Apiole (BioDeep_00000008088)
Secondary id: BioDeep_00000422669
human metabolite natural product
代谢物信息卡片
化学式: C12H14O4 (222.0892)
中文名称: 阿片碱
谱图信息:
最多检出来源 Homo sapiens(not specific) 8.33%
分子结构信息
SMILES: C=CCc1cc(c2c(c1OC)OCO2)OC
InChI: InChI=1S/C12H14O4/c1-4-5-8-6-9(13-2)11-12(10(8)14-3)16-7-15-11/h4,6H,1,5,7H2,2-3H3
描述信息
Apiole is found in dill. Apiole occurs in Sassafras albidum (sassafras) and Anethum graveolens (dill) Apiol is an organic chemical compound, also known as parsley apiol, apiole or parsley camphor. It is found in celery, parsley seeds, and the essential oil of parsley. Heinrich Christoph Link, an apothecary in Leipzig, discovered the substance in 1715 as greenish crystals reduced by steam from oil of parsley. In 1855 Joret and Homolle discovered that apiol was an effective treatment of amenorrea or lack of menstruation. In medicine it has been used, as essential oil or in purified form, for the treatment of menstrual disorders. It is an irritant and in high doses it is toxic and can cause liver and kidney damage.
Occurs in Sassafras albidum (sassafras) and Anethum graveolens (dill)
同义名列表
21 个代谢物同义名
4,7-dimethoxy-5-(prop-2-en-1-yl)-2H-1,3-benzodioxole; 4,7-Dimethoxy-5-(2-propenyl)-1,3-benzodioxole, 9ci; 1-Allyl-2,5-dimethoxy-3,4-(methylenedioxy)-benzene; 1-Allyl-2,5-dimethoxy-3, 4-(methylenedioxy)benzene; 1-Allyl-2,5-dimethoxy-3,4-(methylenedioxy)benzene; 4,7-Dimethoxy-5-(2-propen-1-yl)-1,3-benzodioxole; 1-Allyl-2,5-dimethoxy-3,4-methylenedioxybenzene; 4,7-Dimethoxy-5-(2-propenyl)-1,3-benzodioxole; 5-Allyl-4,7-dimethoxy-1,3-benzodioxole; 5-Allyl-4,7-dimethoxy-1,3-benzodioxol; Petersiliencampher; Camphre de persil; Apiole (parsley); Parsley camphor; Parsley apiole; Parsley apiol; Apioline; Apiole; Apiol; Apiole; Apiole
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:70353
- KEGG: C10429
- PubChem: 10659
- HMDB: HMDB0033776
- Metlin: METLIN43823
- ChEMBL: CHEMBL1560118
- Wikipedia: Apiole
- KNApSAcK: C00002714
- foodb: FDB011929
- chemspider: 21106259
- CAS: 523-80-8
- PMhub: MS000021633
- PubChem: 12614
- 3DMET: B03837
- NIKKAJI: J6.635D
- RefMet: Apiole
- KNApSAcK: 70353
- LOTUS: LTS0153514
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
118 个相关的物种来源信息
- 52323 - Anisotome: LTS0153514
- 4037 - Apiaceae: LTS0153514
- 4044 - Apium: LTS0153514
- 4045 - Apium graveolens: 10.1007/BF01959202
- 4045 - Apium graveolens: LTS0153514
- 4056 - Apocynaceae: LTS0153514
- 16727 - Aristolochiaceae: LTS0153514
- 6656 - Arthropoda: LTS0153514
- 16728 - Asarum: 10.1515/ZNC-1984-7-803
- 16728 - Asarum: LTS0153514
- 76105 - Asarum gelasinum: 10.1515/ZNC-1984-7-803
- 54797 - Asarum hayatanum: 10.1515/ZNC-1984-7-803
- 1155271 - Asarum hypogynum: 10.1515/ZNC-1984-7-803
- 1155271 - Asarum hypogynum: LTS0153514
- 1155275 - Asarum okinawense: 10.1515/ZNC-1984-7-803
- 1155275 - Asarum okinawense: LTS0153514
- 2066497 - Asarum petelotii: 10.1007/S10600-019-02696-6
- 2066497 - Asarum petelotii: LTS0153514
- 1155280 - Asarum yaeyamense: 10.1515/ZNC-1984-7-803
- 1155280 - Asarum yaeyamense: LTS0153514
- 4210 - Asteraceae: LTS0153514
- 43722 - Brucea: LTS0153514
- 210348 - Brucea javanica: 10.1080/10412905.1994.9698344
- 210348 - Brucea javanica: LTS0153514
- 41547 - Chuquiraga: LTS0153514
- 171766 - Chuquiraga spinosa: 10.1002/(SICI)1099-1026(199607)11:4<215::AID-FFJ574>3.0.CO;2-L
- 171766 - Chuquiraga spinosa: LTS0153514
- 126747 - Cynanchum: LTS0153514
- 4038 - Daucus: LTS0153514
- 4039 - Daucus carota: 10.1002/CBDV.201300390
- 4039 - Daucus carota: LTS0153514
- 13482 - Degeneria: LTS0153514
- 13483 - Degeneria vitiensis: 10.1016/0305-1978(92)90061-H
- 13483 - Degeneria vitiensis: LTS0153514
- 22298 - Degeneriaceae: LTS0153514
- 2874 - Dictyotaceae: LTS0153514
- 695564 - Erebidae: LTS0153514
- 4345 - Ericaceae: LTS0153514
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0153514
- 586115 - Gaultheria mucronata: 10.1055/S-2007-969372
- 9606 - Homo sapiens: -
- 50557 - Insecta: LTS0153514
- 4136 - Lamiaceae: LTS0153514
- 3433 - Lauraceae: LTS0153514
- 4004 - Linaceae: LTS0153514
- 4005 - Linum: LTS0153514
- 3398 - Magnoliopsida: LTS0153514
- 2592283 - Mespilodaphne cymbarum: 10.1016/0031-9422(88)83069-3
- 33208 - Metazoa: LTS0153514
- 516064 - Mosla: LTS0153514
- 2006539 - Mosla cavaleriei: 10.1080/10412905.1995.9698478
- 2006539 - Mosla cavaleriei: LTS0153514
- 555479 - Nigella sativa: 10.1515/ZNC-2003-9-1004
- 681555 - Niphogeton: LTS0153514
- 1128155 - Niphogeton dissecta: 10.5962/BHL.TITLE.133485
- 1128155 - Niphogeton dissecta: LTS0153514
- 39173 - Ocimum: LTS0153514
- 204144 - Ocimum gratissimum: LTS0153514
- 204145 - Ocimum gratissimum var. gratissimum: 10.1021/NP50047A042
- 204145 - Ocimum gratissimum var. gratissimum: LTS0153514
- 63801 - Ocotea: LTS0153514
- 48043 - Oenanthe: LTS0153514
- 49556 - Oenanthe javanica: 10.1271/BBB.59.526
- 49556 - Oenanthe javanica: LTS0153514
- 13196 - Peperomia: LTS0153514
- 352190 - Peperomia pellucida: 10.1007/BF02857191
- 352190 - Peperomia pellucida: LTS0153514
- 56047 - Pernettya: LTS0153514
- 4042 - Petroselinum: LTS0153514
- 4043 - Petroselinum crispum:
- 4043 - Petroselinum crispum: LTS0153514
- 663597 - Petroselinum crispum: 10.1007/978-1-4615-4913-0_8
- 663597 - Petroselinum crispum: 10.1016/0031-9422(92)83455-8
- 663597 - Petroselinum crispum: 10.1016/S0031-9422(00)80682-2
- 663597 - Petroselinum crispum: 10.1248/CPB.48.1039
- 2870 - Phaeophyceae: LTS0153514
- 40958 - Pimpinella: LTS0153514
- 13215 - Piper: LTS0153514
- 130377 - Piper aduncum:
- 538232 - Piper artanthe: 10.1007/S10600-010-9703-5
- 538232 - Piper artanthe: LTS0153514
- 538264 - Piper eucalyptifolium:
- 247692 - Piper marginatum:
- 247692 - Piper marginatum: 10.1016/S0031-9422(98)00100-9
- 247692 - Piper marginatum: LTS0153514
- 126644 - Piper mullesua: 10.1016/S0031-9422(98)00208-8
- 126644 - Piper mullesua: LTS0153514
- 1427529 - Piper regnellii:
- 1427529 - Piper regnellii: 10.1016/S0031-9422(99)00177-6
- 1427529 - Piper regnellii: LTS0153514
- 2138340 - Piper schmidtii: 10.1016/S0031-9422(00)95012-X
- 2138340 - Piper schmidtii: LTS0153514
- 538350 - Piper solmsianum:
- 538350 - Piper solmsianum: 10.1016/S0031-9422(00)00295-8
- 538350 - Piper solmsianum: LTS0153514
- 16739 - Piperaceae: LTS0153514
- 46944 - Sassafras: LTS0153514
- 46945 - Sassafras albidum:
- 46945 - Sassafras albidum: 10.1016/S0031-9422(00)97480-6
- 46945 - Sassafras albidum: 10.1055/S-2006-959379
- 46945 - Sassafras albidum: LTS0153514
- 23808 - Simaroubaceae: LTS0153514
- 157006 - Spatoglossum: LTS0153514
- 35493 - Streptophyta: LTS0153514
- 99535 - Todaroa: LTS0153514
- 99536 - Todaroa aurea:
- 99536 - Todaroa aurea: 10.1016/0031-9422(91)83500-K
- 99536 - Todaroa aurea: 10.1016/0305-1978(88)90078-6
- 99536 - Todaroa aurea: LTS0153514
- 58023 - Tracheophyta: LTS0153514
- 63501 - Vincetoxicum: LTS0153514
- 141524 - Vincetoxicum hirundinaria: LTS0153514
- 2591842 - Vincetoxicum hirundinaria subsp. hirundinaria: 10.1016/S0367-326X(99)00023-4
- 2591842 - Vincetoxicum hirundinaria subsp. hirundinaria: LTS0153514
- 33090 - Viridiplantae: LTS0153514
- 336856 - Zingiber montanum:
- 857215 - Zingiber purpureum:
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Takao Koeduka, Bunta Watanabe, Konomi Shirahama, Masaru Nakayasu, Shiro Suzuki, Takumi Furuta, Hideyuki Suzuki, Kenji Matsui, Tomoyuki Kosaka, Shin-Ichi Ozaki. Biosynthesis of dillapiole/apiole in dill (Anethum graveolens): characterization of regioselective phenylpropene O-methyltransferase.
The Plant journal : for cell and molecular biology.
2023 02; 113(3):562-575. doi:
10.1111/tpj.16068
. [PMID: 36534115] - Alexander V Samet, Oksana G Shevchenko, Vyacheslav V Rusak, Eduard M Chartov, Andrey B Myshlyavtsev, Daniil A Rusanov, Marina N Semenova, Victor V Semenov. Antioxidant Activity of Natural Allylpolyalkoxybenzene Plant Essential Oil Constituents.
Journal of natural products.
2019 Jun; ?(?):. doi:
10.1021/acs.jnatprod.8b00878
. [PMID: 31244145] - Abdalmajeed M Alajlouni, Amer J Al-Malahmeh, Sebastiaan Wesseling, Marina Kalli, Jacques Vervoort, Ivonne M C M Rietjens. Risk assessment of combined exposure to alkenylbenzenes through consumption of plant food supplements containing parsley and dill.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2017 Dec; 34(12):2201-2211. doi:
10.1080/19440049.2017.1338837
. [PMID: 28580843] - Anderson M Gaia, Lydia F Yamaguchi, Christopher S Jeffrey, Massuo J Kato. Age-dependent changes from allylphenol to prenylated benzoic acid production in Piper gaudichaudianum Kunth.
Phytochemistry.
2014 Oct; 106(?):86-93. doi:
10.1016/j.phytochem.2014.06.013
. [PMID: 25041698] - Po-Li Wei, Shih-Hsin Tu, Hsiu-Man Lien, Li-Ching Chen, Ching-Shyang Chen, Chih-Hsiung Wu, Ching-Shui Huang, Hui-Wen Chang, Chien-Hsi Chang, How Tseng, Yuan-Soon Ho. The in vivo antitumor effects on human COLO 205 cancer cells of the 4,7-dimethoxy-5-(2-propen-1-yl)-1,3-benzodioxole (apiole) derivative of 5-substituted 4,7-dimethoxy-5-methyl-l,3-benzodioxole (SY-1) isolated from the fruiting body of Antrodia camphorate.
Journal of cancer research and therapeutics.
2012 Oct; 8(4):532-6. doi:
10.4103/0973-1482.106529
. [PMID: 23361270] - Jie Liang, Baokang Huang, Guowei Wang. Chemical composition, antinociceptive and anti-inflammatory properties of essential oil from the roots of Illicium lanceolatum.
Natural product research.
2012; 26(18):1712-4. doi:
10.1080/14786419.2011.603318
. [PMID: 21999530] - Jun Tian, Xiaoquan Ban, Hong Zeng, Jingsheng He, Yuxin Chen, Youwei Wang. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus.
PloS one.
2012; 7(1):e30147. doi:
10.1371/journal.pone.0030147
. [PMID: 22272289] - Ha Yun Song, Ji Yeon Yang, Joo Won Suh, Hoi Seon Lee. Acaricidal activities of apiol and its derivatives from Petroselinum sativum seeds against Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Tyrophagus putrescentiae.
Journal of agricultural and food chemistry.
2011 Jul; 59(14):7759-64. doi:
10.1021/jf201945y
. [PMID: 21688847] - Vita Di Stefano, Rosa Pitonzo, Domenico Schillaci. Antimicrobial and antiproliferative activity of Athamanta sicula L. (Apiaceae).
Pharmacognosy magazine.
2011 Jan; 7(25):31-4. doi:
10.4103/0973-1296.75893
. [PMID: 21472076] - Victor V Semenov, Alex S Kiselyov, Ilia Y Titov, Irina K Sagamanova, Natalie N Ikizalp, Natalia B Chernysheva, Dmitry V Tsyganov, Leonid D Konyushkin, Sergei I Firgang, Roman V Semenov, Irina B Karmanova, Mikhail M Raihstat, Marina N Semenova. Synthesis of antimitotic polyalkoxyphenyl derivatives of combretastatin using plant allylpolyalkoxybenzenes.
Journal of natural products.
2010 Nov; 73(11):1796-802. doi:
10.1021/np1004278
. [PMID: 21049975] - Mahesh Ramalingam, Park Yong-Ki. Free radical scavenging activities of Cnidium officinale Makino and Ligusticum chuanxiong Hort. methanolic extracts.
Pharmacognosy magazine.
2010 Oct; 6(24):323-30. doi:
10.4103/0973-1296.71794
. [PMID: 21120037] - Susana Johann, Patricia Silva Cisalpino, Gisele Almeida Watanabe, Betania Barros Cota, Ezequias Pessoa de Siqueira, Moacir Geraldo Pizzolatti, Carlos Leomar Zani, Maria Aparecida de Resende. Antifungal activity of extracts of some plants used in Brazilian traditional medicine against the pathogenic fungus Paracoccidioides brasiliensis.
Pharmaceutical biology.
2010 Apr; 48(4):388-96. doi:
10.3109/13880200903150385
. [PMID: 20645716] - Marina N Semenova, Dmitry V Tsyganov, Alexandr P Yakubov, Alexandr S Kiselyov, Victor V Semenov. A synthetic derivative of plant allylpolyalkoxybenzenes induces selective loss of motile cilia in sea urchin embryos.
ACS chemical biology.
2008 Feb; 3(2):95-100. doi:
10.1021/cb700163q
. [PMID: 18278850] - Kumudini M Meepagala, Weste Osbrink, George Sturtz, Alan Lax. Plant-derived natural products exhibiting activity against formosan subterranean termites (Coptotermes formosanus).
Pest management science.
2006 Jun; 62(6):565-70. doi:
10.1002/ps.1214
. [PMID: 16625680] - Fereshteh Eftekhar, Morteza Yousefzadi, Dina Azizian, Ali Sonboli, Peyman Salehi. Essential oil composition and antimicrobial activity of Diplotaenia damavandica.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2005 Nov; 60(11-12):821-5. doi:
10.1515/znc-2005-11-1202
. [PMID: 16402540] - Kumudini M Meepagala, George Sturtz, David E Wedge, Kevin K Schrader, Stephen O Duke. Phytotoxic and antifungal compounds from two Apiaceae species, Lomatium californicum and Ligusticum hultenii, rich sources of Z-ligustilide and apiol, respectively.
Journal of chemical ecology.
2005 Jul; 31(7):1567-78. doi:
10.1007/s10886-005-5798-8
. [PMID: 16222793] - Abdel-Fattah A Khalaf. Toxicological efficacy of some indigenous dill compounds against the flesh fly, Parasarcophaga dux Thomson.
Journal of the Egyptian Society of Parasitology.
2004 Apr; 34(1):227-37. doi:
. [PMID: 15125529]
- Abdel-Fattah A Khalaf. Enzyme activity in the flesh fly Parasarcophaga dux Thomson influenced by dill compounds, myristicin and apiol.
Journal of the Egyptian Society of Parasitology.
2004 Apr; 34(1):255-64. doi:
. [PMID: 15125531]
- M Ozcan, A Akgül, K H Başcr, T Ozck, N Tabanca. Essential oil composition of sea fennel (Crithmum maritimum) form Turkey.
Die Nahrung.
2001 Oct; 45(5):353-6. doi:
10.1002/1521-3803(20011001)45:5<353::aid-food353>3.0.co;2-4
. [PMID: 11715349] - M MUMOLO. [ON A CASE OF ACUTE AND FATAL POISONING CAUSED BY APIOL].
Recenti progressi in medicina.
1964 Feb; 36(?):139-51. doi:
NULL
. [PMID: 14160811]