Prostaglandin E3 (BioDeep_00000006152)

 

Secondary id: BioDeep_00000175281, BioDeep_00000629542

human metabolite Endogenous blood metabolite


代谢物信息卡片


(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]hept-5-enoic acid

化学式: C20H30O5 (350.2093)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 19.09%

分子结构信息

SMILES: CC/C=C\C[C@@H](/C=C/[C@@H]1[C@@H](C/C=C\CCCC(=O)O)C(=O)C[C@H]1O)O
InChI: InChI=1S/C20H30O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h3-4,6-7,12-13,15-17,19,21,23H,2,5,8-11,14H2,1H3,(H,24,25)/b6-3-,7-4-,13-12+/t15-,16+,17+,19+/m0/s1

描述信息

Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Prostaglandin E3 is from the cyclooxygenase metabolism of eicosapentaenoic acid.

同义名列表

19 个代谢物同义名

(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-5-oxocyclopentyl]hept-5-enoic acid; 7-[3-Hydroxy-2-(3-hydroxy-1,5-octadienyl)-5-oxocyclopentyl]-5-heptenoic acid stereoisomer; (5Z,11alpha,13E,15S,17Z)-11,15-Dihydroxy-9-oxoprosta-5,13,17-trien-1-Oic acid; 7-[3-Hydroxy-2-(3-hydroxy-1,5-octadienyl)-5-oxocyclopentyl]-5-heptenoic acid; (5Z,11a,13E,15S,17Z)-11,15-Dihydroxy-9-oxoprosta-5,13,17-trien-1-Oic acid; (5Z,11Α,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-Oic acid; (5Z,11alpha,13E,15S,17Z)-11,15-Dihydroxy-9-oxoprosta-5,13,17-trien-1-Oate; 7-[3-Hydroxy-2-(3-hydroxy-1,5-octadienyl)-5-oxocyclopentyl]-5-heptenoate; (5Z,11Α,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-Oate; (5Z,11a,13E,15S,17Z)-11,15-Dihydroxy-9-oxoprosta-5,13,17-trien-1-Oate; 9-oxo-11R,15S-dihydroxy-5Z,13E,17Z-prostatrienoic acid; 9-oxo-11R,15S-Dihydroxy-5Z,13E,17Z-prostatrienoate; delta(17)-Prostaglandin e1; (-)-Prostaglandin e3; Prostaglandin E3; delta(17)-PGE1; FT-0632966; PGE3; Prostaglandin E3



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 CTNNB1, PTGS1, PTGS2, SLCO2A1
Peripheral membrane protein 3 AP1S2, PTGS1, PTGS2
Endoplasmic reticulum membrane 3 PTGES, PTGS1, PTGS2
Nucleus 1 CTNNB1
cytosol 2 AP1S2, CTNNB1
centrosome 1 CTNNB1
nucleoplasm 1 CTNNB1
Cell membrane 7 CTNNB1, CYSLTR2, PTGER4, SLCO1B1, SLCO2A1, SLCO2B1, TNF
Cytoplasmic side 1 AP1S2
lamellipodium 1 CTNNB1
Multi-pass membrane protein 8 ABCC4, CYSLTR2, PTGER4, PTGES, SLC22A6, SLCO1B1, SLCO2A1, SLCO2B1
Synapse 1 CTNNB1
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 1 TNF
glutamatergic synapse 1 CTNNB1
Golgi apparatus 3 ABCC4, AP1S2, PTGS1
Golgi membrane 1 AP1S2
lysosomal membrane 1 AP1S2
neuronal cell body 1 TNF
presynaptic membrane 1 CTNNB1
Lysosome 1 SLCO2A1
plasma membrane 11 ABCC4, CTNNB1, CYSLTR2, IFNLR1, KNG1, PTGER4, SLC22A6, SLCO1B1, SLCO2A1, SLCO2B1, TNF
Membrane 9 ABCC4, CTNNB1, IFNLR1, PTGER4, PTGES, SLC22A6, SLCO1B1, SLCO2A1, SLCO2B1
apical plasma membrane 2 ABCC4, SLCO2B1
basolateral plasma membrane 6 ABCC4, CTNNB1, SLC22A6, SLCO1B1, SLCO2A1, SLCO2B1
caveola 2 PTGS2, SLC22A6
extracellular exosome 4 CTNNB1, KNG1, PTGS1, SLC22A6
endoplasmic reticulum 1 PTGS2
extracellular space 6 IL10, IL2, IL4, IL6, KNG1, TNF
perinuclear region of cytoplasm 2 CTNNB1, PTGES
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
protein-containing complex 3 CTNNB1, PTGS2, SLC22A6
intracellular membrane-bounded organelle 2 AP1S2, PTGS1
Microsome membrane 2 PTGS1, PTGS2
Single-pass type I membrane protein 1 IFNLR1
Secreted 5 IL10, IL2, IL4, IL6, SPAG11B
extracellular region 7 IL10, IL2, IL4, IL6, KNG1, SPAG11B, TNF
transcription regulator complex 1 CTNNB1
photoreceptor outer segment 1 PTGS1
external side of plasma membrane 1 TNF
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
nucleolus 1 ABCC4
Wnt signalosome 1 CTNNB1
Early endosome 1 AP1S2
Membrane, clathrin-coated pit 1 AP1S2
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
clathrin-coated pit 1 AP1S2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 CTNNB1
Apical cell membrane 2 ABCC4, SLCO2B1
Cytoplasm, perinuclear region 1 PTGES
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 1 CTNNB1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
collagen-containing extracellular matrix 1 KNG1
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 2 PTGS1, PTGS2
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Secreted, extracellular space 1 KNG1
spindle pole 1 CTNNB1
blood microparticle 1 KNG1
postsynaptic density, intracellular component 1 CTNNB1
Basolateral cell membrane 4 ABCC4, SLC22A6, SLCO1B1, SLCO2B1
microvillus membrane 1 CTNNB1
Endomembrane system 3 AP1S2, CTNNB1, PTGS1
Cytoplasmic vesicle membrane 1 AP1S2
euchromatin 1 CTNNB1
basal plasma membrane 4 SLC22A6, SLCO1B1, SLCO2A1, SLCO2B1
trans-Golgi network membrane 1 AP1S2
platelet dense granule membrane 1 ABCC4
endoplasmic reticulum lumen 3 IL6, KNG1, PTGS2
platelet alpha granule lumen 1 KNG1
beta-catenin-TCF complex 1 CTNNB1
nuclear envelope lumen 1 PTGES
presynaptic active zone cytoplasmic component 1 CTNNB1
Basal cell membrane 4 SLC22A6, SLCO1B1, SLCO2A1, SLCO2B1
protein-DNA complex 1 CTNNB1
external side of apical plasma membrane 1 ABCC4
AP-type membrane coat adaptor complex 1 AP1S2
membrane coat 1 AP1S2
AP-1 adaptor complex 1 AP1S2
catenin complex 1 CTNNB1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Heeju Lee, Bora Lee, Yeonhee Kim, Sohyun Min, Eunjoo Yang, Seungmin Lee. Effects of Sodium Selenite Injection on Serum Metabolic Profiles in Women Diagnosed with Breast Cancer-Related Lymphedema-Secondary Analysis of a Randomized Placebo-Controlled Trial Using Global Metabolomics. Nutrients. 2021 Sep; 13(9):. doi: 10.3390/nu13093253. [PMID: 34579131]
  • Jiaomei Li, Zhaohong Zheng, Min Liu, Yiping Ren, Yue Ruan, Duo Li. Relationship between the n-3 index, serum metabolites and breast cancer risk. Food & function. 2021 Sep; 12(17):7741-7748. doi: 10.1039/d1fo01245b. [PMID: 34296713]
  • Jing Cui, Kai Shan, Qin Yang, Yumin Qi, Hongyan Qu, Jiaqi Li, Rong Wang, Lingling Jia, Wei Chen, Ninghan Feng, Yong Q Chen. Prostaglandin E3 attenuates macrophage-associated inflammation and prostate tumour growth by modulating polarization. Journal of cellular and molecular medicine. 2021 06; 25(12):5586-5601. doi: 10.1111/jcmm.16570. [PMID: 33982835]
  • Jenny T Mao, Bingye Xue, Sili Fan, Patricia Neis, Clifford Qualls, Larry Massie, Oliver Fiehn. Leucoselect Phytosome Modulates Serum Eicosapentaenoic Acid, Docosahexaenoic Acid, and Prostaglandin E3 in a Phase I Lung Cancer Chemoprevention Study. Cancer prevention research (Philadelphia, Pa.). 2021 06; 14(6):619-626. doi: 10.1158/1940-6207.capr-20-0585. [PMID: 33707173]
  • Tomoka Gose, Takeo Nakanishi, Shunsuke Kamo, Hiroaki Shimada, Katsumasa Otake, Ikumi Tamai. Prostaglandin transporter (OATP2A1/SLCO2A1) contributes to local disposition of eicosapentaenoic acid-derived PGE3. Prostaglandins & other lipid mediators. 2016 Jan; 122(?):10-7. doi: 10.1016/j.prostaglandins.2015.12.003. [PMID: 26692285]
  • Elisabeth Holen, Juyun He, Marit Espe, Liqiou Chen, Pedro Araujo. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro. Fish & shellfish immunology. 2015 Aug; 45(2):695-703. doi: 10.1016/j.fsi.2015.05.017. [PMID: 26003739]
  • S D Upadhaya, J C Kim, B P Mullan, J R Pluske, I H Kim. Vitamin E and omega-3 fatty acids independently attenuate plasma concentrations of proinflammatory cytokines and prostaglandin E3 in Escherichia coli lipopolysaccharide-challenged growing-finishing pigs. Journal of animal science. 2015 Jun; 93(6):2926-34. doi: 10.2527/jas.2014-8330. [PMID: 26115279]
  • Zora Djuric, D Kim Turgeon, Jianwei Ren, Andrew Neilson, Missy Plegue, Ian G Waters, Alexander Chan, Leah M Askew, Mack T Ruffin, Ananda Sen, Dean E Brenner. Effects of a Mediterranean Diet Intervention on Anti- and Pro-Inflammatory Eicosanoids, Epithelial Proliferation, and Nuclear Morphology in Biopsies of Normal Colon Tissue. Nutrition and cancer. 2015; 67(5):721-9. doi: 10.1080/01635581.2015.1029637. [PMID: 25869112]
  • Suzanne M Pilkington, Lesley E Rhodes, Naser M I Al-Aasswad, Karen A Massey, Anna Nicolaou. Impact of EPA ingestion on COX- and LOX-mediated eicosanoid synthesis in skin with and without a pro-inflammatory UVR challenge--report of a randomised controlled study in humans. Molecular nutrition & food research. 2014 Mar; 58(3):580-90. doi: 10.1002/mnfr.201300405. [PMID: 24311515]
  • Nobuaki Tanaka, Hiroaki Yamaguchi, Nariyasu Mano. Transport of eicosapentaenoic acid-derived PGE₃, PGF(3α), and TXB₃ by ABCC4. PloS one. 2014; 9(10):e109270. doi: 10.1371/journal.pone.0109270. [PMID: 25275481]
  • Miriam Furne, Elisabeth Holen, Pedro Araujo, Kai Kristoffer Lie, Mari Moren. Cytokine gene expression and prostaglandin production in head kidney leukocytes isolated from Atlantic cod (Gadus morhua) added different levels of arachidonic acid and eicosapentaenoic acid. Fish & shellfish immunology. 2013 Mar; 34(3):770-7. doi: 10.1016/j.fsi.2012.11.044. [PMID: 23291252]
  • David A Pirman, Ekem Efuet, Xiao-Ping Ding, Yong Pan, Lin Tan, Susan M Fischer, Raymond N DuBois, Peiying Yang. Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry. PloS one. 2013; 8(4):e61379. doi: 10.1371/journal.pone.0061379. [PMID: 23658609]
  • Fernando Norambuena, Simon Mackenzie, J Gordon Bell, Agnès Callol, Alicia Estévez, Neil Duncan. Prostaglandin (F and E, 2- and 3-series) production and cyclooxygenase (COX-2) gene expression of wild and cultured broodstock of Senegalese sole (Solea senegalensis). General and comparative endocrinology. 2012 Jun; 177(2):256-62. doi: 10.1016/j.ygcen.2012.04.009. [PMID: 22543191]
  • Qiwei Yang, Li Yang, Aizhen Xiong, Lan Lu, Rui Wang, Zhengtao Wang. [Metabolomics study of anti-inflammatory action of Radix Paeoniae Rubra and Radix Paeoniae Alba by ultraperformance liquid chromatography-mass spectrometry]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Mar; 36(6):694-7. doi: ". [PMID: 21710730]
  • David M Aronoff, Casey Lewis, Carlos H Serezani, Kathryn A Eaton, Deepti Goel, John C Phipps, Marc Peters-Golden, Peter Mancuso. E-prostanoid 3 receptor deletion improves pulmonary host defense and protects mice from death in severe Streptococcus pneumoniae infection. Journal of immunology (Baltimore, Md. : 1950). 2009 Aug; 183(4):2642-9. doi: 10.4049/jimmunol.0900129. [PMID: 19635910]
  • Takahiro Shimizu, Kunihiko Yokotani. Effects of centrally administered prostaglandin E(3) and thromboxane A(3) on plasma noradrenaline and adrenaline in rats: comparison with prostaglandin E(2) and thromboxane A(2). European journal of pharmacology. 2009 Jun; 611(1-3):30-4. doi: 10.1016/j.ejphar.2009.03.057. [PMID: 19344706]
  • Melissa Szymczak, Michael Murray, Nenad Petrovic. Modulation of angiogenesis by omega-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood. 2008 Apr; 111(7):3514-21. doi: 10.1182/blood-2007-08-109934. [PMID: 18216296]
  • Akifumi Hagi, Mitsuo Nakayama, Yutaka Miura, Kazumi Yagasaki. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture. Nutrition (Burbank, Los Angeles County, Calif.). 2007 Nov; 23(11-12):871-7. doi: 10.1016/j.nut.2007.08.017. [PMID: 17936197]
  • M M Sailaja Devi, U N Das. Effect of prostaglandins against alloxan-induced diabetes mellitus. Prostaglandins, leukotrienes, and essential fatty acids. 2006 Jan; 74(1):39-60. doi: 10.1016/j.plefa.2005.09.003. [PMID: 16297610]
  • Peiying Yang, Diana Chan, Edward Felix, Carrie Cartwright, David G Menter, Timothy Madden, Russell D Klein, Susan M Fischer, Robert A Newman. Formation and antiproliferative effect of prostaglandin E(3) from eicosapentaenoic acid in human lung cancer cells. Journal of lipid research. 2004 Jun; 45(6):1030-9. doi: 10.1194/jlr.m300455-jlr200. [PMID: 14993240]
  • Suparat Khamdang, Michio Takeda, Rie Noshiro, Shinichi Narikawa, Atsushi Enomoto, Naohiko Anzai, Pawinee Piyachaturawat, Hitoshi Endou. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. The Journal of pharmacology and experimental therapeutics. 2002 Nov; 303(2):534-9. doi: 10.1124/jpet.102.037580. [PMID: 12388633]
  • K Takeuchi, N Takahashi, T Kato, T Abe, Y Taniyama, E Tsutsumi, O Ito, K Nakagawara, K Abe. Functional analysis and chromosomal gene assignment of rat kidney prostaglandin EP3 receptor. Kidney international. Supplement. 1996 Jun; 55(?):S183-6. doi: NULL. [PMID: 8743550]
  • R F Parrott, S V Vellucci. Effects of centrally administered prostaglandin EP receptor agonists on febrile and adrenocortical responses in the prepubertal pig. Brain research bulletin. 1996; 41(2):97-103. doi: 10.1016/0361-9230(96)00156-6. [PMID: 8879673]
  • L G Raisz, C B Alander, H A Simmons. Effects of prostaglandin E3 and eicosapentaenoic acid on rat bone in organ culture. Prostaglandins. 1989 May; 37(5):615-25. doi: 10.1016/0090-6980(89)90076-2. [PMID: 2544927]
  • S Fischer, C von Schacky, H Schweer. Prostaglandins E3 and F3 alpha are excreted in human urine after ingestion of n - 3 polyunsaturated fatty acids. Biochimica et biophysica acta. 1988 Dec; 963(3):501-8. doi: 10.1016/0005-2760(88)90318-9. [PMID: 3196747]
  • A Ferretti, V P Flanagan, V B Reeves. Occurrence of prostaglandin E3 in human urine as a result of marine oil ingestion: gas chromatographic-mass spectrometric evidence. Biochimica et biophysica acta. 1988 Apr; 959(3):262-8. doi: 10.1016/0005-2760(88)90199-3. [PMID: 3162687]
  • G A Kivits, D H Nugteren. The urinary excretion of prostaglandins E and their corresponding tetranor metabolites by rats fed a diet rich in eicosapentaenoate. Biochimica et biophysica acta. 1988 Feb; 958(2):289-99. doi: 10.1016/0005-2760(88)90187-7. [PMID: 2827784]
  • A A Attallah. Lack of effect of verapamil on urinary prostaglandin E2 excretion in the rabbit. European journal of pharmacology. 1986 Dec; 132(1):57-9. doi: 10.1016/0014-2999(86)90009-9. [PMID: 3816965]
  • U Diczfalusy, M Hamberg. Identification of the major urinary metabolite of prostaglandin E3 in the rat. Biochimica et biophysica acta. 1986 Oct; 878(3):387-93. doi: 10.1016/0005-2760(86)90247-x. [PMID: 3756200]
  • L S Gallon, U O Barcelli. Measurement of prostaglandin E3 and other eicosanoids in biologic samples using high pressure liquid chromatography and radioimmunoassay. Prostaglandins. 1986 Feb; 31(2):217-25. doi: 10.1016/0090-6980(86)90048-1. [PMID: 3961201]
  • J D Prickett, D E Trentham, D R Robinson. Dietary fish oil augments the induction of arthritis in rats immunized with type II collagen. Journal of immunology (Baltimore, Md. : 1950). 1984 Feb; 132(2):725-9. doi: NULL. [PMID: 6581227]
  • H S Hansen, B Jensen. Urinary prostaglandin E2 and vasopressin excretion in essential fatty acid-deficient rats: effect of linolenic acid supplementation. Lipids. 1983 Oct; 18(10):682-90. doi: 10.1007/bf02534534. [PMID: 6318006]
  • A Ferretti, N W Schoene, V P Flanagan. Identification and quantification of prostaglandin E3 in renal medullary tissue of three strains of rats fed fish oil. Lipids. 1981 Nov; 16(11):800-4. doi: 10.1007/bf02535032. [PMID: 7311739]