103 - Ulvophyceae: LTS0197241
- 33103 - Ulvophyceae: LTS0214414
- 33090 - Viridiplantae: LTS0197241
- 33090 - Viridiplantae: LTS0214414
- 69390 - Wrightia: LTS0197241
- 69390 - Wrightia: LTS0214414
- 653463 - Wrightia tinctoria: 10.1016/0031-9422(88)80032-3
- 653463 - Wrightia tinctoria: LTS0197241
- 653463 - Wrightia tinctoria: LTS0214414
- 326968 - Ziziphus jujuba Mill.: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Enchen Zhou, Xiaoke Ge, Hiroyuki Nakashima, Rumei Li, Hendrik J P van der Zande, Cong Liu, Zhuang Li, Christoph Müller, Franz Bracher, Yassene Mohammed, Jan Freark de Boer, Folkert Kuipers, Bruno Guigas, Christopher K Glass, Patrick C N Rensen, Martin Giera, Yanan Wang. Inhibition of DHCR24 activates LXRα to ameliorate hepatic steatosis and inflammation.
EMBO molecular medicine.
2023 Jun; ?(?):e16845. doi:
10.15252/emmm.202216845
. [PMID: 37357756] - Haozhen Wang, Ziyin Lu, Yang Li, Ting Liu, Linlin Zhao, Tianqi Gao, Xiuli Lu, Bing Gao. Virtual Screening of Novel 24-Dehydroxysterol Reductase (DHCR24) Inhibitors and the Biological Evaluation of Irbesartan in Cholesterol-Lowering Effect.
Molecules (Basel, Switzerland).
2023 Mar; 28(6):. doi:
10.3390/molecules28062643
. [PMID: 36985615] - Valéria Sutti Nunes, Edite Vieira Silva de Campos, Jamal Baracat, Victor França, Érica Ivana Lázaro Gomes, Raissa Peres Coelho, Edna Regina Nakandakare, Vanessa Helena Souza Zago, Eliana Cotta de Faria, Eder Carlos Rocha Quintão. Plasma Campesterol Is Positively Associated with Carotid Plaques in Asymptomatic Subjects.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911997
. [PMID: 36233298] - Yonas Mulat Simachew, Tamara Antonić, Tamara Gojković, Sandra Vladimirov, Marija Mihajlović, Sanja Vujčić, Gordana Miloševski-Lomić, Jelena Vekić, Aleksandra Zeljković, Vesna Spasojević-Kalimanovska, Amira Peco-Antić, Dušan Paripović, Aleksandra Stefanović. Lipoproteins and cholesterol homeostasis in paediatric nephrotic syndrome patients.
Biochemia medica.
2022 Jun; 32(2):020706. doi:
10.11613/bm.2022.020706
. [PMID: 35799985] - Roubi Abuobeid, Javier Sánchez-Marco, María J Felices, Carmen Arnal, Juan Carlos Burillo, Roberto Lasheras, Rebeca Busto, Miguel A Lasunción, María Jesús Rodríguez-Yoldi, Roberto Martínez-Beamonte, Jesús Osada. Squalene through Its Post-Squalene Metabolites Is a Modulator of Hepatic Transcriptome in Rabbits.
International journal of molecular sciences.
2022 Apr; 23(8):. doi:
10.3390/ijms23084172
. [PMID: 35456988] - Basar Cenik, Jayme M Palka, Bonne M Thompson, Jeffrey G McDonald, Carol A Tamminga, Can Cenik, E Sherwood Brown. Desmosterol and 7-dehydrocholesterol concentrations in post mortem brains of depressed people: The role of trazodone.
Translational psychiatry.
2022 04; 12(1):139. doi:
10.1038/s41398-022-01903-3
. [PMID: 35379782] - Zhi-Zhao Li, Qiong Huang, Xiao-Li Yang, Jieqiong Zeng, Qi-Hui Wang, Hai-Ming Tang, Zhen-Qiu Yu, Yu-Qing Song, Yang Liu. Cholesterol Metabolic Markers for Differential Evaluation of Patients with Hyperlipidemia and Familial Hypercholesterolemia.
Disease markers.
2022; 2022(?):2008556. doi:
10.1155/2022/2008556
. [PMID: 35493299] - Christoph Müller, Emily Hank, Martin Giera, Franz Bracher. Dehydrocholesterol Reductase 24 (DHCR24): Medicinal Chemistry, Pharmacology and Novel Therapeutic Options.
Current medicinal chemistry.
2022; 29(23):4005-4025. doi:
10.2174/0929867328666211115121832
. [PMID: 34781860] - Xinbo Zhang, Jeffrey G McDonald, Binod Aryal, Alberto Canfrán-Duque, Emily L Goldberg, Elisa Araldi, Wen Ding, Yuhua Fan, Bonne M Thompson, Abhishek K Singh, Qian Li, George Tellides, Jose Ordovás-Montanes, Rolando García Milian, Vishwa Deep Dixit, Elina Ikonen, Yajaira Suárez, Carlos Fernández-Hernando. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis.
Proceedings of the National Academy of Sciences of the United States of America.
2021 11; 118(47):. doi:
10.1073/pnas.2107682118
. [PMID: 34782454] - Stefan A Berghoff, Lena Spieth, Ting Sun, Leon Hosang, Lennart Schlaphoff, Constanze Depp, Tim Düking, Jan Winchenbach, Jonathan Neuber, David Ewers, Patricia Scholz, Franziska van der Meer, Ludovico Cantuti-Castelvetri, Andrew O Sasmita, Martin Meschkat, Torben Ruhwedel, Wiebke Möbius, Roman Sankowski, Marco Prinz, Inge Huitinga, Michael W Sereda, Francesca Odoardi, Till Ischebeck, Mikael Simons, Christine Stadelmann-Nessler, Julia M Edgar, Klaus-Armin Nave, Gesine Saher. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis.
Nature neuroscience.
2021 01; 24(1):47-60. doi:
10.1038/s41593-020-00757-6
. [PMID: 33349711] - P Simonen, S Li, N K Chua, A-M Lampi, V Piironen, J Lommi, J Sinisalo, A J Brown, E Ikonen, H Gylling. Amiodarone disrupts cholesterol biosynthesis pathway and causes accumulation of circulating desmosterol by inhibiting 24-dehydrocholesterol reductase.
Journal of internal medicine.
2020 11; 288(5):560-569. doi:
10.1111/joim.13095
. [PMID: 32415867] - María de Las Mercedes Carro, Daniel A Peñalva, Silvia S Antollini, Federico A Hozbor, Jorgelina Buschiazzo. Cholesterol and desmosterol incorporation into ram sperm membrane before cryopreservation: Effects on membrane biophysical properties and sperm quality.
Biochimica et biophysica acta. Biomembranes.
2020 09; 1862(9):183357. doi:
10.1016/j.bbamem.2020.183357
. [PMID: 32416195] - Valéria Sutti Nunes, Isabela M Bensenor, Paulo A Lotufo, Marisa Passarelli, Edna Regina Nakandakare, Eder Carlos Rocha Quintão. The coronary artery calcium score is linked to plasma cholesterol synthesis and absorption markers: Brazilian Longitudinal Study of Adult Health.
Bioscience reports.
2020 07; 40(7):. doi:
10.1042/bsr20201094
. [PMID: 32579186] - Luke B Allen, Thiago C Genaro-Mattos, Allison Anderson, Ned A Porter, Károly Mirnics, Zeljka Korade. Amiodarone Alters Cholesterol Biosynthesis through Tissue-Dependent Inhibition of Emopamil Binding Protein and Dehydrocholesterol Reductase 24.
ACS chemical neuroscience.
2020 05; 11(10):1413-1423. doi:
10.1021/acschemneuro.0c00042
. [PMID: 32286791] - Luke B Allen, Thiago C Genaro-Mattos, Ned A Porter, Károly Mirnics, Zeljka Korade. Desmosterolosis and desmosterol homeostasis in the developing mouse brain.
Journal of inherited metabolic disease.
2019 09; 42(5):934-943. doi:
10.1002/jimd.12088
. [PMID: 30891795] - Maite M Schroor, Henriette P Sennels, Jan Fahrenkrug, Henrik L Jørgensen, Jogchum Plat, Ronald P Mensink. Diurnal Variation of Markers for Cholesterol Synthesis, Cholesterol Absorption, and Bile Acid Synthesis: A Systematic Review and the Bispebjerg Study of Diurnal Variations.
Nutrients.
2019 Jun; 11(7):. doi:
10.3390/nu11071439
. [PMID: 31247945] - Seung Mi Lee, Ju-Yeon Moon, Byeong-Yun Lim, Sun Min Kim, Chan-Wook Park, Byoung Jae Kim, Jong Kwan Jun, Errol R Norwitz, Man Ho Choi, Joong Shin Park. Increased biosynthesis and accumulation of cholesterol in maternal plasma, but not amniotic fluid in pre-eclampsia.
Scientific reports.
2019 02; 9(1):1550. doi:
10.1038/s41598-018-37757-3
. [PMID: 30733456] - Sultan Mashnafi, Jogchum Plat, Ronald P Mensink, Sabine Baumgartner. Non-Cholesterol Sterol Concentrations as Biomarkers for Cholesterol Absorption and Synthesis in Different Metabolic Disorders: A Systematic Review.
Nutrients.
2019 Jan; 11(1):. doi:
10.3390/nu11010124
. [PMID: 30634478] - Elijah J Weber, Kevin A Lidberg, Lu Wang, Theo K Bammler, James W MacDonald, Mavis J Li, Michelle Redhair, William M Atkins, Cecilia Tran, Kelly M Hines, Josi Herron, Libin Xu, Maria Beatriz Monteiro, Susanne Ramm, Vishal Vaidya, Martti Vaara, Timo Vaara, Jonathan Himmelfarb, Edward J Kelly. Human kidney on a chip assessment of polymyxin antibiotic nephrotoxicity.
JCI insight.
2018 12; 3(24):. doi:
10.1172/jci.insight.123673
. [PMID: 30568031] - Phillip A Wages, Hye-Young H Kim, Zeljka Korade, Ned A Porter. Identification and characterization of prescription drugs that change levels of 7-dehydrocholesterol and desmosterol.
Journal of lipid research.
2018 10; 59(10):1916-1926. doi:
10.1194/jlr.m086991
. [PMID: 30087204] - Ai Ushiyama, Atsushi Tajima, Naoto Ishikawa, Atsushi Asano. Modification of membrane cholesterol and desmosterol in chicken spermatozoa improves post-thaw survival and prevents impairment of sperm function after cryopreservation.
Reproduction, fertility, and development.
2018 Mar; 30(4):591-599. doi:
10.1071/rd17076
. [PMID: 28945984] - P Simonen, J Lehtonen, A-M Lampi, V Piironen, U-H Stenman, M Kupari, H Gylling. Desmosterol accumulation in users of amiodarone.
Journal of internal medicine.
2018 01; 283(1):93-101. doi:
10.1111/joim.12682
. [PMID: 28861933] - Christoph Müller, Sandra Hemmers, Nicholas Bartl, Alois Plodek, Andreas Körner, Valbona Mirakaj, Martin Giera, Franz Bracher. New chemotype of selective and potent inhibitors of human delta 24-dehydrocholesterol reductase.
European journal of medicinal chemistry.
2017 Nov; 140(?):305-320. doi:
10.1016/j.ejmech.2017.08.011
. [PMID: 28964935] - Islam J A Hamdan, Lorena Claumarchirant, Guadalupe Garcia-Llatas, Amparo Alegría, María Jesús Lagarda. Sterols in infant formulas: validation of a gas chromatographic method.
International journal of food sciences and nutrition.
2017 Sep; 68(6):695-703. doi:
10.1080/09637486.2017.1287883
. [PMID: 28276904] - Ole G Mouritsen, Luis A Bagatolli, Lars Duelund, Olav Garvik, John H Ipsen, Adam Cohen Simonsen. Effects of seaweed sterols fucosterol and desmosterol on lipid membranes.
Chemistry and physics of lipids.
2017 06; 205(?):1-10. doi:
10.1016/j.chemphyslip.2017.03.010
. [PMID: 28365392] - Deirdre A Costello, Valerie A Villareal, Priscilla L Yang. Desmosterol Increases Lipid Bilayer Fluidity during Hepatitis C Virus Infection.
ACS infectious diseases.
2016 11; 2(11):852-862. doi:
10.1021/acsinfecdis.6b00086
. [PMID: 27933788] - Valerie A Villareal, Dan Fu, Deirdre A Costello, Xiaoliang Sunney Xie, Priscilla L Yang. Hepatitis C Virus Selectively Alters the Intracellular Localization of Desmosterol.
ACS chemical biology.
2016 07; 11(7):1827-33. doi:
10.1021/acschembio.6b00324
. [PMID: 27128812] - Lei Yin, Kevin Shengyang Yu, Kun Lu, Xiaozhong Yu. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis.
Toxicology in vitro : an international journal published in association with BIBRA.
2016 Apr; 32(?):297-309. doi:
10.1016/j.tiv.2016.01.010
. [PMID: 26820058] - Isabel Andrade, Lèlita Santos, Fernando Ramos. Cholesterol absorption and synthesis markers in Portuguese hypercholesterolemic adults: A cross-sectional study.
European journal of internal medicine.
2016 Mar; 28(?):85-90. doi:
10.1016/j.ejim.2015.10.022
. [PMID: 26577223] - Ryoko Kiyotake, Masatsugu Oh-Hora, Eri Ishikawa, Tomofumi Miyamoto, Tatsuro Ishibashi, Sho Yamasaki. Human Mincle Binds to Cholesterol Crystals and Triggers Innate Immune Responses.
The Journal of biological chemistry.
2015 Oct; 290(42):25322-32. doi:
10.1074/jbc.m115.645234
. [PMID: 26296894] - Matthew G K Benesch, Ruthven N A H Lewis, Ronald N McElhaney. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
Chemistry and physics of lipids.
2015 Oct; 191(?):123-35. doi:
10.1016/j.chemphyslip.2015.09.002
. [PMID: 26368000] - Katarzyna Hąc-Wydro, Karolina Węder, Marzena Mach, Michał Flasiński, Paweł Wydro. The influence of cholesterol precursor--desmosterol--on artificial lipid membranes.
Biochimica et biophysica acta.
2015 Aug; 1848(8):1639-45. doi:
10.1016/j.bbamem.2015.04.017
. [PMID: 25960185] - Cisem Altunayar, Ipek Sahin, Nadide Kazanci. A comparative study of the effects of cholesterol and desmosterol on zwitterionic DPPC model membranes.
Chemistry and physics of lipids.
2015 May; 188(?):37-45. doi:
10.1016/j.chemphyslip.2015.03.006
. [PMID: 25847673] - Isabel Mendiara, Karim Bentayeb, Cristina Nerín, Celia Domeño. Online solid-phase extraction-liquid chromatography-mass spectrometry to determine free sterols in human serum.
Talanta.
2015 Jan; 132(?):690-7. doi:
10.1016/j.talanta.2014.10.029
. [PMID: 25476366] - Sandeep Goyal, Yi Xiao, Ned A Porter, Libin Xu, F Peter Guengerich. Oxidation of 7-dehydrocholesterol and desmosterol by human cytochrome P450 46A1.
Journal of lipid research.
2014 Sep; 55(9):1933-43. doi:
10.1194/jlr.m051508
. [PMID: 25017465] - Lucía Baila-Rueda, Rocío Mateo-Gallego, Estibaliz Jarauta, Isabel de Castro-Orós, Ana M Bea, Ana Cenarro, Fernando Civeira. Bile acid synthesis precursors in familial combined hyperlipidemia: the oxysterols 24S-hydroxycholesterol and 27-hydroxycholesterol.
Biochemical and biophysical research communications.
2014 Apr; 446(3):731-5. doi:
10.1016/j.bbrc.2013.12.131
. [PMID: 24406166] - Winnie Luu, Eser J Zerenturk, Ika Kristiana, Martin P Bucknall, Laura J Sharpe, Andrew J Brown. Signaling regulates activity of DHCR24, the final enzyme in cholesterol synthesis.
Journal of lipid research.
2014 Mar; 55(3):410-20. doi:
10.1194/jlr.m043257
. [PMID: 24363437] - Kazuo Sugiyama, Hirotoshi Ebinuma, Nobuhiro Nakamoto, Noriko Sakasegawa, Yuko Murakami, Po-Sung Chu, Shingo Usui, Yuka Ishibashi, Yuko Wakayama, Nobuhito Taniki, Hiroko Murata, Yoshimasa Saito, Masayoshi Fukasawa, Kyoko Saito, Yoshiyuki Yamagishi, Takaji Wakita, Hiroshi Takaku, Toshifumi Hibi, Hidetsugu Saito, Takanori Kanai. Prominent steatosis with hypermetabolism of the cell line permissive for years of infection with hepatitis C virus.
PloS one.
2014; 9(4):e94460. doi:
10.1371/journal.pone.0094460
. [PMID: 24718268] - Jogchum Plat, Tim Hendrikx, Veerle Bieghs, Mike L J Jeurissen, Sofie M A Walenbergh, Patrick J van Gorp, Els De Smet, Maurice Konings, Anita C E Vreugdenhil, Yasmin Dias Guichot, Sander S Rensen, Wim A Buurman, Jan Willem M Greve, Dieter Lütjohann, Ronald P Mensink, Ronit Shiri-Sverdlov. Protective role of plant sterol and stanol esters in liver inflammation: insights from mice and humans.
PloS one.
2014; 9(10):e110758. doi:
10.1371/journal.pone.0110758
. [PMID: 25356831] - Kyoko Nakano-Ito, Yasuhiro Fujikawa, Taro Hihara, Hiroko Shinjo, Sadaharu Kotani, Akiyoshi Suganuma, Toyohiko Aoki, Kazuo Tsukidate. E2012-induced cataract and its predictive biomarkers.
Toxicological sciences : an official journal of the Society of Toxicology.
2014 Jan; 137(1):249-58. doi:
10.1093/toxsci/kft224
. [PMID: 24085193] - M C G J Brouwers, R J Konrad, T M van Himbergen, A Isaacs, S Otokozawa, J S Troutt, E J Schaefer, M M J van Greevenbroek, A F H Stalenhoef, J de Graaf. Plasma proprotein convertase subtilisin kexin type 9 levels are related to markers of cholesterol synthesis in familial combined hyperlipidemia.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2013 Nov; 23(11):1115-21. doi:
10.1016/j.numecd.2012.11.008
. [PMID: 23333725] - Marko Simonen, Ville Männistö, Joel Leppänen, Dorota Kaminska, Vesa Kärjä, Sari Venesmaa, Pirjo Käkelä, Johanna Kuusisto, Helena Gylling, Markku Laakso, Jussi Pihlajamäki. Desmosterol in human nonalcoholic steatohepatitis.
Hepatology (Baltimore, Md.).
2013 Sep; 58(3):976-82. doi:
10.1002/hep.26342
. [PMID: 23447451] - Simone P Barbosa, Lívia C Lins, Francisco A Fonseca, Lívia N Matos, Ana C Aguirre, Henrique T Bianco, Jonatas B Amaral, Carolina N França, Jose M Santana, Maria C Izar. Effects of ezetimibe on markers of synthesis and absorption of cholesterol in high-risk patients with elevated C-reactive protein.
Life sciences.
2013 May; 92(14-16):845-51. doi:
10.1016/j.lfs.2013.02.018
. [PMID: 23507424] - Robert A Koeth, Zeneng Wang, Bruce S Levison, Jennifer A Buffa, Elin Org, Brendan T Sheehy, Earl B Britt, Xiaoming Fu, Yuping Wu, Lin Li, Jonathan D Smith, Joseph A DiDonato, Jun Chen, Hongzhe Li, Gary D Wu, James D Lewis, Manya Warrier, J Mark Brown, Ronald M Krauss, W H Wilson Tang, Frederic D Bushman, Aldons J Lusis, Stanley L Hazen. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.
Nature medicine.
2013 May; 19(5):576-85. doi:
10.1038/nm.3145
. [PMID: 23563705] - Norman B Javitt. Alzheimer's disease: neuroprogesterone, epoxycholesterol, and ABC transporters as determinants of neurodesmosterol tissue levels and its role in amyloid protein processing.
Journal of Alzheimer's disease : JAD.
2013; 35(3):441-50. doi:
10.3233/jad-130044
. [PMID: 23455994] - Anna Meljon, Spyridon Theofilopoulos, Cedric H L Shackleton, Gordon L Watson, Norman B Javitt, Hans-Joachim Knölker, Ratni Saini, Ernest Arenas, Yuqin Wang, William J Griffiths. Analysis of bioactive oxysterols in newborn mouse brain by LC/MS.
Journal of lipid research.
2012 Nov; 53(11):2469-83. doi:
10.1194/jlr.d028233
. [PMID: 22891291] - S Matysik, H H Klünemann, G Schmitz. Gas chromatography-tandem mass spectrometry method for the simultaneous determination of oxysterols, plant sterols, and cholesterol precursors.
Clinical chemistry.
2012 Nov; 58(11):1557-64. doi:
10.1373/clinchem.2012.189605
. [PMID: 22997279] - S H Kasmas, M C Izar, C N França, S C Ramos, F T Moreira, T Helfenstein, R A Moreno, N C Borges, A M Figueiredo-Neto, F A Fonseca. Differences in synthesis and absorption of cholesterol of two effective lipid-lowering therapies.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
2012 Nov; 45(11):1095-101. doi:
10.1590/s0100-879x2012007500118
. [PMID: 22801416] - Nathanael J Spann, Lana X Garmire, Jeffrey G McDonald, David S Myers, Stephen B Milne, Norihito Shibata, Donna Reichart, Jesse N Fox, Iftach Shaked, Daniel Heudobler, Christian R H Raetz, Elaine W Wang, Samuel L Kelly, M Cameron Sullards, Robert C Murphy, Alfred H Merrill, H Alex Brown, Edward A Dennis, Andrew C Li, Klaus Ley, Sotirios Tsimikas, Eoin Fahy, Shankar Subramaniam, Oswald Quehenberger, David W Russell, Christopher K Glass. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses.
Cell.
2012 Sep; 151(1):138-52. doi:
10.1016/j.cell.2012.06.054
. [PMID: 23021221] - Gero P Hooff, W Gibson Wood, Ji-Hyun Kim, Urule Igbavboa, Wei-Yi Ong, Walter E Muller, Gunter P Eckert. Brain isoprenoids farnesyl pyrophosphate and geranylgeranyl pyrophosphate are increased in aged mice.
Molecular neurobiology.
2012 Aug; 46(1):179-85. doi:
10.1007/s12035-012-8285-6
. [PMID: 22692983] - Jeffrey G McDonald, Daniel D Smith, Ashlee R Stiles, David W Russell. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma.
Journal of lipid research.
2012 Jul; 53(7):1399-409. doi:
10.1194/jlr.d022285
. [PMID: 22517925] - Hae-Ki Min, Ashwani Kapoor, Michael Fuchs, Faridoddin Mirshahi, Huiping Zhou, James Maher, John Kellum, Russell Warnick, Melissa J Contos, Arun J Sanyal. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease.
Cell metabolism.
2012 May; 15(5):665-74. doi:
10.1016/j.cmet.2012.04.004
. [PMID: 22560219] - Mary A Rodgers, Valerie A Villareal, Esperance A Schaefer, Lee F Peng, Kathleen E Corey, Raymond T Chung, Priscilla L Yang. Lipid metabolite profiling identifies desmosterol metabolism as a new antiviral target for hepatitis C virus.
Journal of the American Chemical Society.
2012 Apr; 134(16):6896-9. doi:
10.1021/ja207391q
. [PMID: 22480142] - Sourav Haldar, Ravi Kumar Kanaparthi, Anunay Samanta, Amitabha Chattopadhyay. Differential effect of cholesterol and its biosynthetic precursors on membrane dipole potential.
Biophysical journal.
2012 Apr; 102(7):1561-9. doi:
10.1016/j.bpj.2012.03.004
. [PMID: 22500756] - Yoshiaki Sato, Ikumi Suzuki, Tatsuji Nakamura, Francois Bernier, Ken Aoshima, Yoshiya Oda. Identification of a new plasma biomarker of Alzheimer's disease using metabolomics technology.
Journal of lipid research.
2012 Mar; 53(3):567-576. doi:
10.1194/jlr.m022376
. [PMID: 22203775] - Randy L Bogan, Andrea E Debarber, Jon D Hennebold. Liver x receptor modulation of gene expression leading to proluteolytic effects in primate luteal cells.
Biology of reproduction.
2012 Mar; 86(3):89. doi:
10.1095/biolreprod.111.096347
. [PMID: 22156476] - Anastasia C Weeks, Charles L Balzli, Armando Caballero, Aihua Tang, Richard O'Callaghan. Identification and potency of cyclodextrin-lipid inhibitors of Staphylococcus aureus α-toxin.
Current eye research.
2012 Feb; 37(2):87-93. doi:
10.3109/02713683.2011.624669
. [PMID: 22050601] - Guenther Silbernagel, Dieter Lütjohann, Juergen Machann, Sabrina Meichsner, Konstantinos Kantartzis, Fritz Schick, Hans-Ulrich Häring, Norbert Stefan, Andreas Fritsche. Cholesterol synthesis is associated with hepatic lipid content and dependent on fructose/glucose intake in healthy humans.
Experimental diabetes research.
2012; 2012(?):361863. doi:
10.1155/2012/361863
. [PMID: 22203835] - Claudine A Feio, Maria C Izar, Silvia S Ihara, Soraia H Kasmas, Celma M Martins, Max N Feio, Luís A Maués, Ney C Borges, Ronilson A Moreno, Rui M Póvoa, Francisco A Fonseca. Euterpe oleracea (açai) modifies sterol metabolism and attenuates experimentally-induced atherosclerosis.
Journal of atherosclerosis and thrombosis.
2012; 19(3):237-45. doi:
10.5551/jat.11205
. [PMID: 22139433] - Veerle Bieghs, Fons Verheyen, Patrick J van Gorp, Tim Hendrikx, Kristiaan Wouters, Dieter Lütjohann, Marion J J Gijbels, Maria Febbraio, Christoph J Binder, Marten H Hofker, Ronit Shiri-Sverdlov. Internalization of modified lipids by CD36 and SR-A leads to hepatic inflammation and lysosomal cholesterol storage in Kupffer cells.
PloS one.
2012; 7(3):e34378. doi:
10.1371/journal.pone.0034378
. [PMID: 22470565] - Gavin Tansley, Daniel T Holmes, Dieter Lütjohann, Elizabeth Head, Cheryl L Wellington. Sterol lipid metabolism in down syndrome revisited: down syndrome is associated with a selective reduction in serum brassicasterol levels.
Current gerontology and geriatrics research.
2012; 2012(?):179318. doi:
10.1155/2012/179318
. [PMID: 22649448] - David Saraiva, Rute Semedo, Maria da Conceição Castilho, José Manuel Silva, Fernando Ramos. Selection of the derivatization reagent--the case of human blood cholesterol, its precursors and phytosterols GC-MS analyses.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Dec; 879(32):3806-11. doi:
10.1016/j.jchromb.2011.10.021
. [PMID: 22088355] - Eric J Niesor, Evelyne Chaput, Andreas Staempfli, Denise Blum, Michael Derks, David Kallend. Effect of dalcetrapib, a CETP modulator, on non-cholesterol sterol markers of cholesterol homeostasis in healthy subjects.
Atherosclerosis.
2011 Dec; 219(2):761-7. doi:
10.1016/j.atherosclerosis.2011.09.017
. [PMID: 21982411] - Pushpendra Singh, Md Jafurulla, Yamuna Devi Paila, Amitabha Chattopadhyay. Desmosterol replaces cholesterol for ligand binding function of the serotonin(1A) receptor in solubilized hippocampal membranes: support for nonannular binding sites for cholesterol?.
Biochimica et biophysica acta.
2011 Oct; 1808(10):2428-34. doi:
10.1016/j.bbamem.2011.06.022
. [PMID: 21763272] - Jenny Zolotushko, Hagit Flusser, Barak Markus, Ilan Shelef, Yshaia Langer, Maura Heverin, Ingemar Björkhem, Sara Sivan, Ohad S Birk. The desmosterolosis phenotype: spasticity, microcephaly and micrognathia with agenesis of corpus callosum and loss of white matter.
European journal of human genetics : EJHG.
2011 Sep; 19(9):942-6. doi:
10.1038/ejhg.2011.74
. [PMID: 21559050] - Silvia C Ramos, Francisco A Fonseca, Soraia H Kasmas, Flávio T Moreira, Tatiana Helfenstein, Ney C Borges, Ronilson A Moreno, Vinicius M Rezende, Fernanda C Silva, Maria C Izar. The role of soluble fiber intake in patients under highly effective lipid-lowering therapy.
Nutrition journal.
2011 Aug; 10(?):80. doi:
10.1186/1475-2891-10-80
. [PMID: 21810257] - Christian P Schaaf, Janet Koster, Panagiotis Katsonis, Lisa Kratz, Oleg A Shchelochkov, Fernando Scaglia, Richard I Kelley, Olivier Lichtarge, Hans R Waterham, Marwan Shinawi. Desmosterolosis-phenotypic and molecular characterization of a third case and review of the literature.
American journal of medical genetics. Part A.
2011 Jul; 155A(7):1597-604. doi:
10.1002/ajmg.a.34040
. [PMID: 21671375] - Tim Vanmierlo, Kris Rutten, Leonie C van Vark-van der Zee, Silvia Friedrichs, Vincent W Bloks, Arjan Blokland, Frans C Ramaekers, Eric Sijbrands, Harry Steinbusch, Jos Prickaerts, Folkert Kuipers, Dieter Lütjohann, Monique Mulder. Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5-/- mice.
Plant foods for human nutrition (Dordrecht, Netherlands).
2011 Jun; 66(2):149-56. doi:
10.1007/s11130-011-0219-3
. [PMID: 21431910] - Peter M Elias, Debra Crumrine, Amy Paller, Marina Rodriguez-Martin, Mary L Williams. Pathogenesis of the cutaneous phenotype in inherited disorders of cholesterol metabolism: Therapeutic implications for topical treatment of these disorders.
Dermato-endocrinology.
2011 Apr; 3(2):100-6. doi:
10.4161/derm.3.2.14831
. [PMID: 21695019] - Cynthia Hong, Robert Walczak, Helena Dhamko, Michelle N Bradley, Chaitra Marathe, Rima Boyadjian, Jon V Salazar, Peter Tontonoz. Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: identification of ARL7 as a direct target.
Journal of lipid research.
2011 Mar; 52(3):531-9. doi:
10.1194/jlr.m010686
. [PMID: 21187453] - Michel R Hoenig, Philip J Walker, Christine Gurnsey, Karen Beadle, Leslie Johnson. The C3435T polymorphism in ABCB1 influences atorvastatin efficacy and muscle symptoms in a high-risk vascular cohort.
Journal of clinical lipidology.
2011 Mar; 5(2):91-6. doi:
10.1016/j.jacl.2011.01.001
. [PMID: 21392722] - Danni Cheng, Andrew M Jenner, Guanghou Shui, Wei Fun Cheong, Todd W Mitchell, Jessica R Nealon, Woojin S Kim, Heather McCann, Markus R Wenk, Glenda M Halliday, Brett Garner. Lipid pathway alterations in Parkinson's disease primary visual cortex.
PloS one.
2011 Feb; 6(2):e17299. doi:
10.1371/journal.pone.0017299
. [PMID: 21387008] - Thomas Pfeifer, Marlene Buchebner, Prakash G Chandak, Jay Patankar, Adelheid Kratzer, Sascha Obrowsky, Gerald N Rechberger, Rajendra S Kadam, Uday B Kompella, Gerhard M Kostner, Dagmar Kratky, Sanja Levak-Frank. Synthetic LXR agonist suppresses endogenous cholesterol biosynthesis and efficiently lowers plasma cholesterol.
Current pharmaceutical biotechnology.
2011 Feb; 12(2):285-92. doi:
10.2174/138920111794295774
. [PMID: 21190543] - Estelle Wolff, Marie-France Vergnes, Catherine Defoort, Richard Planells, Henri Portugal, Alain Nicolay, Denis Lairon. Cholesterol absorption status and fasting plasma cholesterol are modulated by the microsomal triacylglycerol transfer protein -493 G/T polymorphism and the usual diet in women.
Genes & nutrition.
2011 Feb; 6(1):71-9. doi:
10.1007/s12263-010-0174-x
. [PMID: 21437032] - Olav A Christophersen, Anna Haug. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology.
Lipids in health and disease.
2011 Jan; 10(?):16. doi:
10.1186/1476-511x-10-16
. [PMID: 21247506] - Michel R Hoenig, Gary Cowin, Raymond Buckley, Christine McHenery, Allan Coulthard. Low density lipoprotein cholesterol is inversely correlated with abdominal visceral fat area: a magnetic resonance imaging study.
Lipids in health and disease.
2011 Jan; 10(?):12. doi:
10.1186/1476-511x-10-12
. [PMID: 21247428] - V S Nunes, C C Leança, N B Panzoldo, E Parra, P M Cazita, E R Nakandakare, E C de Faria, E C R Quintão. HDL-C concentration is related to markers of absorption and of cholesterol synthesis: Study in subjects with low vs. high HDL-C.
Clinica chimica acta; international journal of clinical chemistry.
2011 Jan; 412(1-2):176-80. doi:
10.1016/j.cca.2010.09.039
. [PMID: 20932966] - Juryoun Soh, Dae Young Kwon, Youn-Soo Cha. Hepatic gene expression profiles are altered by dietary unsalted korean fermented soybean (chongkukjang) consumption in mice with diet-induced obesity.
Journal of nutrition and metabolism.
2011; 2011(?):260214. doi:
10.1155/2011/260214
. [PMID: 21437188] - Piia Simonen, Anna Kotronen, Maarit Hallikainen, Ksenia Sevastianova, Janne Makkonen, Antti Hakkarainen, Nina Lundbom, Tatu A Miettinen, Helena Gylling, Hannele Yki-Järvinen. Cholesterol synthesis is increased and absorption decreased in non-alcoholic fatty liver disease independent of obesity.
Journal of hepatology.
2011 Jan; 54(1):153-9. doi:
10.1016/j.jhep.2010.05.037
. [PMID: 20947198] - Mario Orsi, Jonathan W Essex. The ELBA force field for coarse-grain modeling of lipid membranes.
PloS one.
2011; 6(12):e28637. doi:
10.1371/journal.pone.0028637
. [PMID: 22194874] - Hung-Yun Lin, Faith B Davis, Mary K Luidens, Shaker A Mousa, James H Cao, Min Zhou, Paul J Davis. Molecular basis for certain neuroprotective effects of thyroid hormone.
Frontiers in molecular neuroscience.
2011; 4(?):29. doi:
10.3389/fnmol.2011.00029
. [PMID: 22016721] - Lei Wang, Wei Chen, Yun Feng, Yan Ren, Zhennan Gu, Haiqin Chen, Hongchao Wang, Michael J Thomas, Baixi Zhang, Isabelle M Berquin, Yang Li, Jiansheng Wu, Huanxin Zhang, Yuanda Song, Xiang Liu, James S Norris, Suriguga Wang, Peng Du, Junguo Shen, Na Wang, Yanlin Yang, Wei Wang, Lu Feng, Colin Ratledge, Hao Zhang, Yong Q Chen. Genome characterization of the oleaginous fungus Mortierella alpina.
PloS one.
2011; 6(12):e28319. doi:
10.1371/journal.pone.0028319
. [PMID: 22174787] - Cynthia Layse F de Almeida, Heloina de S Falcão, Gedson R de M Lima, Camila de A Montenegro, Narlize S Lira, Petrônio F de Athayde-Filho, Luis C Rodrigues, Maria de Fátima V de Souza, José M Barbosa-Filho, Leônia M Batista. Bioactivities from marine algae of the genus Gracilaria.
International journal of molecular sciences.
2011; 12(7):4550-73. doi:
10.3390/ijms12074550
. [PMID: 21845096] - Rima Kaddurah-Daouk, Rebecca A Baillie, Hongjie Zhu, Zhao-Bang Zeng, Michelle M Wiest, Uyen Thao Nguyen, Katie Wojnoonski, Steven M Watkins, Miles Trupp, Ronald M Krauss. Enteric microbiome metabolites correlate with response to simvastatin treatment.
PloS one.
2011; 6(10):e25482. doi:
10.1371/journal.pone.0025482
. [PMID: 22022402] - Maurice Aknin, Emmanuelle Gros, Jean Vacelet, Yoel Kashman, Anne Gauvin-Bialecki. Sterols from the Madagascar sponge Fascaplysinopsis sp.
Marine drugs.
2010 Dec; 8(12):2961-75. doi:
10.3390/md8122961
. [PMID: 21339959] - Tyler F Daniels, Xiao-Lin Wu, Zengxiang Pan, Jennifer J Michal, Raymond W Wright, Karen M Killinger, Michael D MacNeil, Zhihua Jiang. The reverse cholesterol transport pathway improves understanding of genetic networks for fat deposition and muscle growth in beef cattle.
PloS one.
2010 Dec; 5(12):e15203. doi:
10.1371/journal.pone.0015203
. [PMID: 21151936] - Oriol Gallego, Matthew J Betts, Jelena Gvozdenovic-Jeremic, Kenji Maeda, Christian Matetzki, Carmen Aguilar-Gurrieri, Pedro Beltran-Alvarez, Stefan Bonn, Carlos Fernández-Tornero, Lars Juhl Jensen, Michael Kuhn, Jamie Trott, Vladimir Rybin, Christoph W Müller, Peer Bork, Marko Kaksonen, Robert B Russell, Anne-Claude Gavin. A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae.
Molecular systems biology.
2010 Nov; 6(?):430. doi:
10.1038/msb.2010.87
. [PMID: 21119626] - Evangelia Mourvaki, Raffaella Cardinali, Rita Roberti, Alessandro Dal Bosco, Cesare Castellini. Desmosterol, the main sterol in rabbit semen: distribution among semen subfractions and its role in the in vitro spermatozoa acrosome reaction and motility.
Asian journal of andrology.
2010 Nov; 12(6):862-70. doi:
10.1038/aja.2010.25
. [PMID: 20729867] - Montserrat Serra, Xavier Matabosch, Lee Ying, Gordon Watson, Cedric Shackleton. Hair and skin sterols in normal mice and those with deficient dehydrosterol reductase (DHCR7), the enzyme associated with Smith-Lemli-Opitz syndrome.
The Journal of steroid biochemistry and molecular biology.
2010 Nov; 122(5):318-25. doi:
10.1016/j.jsbmb.2010.08.006
. [PMID: 20804844] - Michel R Hoenig, Philip J Walker, Christine Gurnsey, Karen Beadle, Leslie Johnson. Markers of cholesterol absorption and synthesis predict the low-density lipoprotein cholesterol response to atorvastatin.
Journal of cardiovascular pharmacology.
2010 Oct; 56(4):396-401. doi:
10.1097/fjc.0b013e3181f09bcb
. [PMID: 20625310] - Alexander Y Andreyev, Eoin Fahy, Ziqiang Guan, Samuel Kelly, Xiang Li, Jeffrey G McDonald, Stephen Milne, David Myers, Hyejung Park, Andrea Ryan, Bonne M Thompson, Elaine Wang, Yihua Zhao, H Alex Brown, Alfred H Merrill, Christian R H Raetz, David W Russell, Shankar Subramaniam, Edward A Dennis. Subcellular organelle lipidomics in TLR-4-activated macrophages.
Journal of lipid research.
2010 Sep; 51(9):2785-97. doi:
10.1194/jlr.m008748
. [PMID: 20574076] - Mikko P Pakarinen, Annika Kurvinen, Helena Gylling, Tatu A Miettinen, Maria Pesonen, Markku Kallio, Antti I Koivusalo, Markku J Nissinen. Cholesterol metabolism in pediatric short bowel syndrome after weaning off parenteral nutrition.
Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.
2010 Aug; 42(8):554-9. doi:
10.1016/j.dld.2010.01.003
. [PMID: 20538532] - Heike Kölsch, Reinhard Heun, Frank Jessen, Julius Popp, Frank Hentschel, Wolfgang Maier, Dieter Lütjohann. Alterations of cholesterol precursor levels in Alzheimer's disease.
Biochimica et biophysica acta.
2010 Aug; 1801(8):945-50. doi:
10.1016/j.bbalip.2010.03.001
. [PMID: 20226877] - Michel R Hoenig, Frank W Sellke. Insulin resistance is associated with increased cholesterol synthesis, decreased cholesterol absorption and enhanced lipid response to statin therapy.
Atherosclerosis.
2010 Jul; 211(1):260-5. doi:
10.1016/j.atherosclerosis.2010.02.029
. [PMID: 20356594] - Hector Martinez-Seara, Tomasz Róg, Mikko Karttunen, Ilpo Vattulainen, Ramon Reigada. Cholesterol induces specific spatial and orientational order in cholesterol/phospholipid membranes.
PloS one.
2010 Jun; 5(6):e11162. doi:
10.1371/journal.pone.0011162
. [PMID: 20567600] - M J Nissinen, T E Miettinen, H Gylling, T A Miettinen. Applicability of non-cholesterol sterols in predicting response in cholesterol metabolism to simvastatin and fluvastatin treatment among hypercholesterolemic men.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2010 Jun; 20(5):308-16. doi:
10.1016/j.numecd.2009.04.014
. [PMID: 19695854] - Jussi Pihlajamäki, Sari Grönlund, Marko Simonen, Pirjo Käkelä, Leena Moilanen, Matti Pääkkönen, Elina Pirinen, Marjukka Kolehmainen, Vesa Kärjä, Sakari Kainulainen, Matti Uusitupa, Esko Alhava, Tatu A Miettinen, Helena Gylling. Cholesterol absorption decreases after Roux-en-Y gastric bypass but not after gastric banding.
Metabolism: clinical and experimental.
2010 Jun; 59(6):866-72. doi:
10.1016/j.metabol.2009.10.004
. [PMID: 20015521] - Timo E Strandberg, Helena Gylling, Reijo S Tilvis, Tatu A Miettinen. Serum plant and other noncholesterol sterols, cholesterol metabolism and 22-year mortality among middle-aged men.
Atherosclerosis.
2010 May; 210(1):282-7. doi:
10.1016/j.atherosclerosis.2009.11.007
. [PMID: 19962145] - Dhastagir Sultan Sheriff, Elshaari Farag Ali. Perspective on plasma membrane cholesterol efflux and spermatozoal function.
Journal of human reproductive sciences.
2010 May; 3(2):68-75. doi:
10.4103/0974-1208.69337
. [PMID: 21209749]