1-Kestose (BioDeep_00000000566)

 

Secondary id: BioDeep_00000408196

natural product human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

化学式: C18H32O16 (504.1690272)
中文名称: 1-蔗果三糖, 蔗果三糖, 蔗果三糖
谱图信息: 最多检出来源 Viridiplantae(plant) 0.14%

分子结构信息

SMILES: C(C1C(C(C(C(O1)OC2(C(C(C(O2)CO)O)O)COC3(C(C(C(O3)CO)O)O)CO)O)O)O)O
InChI: InChI=1/C18H32O16/c19-1-6-9(23)12(26)13(27)16(31-6)34-18(15(29)11(25)8(3-21)33-18)5-30-17(4-22)14(28)10(24)7(2-20)32-17/h6-16,19-29H,1-5H2/t6-,7-,8-,9-,10-,11-,12+,13-,14+,15+,16-,17-,18+/m1/s1

描述信息

1-kestose, also known as 1f-beta-D-fructosylsucrose or [beta-D-fru-(2->1)]2-alpha-D-glup, is a member of the class of compounds known as oligosaccharides. Oligosaccharides are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. 1-kestose is soluble (in water) and a very weakly acidic compound (based on its pKa). 1-kestose can be found in a number of food items such as german camomile, nance, amaranth, and european plum, which makes 1-kestose a potential biomarker for the consumption of these food products. 1-kestose can be found primarily in prostate Tissue, as well as in human prostate tissue. Moreover, 1-kestose is found to be associated with prostate cancer.
1-kestose is a trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively.
1-Kestose is a natural product found in Taraxacum lapponicum, Arctium umbrosum, and other organisms with data available.
1-Kestose is a fructooligosaccharide. An oligosaccharide is a saccharide polymer containing a small number (typically three to six) of component sugars, also known as simple sugars. They are generally found either O- or N-linked to compatible amino acid side chains in proteins or to lipid moieties.
A trisaccharide found in vegetables consisting of beta-D-fructofuranose having beta-D-fructofuranosyl and alpha-D-glucopyranosyl residues attached at the 1- and 2-positions respectively.
1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria.
1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as Bifidobacteria.

同义名列表

48 个代谢物同义名

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; (2R,3R,4S,5S,6R)-2-{[(2S,3S,4S,5R)-2-({[(2R,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; O-beta-D-fructofuranosyl-(2->1)-O-beta-D-fructofuranosyl-(2->1)-alpha-D-glucopyranoside; GLUCOPYRANOSIDE, O-.BETA.-D-FRUCTOFURANOSYL-(2->1)-.BETA.-D-FRUCTOFURANOSYL, .ALPHA.-D-; .ALPHA.-D-GLUCOPYRANOSIDE, O-.BETA.-D-FRUCTOFURANOSYL-(2->1)-.BETA.-D-FRUCTOFURANOSYL; O-beta-D-Fructofuranosyl-(2.1)-beta-D-fructofuranosyl-alpha-D-glucopyranoside; O-b-D-Fructofuranosyl-(2->1)-O-b-D-fructofuranosyl-(2->1)-a-D-glucopyranoside; O-Β-D-fructofuranosyl-(2->1)-O-β-D-fructofuranosyl-(2->1)-α-D-glucopyranoside; beta-D-fructofuranosyl-(2->1)-beta-D-fructofuranosyl alpha-D-glucopyranoside; alpha-D-Glucopyranoside, beta-D-fructofuranosyl, mono-D-fructofuranoside; ALPHA-D-FRUCTOFURANOSYL-ALPHA-D-FRUCTOFURANOSYL-ALPHA-D-GLUCOPYRANOSIDE; b-D-Fructofuranosyl-(2->1)-b-D-fructofuranosyl a-D-glucopyranoside; Β-D-fructofuranosyl-(2->1)-β-D-fructofuranosyl α-D-glucopyranoside; WURCS=2.0/2,3,2/[a2122h-1a_1-5][ha122h-2b_2-5]/1-2-2/a1-b2_b1-c2; beta-D-Fruf-(2->1)-beta-D-Fruf-(2->1)-alpha-D-Glup; beta-D-Fru-(2->1)-beta-D-Fru-(2->1)-alpha-D-Glup; Β-D-fru-(2->1)-β-D-fru-(2->1)-α-D-glup; b-D-Fru-(2->1)-b-D-fru-(2->1)-a-D-glup; 1F-(beta-D-fructofuranosyl)sucrose; [beta-D-Fru-(2->1)]2-alpha-D-Glup; 1-Kestose, analytical standard; 1(F)-beta-D-fructosylsucrose; 1F-.BETA.-D-FRUCTOSYLSUCROSE; 1F-beta-D-Fructosylsucrose; [Β-D-fru-(2->1)]2-α-D-glup; [b-D-Fru-(2->1)]2-a-D-glup; 1(F)-Β-D-fructosylsucrose; 1(F)-b-D-Fructosylsucrose; 1F-b-D-Fructosylsucrose; 1F-Β-D-fructosylsucrose; Sucrose, O-D-fructosyl-; O-D-Fructosylsucrose; 1-FRUCTOSYLSUCROSE; UNII-02LN7O412C; 1-kestotriose; Kestose, 1-; 02LN7O412C; 1-Kestose; Panose; 2aez; GF-2; GF2; DQR; (2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-2-[[(2R,3S,4S,5R)-3,4-dihydroxy-2, 5-bis(hydroxymethyl)oxolan-2-yl]oxymethyl]-3, 4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-6-(hydroxymethyl)oxane-3,4, 5-triol; Α-D-fructofuranosyl-Α-D-fructofuranosyl-Α-D-glucopyranoside; β-D-Fruf-(2->1)-β-D-Fruf-(2->1)-α-D-Glup; 1F-β-D-Fructosylsucrose; SCHEMBL21219517



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(1)

代谢反应

301 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(0)

Plant Reactome(220)

INOH(0)

PlantCyc(78)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

25 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Enrique R Pérez, Duniesky Martínez, Carmen Menéndez, Dubiel Alfonso, Iván Rodríguez, Luis E Trujillo, Alina Sobrino, Ricardo Ramírez, Eulogio Pimentel, Lázaro Hernández. Fructooligosaccharides production by immobilized Pichia pastoris cells expressing Schedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase. Journal of industrial microbiology & biotechnology. 2021 Jul; 48(5-6):. doi: 10.1093/jimb/kuab036. [PMID: 34137896]
  • Silin Wu, Steffen Greiner, Chongjian Ma, Jiaxin Zhong, Xiaojia Huang, Thomas Rausch, Hongbo Zhao. A Fructan Exohydrolase from Maize Degrades Both Inulin and Levan and Co-Exists with 1-Kestotriose in Maize. International journal of molecular sciences. 2021 May; 22(10):. doi: 10.3390/ijms22105149. [PMID: 34068004]
  • Teranart Udomsopagit, Akiho Miwa, Manami Seki, Emiko Shimbori, Yoshihiro Kadota, Takumi Tochio, Kei Sonoyama. Intestinal microbiota transplantation reveals the role of microbiota in dietary regulation of RegIIIβ and RegIIIγ expression in mouse intestine. Biochemical and biophysical research communications. 2020 08; 529(1):64-69. doi: 10.1016/j.bbrc.2020.05.150. [PMID: 32560820]
  • Mikako Shinohara, Masaharu Kiyosue, Takumi Tochio, Seiji Kimura, Yasuhiro Koga. Activation of butyrate-producing bacteria as well as bifidobacteria in the cat intestinal microbiota by the administration of 1-kestose, the smallest component of fructo-oligosaccharide. The Journal of veterinary medical science. 2020 Jul; 82(7):866-874. doi: 10.1292/jvms.19-0640. [PMID: 32389951]
  • Akihito Endo, Katsuaki Hirano, Riichi Ose, Shintaro Maeno, Takumi Tochio. Impact of kestose supplementation on the healthy adult microbiota in in vitro fecal batch cultures. Anaerobe. 2020 Feb; 61(?):102076. doi: 10.1016/j.anaerobe.2019.102076. [PMID: 31326442]
  • Ha-Jung Kim, Seung-Hwa Lee, Han-Na Go, Jae-Rin Ahn, Hye-Jung Kim, Soo-Jong Hong. Effects of kestose on gut mucosal immunity in an atopic dermatitis mouse model. Journal of dermatological science. 2018 Jan; 89(1):27-32. doi: 10.1016/j.jdermsci.2017.10.006. [PMID: 29111180]
  • Takumi Tochio, Yasuyuki Kitaura, Saki Nakamura, Chie Sugawa, Motoki Takahashi, Akihito Endo, Yoshiharu Shimomura. An Alteration in the Cecal Microbiota Composition by Feeding of 1-Kestose Results in a Marked Increase in the Cecal Butyrate Content in Rats. PloS one. 2016; 11(11):e0166850. doi: 10.1371/journal.pone.0166850. [PMID: 27861621]
  • Shinji Jinno, Yoshitaka Nakamura, Masashi Nagata, Takeshi Takahashi. 1-Kestose consumption during pregnancy and lactation increases the levels of IgA in the milk of lactating mice. Bioscience, biotechnology, and biochemistry. 2014; 78(5):861-6. doi: 10.1080/09168451.2014.905179. [PMID: 25035990]
  • V F Oliveira, E A Silva, L B P Zaidan, M A M Carvalho. Effects of elevated CO2 concentration and water deficit on fructan metabolism in Viguiera discolor Baker. Plant biology (Stuttgart, Germany). 2013 May; 15(3):471-82. doi: 10.1111/j.1438-8677.2012.00654.x. [PMID: 22882384]
  • Zhen-Yuan Zhu, Hong-Yu Lian, Chuan-Ling Si, Yang Liu, Nian Liu, Jing Chen, Li-Na Ding, Qiang Yao, Yongmin Zhang. The chromatographic analysis of oligosaccharides and preparation of 1-kestose and nystose in yacon. International journal of food sciences and nutrition. 2012 May; 63(3):338-42. doi: 10.3109/09637486.2011.627847. [PMID: 22013906]
  • Willem Lammens, Katrien Le Roy, Shuguang Yuan, Rudy Vergauwen, Anja Rabijns, André Van Laere, Sergei V Strelkov, Wim Van den Ende. Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. The Plant journal : for cell and molecular biology. 2012 Apr; 70(2):205-19. doi: 10.1111/j.1365-313x.2011.04858.x. [PMID: 22098191]
  • K H Jung, S H Bang, T K Oh, H J Park. Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor. Biotechnology letters. 2011 Aug; 33(8):1621-4. doi: 10.1007/s10529-011-0606-8. [PMID: 21479630]
  • Yousef Gholipour, Silvana L Giudicessi, Hiroshi Nonami, Rosa Erra-Balsells. Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Analytical chemistry. 2010 Jul; 82(13):5518-26. doi: 10.1021/ac1003129. [PMID: 20518509]
  • Julia Hofmann, Abd El Naser El Ashry, Shahbaz Anwar, Alexander Erban, Joachim Kopka, Florian Grundler. Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. The Plant journal : for cell and molecular biology. 2010 Jun; 62(6):1058-71. doi: 10.1111/j.1365-313x.2010.04217.x. [PMID: 20374527]
  • R Shibata, M Kimura, H Takahashi, K Mikami, Y Aiba, H Takeda, Y Koga. Clinical effects of kestose, a prebiotic oligosaccharide, on the treatment of atopic dermatitis in infants. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2009 Sep; 39(9):1397-403. doi: 10.1111/j.1365-2222.2009.03295.x. [PMID: 19508323]
  • Dolores Linde, Isabel Macias, Lucía Fernández-Arrojo, Francisco J Plou, Antonio Jiménez, María Fernández-Lobato. Molecular and biochemical characterization of a beta-fructofuranosidase from Xanthophyllomyces dendrorhous. Applied and environmental microbiology. 2009 Feb; 75(4):1065-73. doi: 10.1128/aem.02061-08. [PMID: 19088319]
  • Katrien Le Roy, Willem Lammens, Maureen Verhaest, Barbara De Coninck, Anja Rabijns, André Van Laere, Wim Van den Ende. Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase. Plant physiology. 2007 Nov; 145(3):616-25. doi: 10.1104/pp.107.105049. [PMID: 17873089]
  • Maureen Verhaest, Willem Lammens, Katrien Le Roy, Camiel J De Ranter, André Van Laere, Anja Rabijns, Wim Van den Ende. Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. The New phytologist. 2007; 174(1):90-100. doi: 10.1111/j.1469-8137.2007.01988.x. [PMID: 17335500]
  • Xuemei Ji, Wim Van den Ende, Lindsey Schroeven, Stefan Clerens, Koen Geuten, Shihua Cheng, John Bennett. The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. The New phytologist. 2007; 173(1):50-62. doi: 10.1111/j.1469-8137.2006.01896.x. [PMID: 17176393]
  • Gareth S Catchpole, Manfred Beckmann, David P Enot, Madhav Mondhe, Britta Zywicki, Janet Taylor, Nigel Hardy, Aileen Smith, Ross D King, Douglas B Kell, Oliver Fiehn, John Draper. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proceedings of the National Academy of Sciences of the United States of America. 2005 Oct; 102(40):14458-62. doi: 10.1073/pnas.0503955102. [PMID: 16186495]
  • Denise Altenbach, Eveline Nüesch, Tita Ritsema, Thomas Boller, Andres Wiemken. Mutational analysis of the active center of plant fructosyltransferases: Festuca 1-SST and barley 6-SFT. FEBS letters. 2005 Aug; 579(21):4647-53. doi: 10.1016/j.febslet.2005.07.034. [PMID: 16098522]
  • Tita Ritsema, Auke Verhaar, Irma Vijin, Sjef Smeekens. Fructosyltransferase mutants specify a function for the beta-fructosidase motif of the sucrose-binding box in specifying the fructan type synthesized. Plant molecular biology. 2004 Apr; 54(6):853-63. doi: 10.1007/s11103-004-0276-1. [PMID: 15604656]
  • Rudy Vergauwen, André Van Laere, Wim Van den Ende. Properties of fructan:fructan 1-fructosyltransferases from chicory and globe thistle, two Asteracean plants storing greatly different types of inulin. Plant physiology. 2003 Sep; 133(1):391-401. doi: 10.1104/pp.103.026807. [PMID: 12970504]
  • N Druart, J De Roover, W Van den Ende, P Goupil, A Van Laere, S Rambour. Sucrose assimilation during early developmental stages of chicory (Cichorium intybus L.) plants. Planta. 2001 Feb; 212(3):436-43. doi: 10.1007/s004250000414. [PMID: 11289609]
  • E M Hellwege, D Gritscher, L Willmitzer, A G Heyer. Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs. The Plant journal : for cell and molecular biology. 1997 Nov; 12(5):1057-65. doi: 10.1046/j.1365-313x.1997.12051057.x. [PMID: 9418047]
  • A Ohta, S Baba, M Ohtsuki, A Taguchi, T Adachi. Prevention of coprophagy modifies magnesium absorption in rats fed with fructo-oligosaccharides. The British journal of nutrition. 1996 May; 75(5):775-84. doi: 10.1079/bjn19960181. [PMID: 8695604]
  • D M Obenland, U Simmen, T Boller, A Wiemken. Purification and characterization of three soluble invertases from barley (Hordeum vulgare L.) leaves. Plant physiology. 1993 Apr; 101(4):1331-9. doi: 10.1104/pp.101.4.1331. [PMID: 8310063]
  • A De Bruyn, J Van Loo. The identification by 1H- and 13C-n.m.r. spectroscopy of sucrose, 1-kestose, and neokestose in mixtures present in plant extracts. Carbohydrate research. 1991 Apr; 211(1):131-6. doi: 10.1016/0008-6215(91)84151-4. [PMID: 1663421]
  • J J Berberich, R V Andrews, G E Folk. Effects of cold exposure on urinary catecholamines in arctic lemmings. Comparative biochemistry and physiology. C: Comparative pharmacology. 1977; 58(2C):133-5. doi: 10.1016/0306-4492(77)90093-4. [PMID: 23926]