3-(Dimethylaminomethyl)indole (BioDeep_00000000168)

 

Secondary id: BioDeep_00000406540, BioDeep_00000863273

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


InChI=1/C11H14N2/c1-13(2)8-9-7-12-11-6-4-3-5-10(9)11/h3-7,12H,8H2,1-2H

化学式: C11H14N2 (174.1157)
中文名称: 禾草碱, 芦竹碱
谱图信息: 最多检出来源 Viridiplantae(plant) 14.62%

分子结构信息

SMILES: CN(C)CC1=CNC2=C1C=CC=C2
InChI: InChI=1S/C11H14N2/c1-13(2)8-9-7-12-11-6-4-3-5-10(9)11/h3-7,12H,8H2,1-2H3

描述信息

3-(Dimethylaminomethyl)indole, also known as donaxin or (1H-indol-3-ylmethyl)dimethylamine, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. An aminoalkylindole that is indole carrying a dimethylaminomethyl substituent at postion 3. 3-(Dimethylaminomethyl)indole has been detected, but not quantified, in several different foods, such as barley, brassicas, cereals and cereal products, common wheats, and lupines. This could make 3-(dimethylaminomethyl)indole a potential biomarker for the consumption of these foods.
Gramine is an aminoalkylindole that is indole carrying a dimethylaminomethyl substituent at postion 3. It has a role as a plant metabolite, a serotonergic antagonist, an antiviral agent and an antibacterial agent. It is an aminoalkylindole, an indole alkaloid and a tertiary amino compound. It is a conjugate base of a gramine(1+).
Gramine is a natural product found in Desmanthus illinoensis, Lupinus arbustus, and other organisms with data available.
Isolated from cabbage and barley shoots. 3-(Dimethylaminomethyl)indole is found in many foods, some of which are cereals and cereal products, brassicas, common wheat, and barley.
An aminoalkylindole that is indole carrying a dimethylaminomethyl substituent at postion 3.
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 14
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 37
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 44
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 22
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 58
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 29
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 7
KEIO_ID G041
Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].
Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].
Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].

同义名列表

60 个代谢物同义名

InChI=1/C11H14N2/c1-13(2)8-9-7-12-11-6-4-3-5-10(9)11/h3-7,12H,8H2,1-2H; 4,5,6,7-TETRAHYDRO-THIAZOLO[5,4-C]PYRIDINEHYDROCHLORIDESALT; 3-Dimethylaminomethylindole;3-(DIMETHYLAMINOMETHYL)INDOLE; 1-(1H-indol-3-yl)-N,N-dimethyl-methanamine; N,N-Dimethyl-1H-indole-3-methanamine, 9CI; 1-(1H-indol-3-yl)-N,N-dimethylmethanamine; 1H-Indol-3-yl-N,N-dimethylmethanamine #; (1H-indol-3-yl)-N,N-dimethylmethanamine; 1H-Indole-3-methanamine, N,N-dimethyl-; 1H-Indol-3-yl-N,N-dimethylmethanamine; [(1H-indol-3-yl)methyl]dimethylamine; (1H-Indol-3-ylmethyl)-dimethyl-amine; N,N-Dimethyl-1H-indole-3-methanamine; N,N-Dimethyl-1H-indole-3-methylamine; (1H-Indol-3-ylmethyl)-dimethylamine; 3-Dimethylaminomethylindol (gramin); INDOLE, 3-((DIMETHYLAMINO)METHYL)-; Indole, 3-[(dimethylamino)methyl]-; (1H-indol-3-ylmethyl)dimethylamine; .BETA.-(DIMETHYLAMINOMETHYL)INDOLE; 3-(N,N-Dimethylaminomethyl)indole; 3-((Dimethylamino)methyl)-Indole; 3-[(Dimethylamino)methyl]-Indole; beta-(Dimethylaminomethyl)indole; .beta.-Dimethylaminomethylindole; 3-[(Dimethylamino)methyl]indole; beta -dimethylaminomethylindole; (Indol-3-ylmethyl)dimethylamine; 3-((DIMETHYLAMINO)METHYL)INDOLE; beta-Dimethylaminomethylindole; 3-[Dimethylaminomethyl]indole; b-(Dimethylaminomethyl)indole; 3-(dimethylaminomethyl)indole; Indol-3-ylmethyldimethylamine; b-Dimethylaminomethylindole; Β-dimethylaminomethylindole; Indolalkylamine der.; WLN: T56 BMJ D1N1&1; Prestwick2_000629; Prestwick1_000629; Prestwick3_000629; Prestwick0_000629; Donaxine;Gramine; UNII-FGQ8A78L14; BPBio1_000658; Gramine, 99\\%; Oprea1_150946; GRAMINE [MI]; CAS-87-52-5; IDI1_007926; FGQ8A78L14; AI3-52146; C11H14N2; Donaxine; Doranine; Gramine; Donaxin; Gramin; Gramine; Gramine



数据库引用编号

61 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

26 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 ANG, APAF1, CASP9, CAT, HPGDS, LPO, MAPK14, MTOR, PIK3CA, PTGS2, SMAD2, SMAD4, SMAD7, STAT3
Peripheral membrane protein 4 CYP1B1, HSD17B6, MTOR, PTGS2
Endoplasmic reticulum membrane 3 CYP1B1, MTOR, PTGS2
Nucleus 12 ANG, APAF1, CASP9, MAPK14, MTOR, PARP1, RUNX1, SMAD2, SMAD4, SMAD7, STAT3, TGFBR1
cytosol 13 ANG, APAF1, CASP9, CAT, HPGDS, MAPK14, MTOR, PARP1, PIK3CA, SMAD2, SMAD4, SMAD7, STAT3
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 1 MTOR
centrosome 2 SMAD4, SMAD7
nucleoplasm 9 HPGDS, MAPK14, MTOR, PARP1, RUNX1, SMAD2, SMAD4, SMAD7, STAT3
RNA polymerase II transcription regulator complex 2 SMAD4, STAT3
Cell membrane 2 SCN2A, TGFBR1
Cytoplasmic side 1 MTOR
lamellipodium 1 PIK3CA
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 SCN2A
Golgi apparatus membrane 1 MTOR
cell surface 1 TGFBR1
glutamatergic synapse 2 MAPK14, SCN2A
Golgi membrane 1 MTOR
growth cone 1 ANG
lysosomal membrane 1 MTOR
neuronal cell body 1 ANG
presynaptic membrane 1 SCN2A
Cytoplasm, cytosol 1 PARP1
Lysosome 1 MTOR
endosome 1 TGFBR1
plasma membrane 5 PIK3CA, SCN2A, SMAD7, STAT3, TGFBR1
Membrane 8 APAF1, CAT, CYP1B1, MTOR, PARP1, SCN2A, SMAD2, TGFBR1
axon 1 SCN2A
basolateral plasma membrane 1 LPO
caveola 1 PTGS2
extracellular exosome 3 APAF1, CAT, LPO
Lysosome membrane 1 MTOR
Lumenal side 1 HSD17B6
endoplasmic reticulum 2 HSD17B6, PTGS2
extracellular space 2 ANG, LPO
perinuclear region of cytoplasm 1 PIK3CA
Cell junction, tight junction 1 TGFBR1
bicellular tight junction 1 TGFBR1
intercalated disc 2 PIK3CA, SCN2A
mitochondrion 5 CASP9, CAT, CYP1B1, MAPK14, PARP1
protein-containing complex 7 APAF1, CASP9, CAT, PARP1, PTGS2, SMAD2, SMAD7
intracellular membrane-bounded organelle 5 CAT, CYP1B1, HPGDS, HSD17B6, RUNX1
Microsome membrane 4 CYP1B1, HSD17B6, MTOR, PTGS2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TGFBR1
Secreted 2 ANG, LPO
extracellular region 5 ANG, APAF1, CAT, LPO, MAPK14
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
mitochondrial matrix 1 CAT
transcription regulator complex 4 PARP1, SMAD2, SMAD4, STAT3
actin cytoskeleton 1 ANG
T-tubule 1 SCN2A
nucleolus 2 ANG, PARP1
Membrane raft 1 TGFBR1
focal adhesion 1 CAT
Peroxisome 1 CAT
basement membrane 1 ANG
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 TGFBR1
neuron projection 1 PTGS2
chromatin 6 PARP1, RUNX1, SMAD2, SMAD4, SMAD7, STAT3
Chromosome 2 ANG, PARP1
Nucleus, nucleolus 2 ANG, PARP1
spindle pole 1 MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
site of double-strand break 1 PARP1
fibrillar center 1 SMAD7
nuclear envelope 2 MTOR, PARP1
Endomembrane system 1 MTOR
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
ficolin-1-rich granule lumen 3 APAF1, CAT, MAPK14
secretory granule lumen 3 APAF1, CAT, MAPK14
endoplasmic reticulum lumen 1 PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
node of Ranvier 1 SCN2A
paranode region of axon 1 SCN2A
apoptosome 2 APAF1, CASP9
heteromeric SMAD protein complex 3 SMAD2, SMAD4, SMAD7
SMAD protein complex 2 SMAD2, SMAD4
protein-DNA complex 1 PARP1
Cytoplasmic vesicle, phagosome 1 MTOR
voltage-gated sodium channel complex 1 SCN2A
site of DNA damage 1 PARP1
activin responsive factor complex 2 SMAD2, SMAD4
angiogenin-PRI complex 1 ANG
catalase complex 1 CAT
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
activin receptor complex 1 TGFBR1
transforming growth factor beta ligand-receptor complex 1 TGFBR1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
core-binding factor complex 1 RUNX1
homomeric SMAD protein complex 1 SMAD2


文献列表

  • Sara Leite Dias, Ling Chuang, Shenyu Liu, Benedikt Seligmann, Fabian L Brendel, Benjamin G Chavez, Robert E Hoffie, Iris Hoffie, Jochen Kumlehn, Arne Bültemeier, Johanna Wolf, Marco Herde, Claus-Peter Witte, John C D'Auria, Jakob Franke. Biosynthesis of the allelopathic alkaloid gramine in barley by a cryptic oxidative rearrangement. Science (New York, N.Y.). 2024 Mar; 383(6690):1448-1454. doi: 10.1126/science.adk6112. [PMID: 38547266]
  • Erika Ishikawa, Shion Kanai, Akihisa Shinozawa, Mami Hyakutake, Masayuki Sue. Hordeum vulgare CYP76M57 catalyzes C2 shortening of tryptophan side chain by C-N bond rearrangement in gramine biosynthesis. The Plant journal : for cell and molecular biology. 2024 Jan; ?(?):. doi: 10.1111/tpj.16644. [PMID: 38281119]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Aidang Lu, Tienan Wang, Hao Hui, Xiaoye Wei, Weihao Cui, Chunlv Zhou, Hongyan Li, Ziwen Wang, Jincheng Guo, Dejun Ma, Qingmin Wang. Natural Products for Drug Discovery: Discovery of Gramines as Novel Agents against a Plant Virus. Journal of agricultural and food chemistry. 2019 Feb; 67(8):2148-2156. doi: 10.1021/acs.jafc.8b06859. [PMID: 30730738]
  • Simon Lebecque, Jean-Marc Crowet, Laurence Lins, Benjamin M Delory, Patrick du Jardin, Marie-Laure Fauconnier, Magali Deleu. Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane. Scientific reports. 2018 06; 8(1):9784. doi: 10.1038/s41598-018-28040-6. [PMID: 29955111]
  • Manash Pratim Pathak, Rudragoud S Policegoudra, Danswrang Goyary, Aparoop Das, Santa Mandal, Srijita Chakraborti, Nilutpal Sharma Bora, Johirul Islam, Pompy Patowary, P Srinivas Raju, Pronobesh Chattopadhyay. Safety evaluation of an oat grain alkaloid gramine by genotoxicity assays. Drug and chemical toxicology. 2018 Apr; 41(2):147-154. doi: 10.1080/01480545.2017.1322605. [PMID: 28523965]
  • Reynaldo Patiño, Rakib H Rashel, Amede Rubio, Scott Longing. Growth-suppressing and algicidal properties of an extract from Arundo donax, an invasive riparian plant, against Prymnesium parvum, an invasive harmful alga. Harmful algae. 2018 01; 71(?):1-9. doi: 10.1016/j.hal.2017.11.005. [PMID: 29306391]
  • Naoki Ube, Miho Nishizaka, Tsuyoshi Ichiyanagi, Kotomi Ueno, Shin Taketa, Atsushi Ishihara. Evolutionary changes in defensive specialized metabolism in the genus Hordeum. Phytochemistry. 2017 Sep; 141(?):1-10. doi: 10.1016/j.phytochem.2017.05.004. [PMID: 28535420]
  • Xiu-Juan Yin, Xiao-Yan Huang, Yun-Bao Ma, Chang-An Geng, Tian-Ze Li, Xing-Long Chen, Tong-Hua Yang, Jun Zhou, Xue-Mei Zhang, Ji-Jun Chen. Bioactivity-guided synthesis of gramine derivatives as new MT1 and 5-HT1A receptors agonists. Journal of Asian natural products research. 2017 Jun; 19(6):610-622. doi: 10.1080/10286020.2017.1323885. [PMID: 28480745]
  • Yu Kokubo, Miho Nishizaka, Naoki Ube, Yukinori Yabuta, Shin-Ichi Tebayashi, Kotomi Ueno, Shin Taketa, Atsushi Ishihara. Distribution of the tryptophan pathway-derived defensive secondary metabolites gramine and benzoxazinones in Poaceae. Bioscience, biotechnology, and biochemistry. 2017 Mar; 81(3):431-440. doi: 10.1080/09168451.2016.1256758. [PMID: 27854190]
  • Piotr Luliński, Dorota Klejn, Dorota Maciejewska. Synthesis and characterization of imprinted sorbent for separation of gramine from bovine serum albumin. Materials science & engineering. C, Materials for biological applications. 2016 Aug; 65(?):400-7. doi: 10.1016/j.msec.2016.04.051. [PMID: 27157767]
  • Denny Popp, Hauke Harms, Heike Sträuber. The alkaloid gramine in the anaerobic digestion process-inhibition and adaptation of the methanogenic community. Applied microbiology and biotechnology. 2016 Aug; 100(16):7311-22. doi: 10.1007/s00253-016-7571-z. [PMID: 27138201]
  • Pauline Laue, Hanno Bährs, Shumon Chakrabarti, Christian E W Steinberg. Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine. Chemosphere. 2014 Jun; 104(?):212-20. doi: 10.1016/j.chemosphere.2013.11.029. [PMID: 24332729]
  • Maoxin Zhang, Tingting Fang, Guilin Pu, Xiaoqin Sun, Xuguo Zhou, Qingnian Cai. Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Pesticide biochemistry and physiology. 2013 Sep; 107(1):44-9. doi: 10.1016/j.pestbp.2013.05.002. [PMID: 25149234]
  • Xiao-Qin Sun, Mao-Xin Zhang, Jing-Ya Yu, Yu Jin, Bing Ling, Jin-Ping Du, Gui-Hua Li, Qing-Ming Qin, Qing-Nian Cai. Glutathione S-transferase of brown planthoppers (Nilaparvata lugens) is essential for their adaptation to gramine-containing host plants. PloS one. 2013; 8(5):e64026. doi: 10.1371/journal.pone.0064026. [PMID: 23700450]
  • Jacob Owens, Frederick D Provenza, Randall D Wiedmeier, Juan J Villalba. Influence of saponins and tannins on intake and nutrient digestion of alkaloid-containing foods. Journal of the science of food and agriculture. 2012 Aug; 92(11):2373-8. doi: 10.1002/jsfa.5643. [PMID: 22430569]
  • S Kirsten, S Siersleben, W Knogge. A GFP-based assay to quantify the impact of effectors on the ex planta development of the slowly growing barley pathogen Rhynchosporium commune. Mycologia. 2011 Sep; 103(5):1019-27. doi: 10.3852/10-306. [PMID: 21498556]
  • Karl J Schreiber, Charles G Nasmith, Ghislaine Allard, Jasbir Singh, Rajagopal Subramaniam, Darrell Desveaux. Found in translation: high-throughput chemical screening in Arabidopsis thaliana identifies small molecules that reduce Fusarium head blight disease in wheat. Molecular plant-microbe interactions : MPMI. 2011 Jun; 24(6):640-8. doi: 10.1094/mpmi-09-10-0210. [PMID: 21303209]
  • Annika Spies, Viktor Korzun, Rosemary Bayles, Jeyaraman Rajaraman, Axel Himmelbach, Pete E Hedley, Patrick Schweizer. Allele mining in barley genetic resources reveals genes of race-non-specific powdery mildew resistance. Frontiers in plant science. 2011; 2(?):113. doi: 10.3389/fpls.2011.00113. [PMID: 22629270]
  • Kristina A E Larsson, Sefiu A Saheed, Therese Gradin, Gabriele Delp, Barbara Karpinska, Christiaan E J Botha, Lisbeth M V Jonsson. Differential regulation of 3-aminomethylindole/N-methyl-3-aminomethylindole N-methyltransferase and gramine in barley by both biotic and abiotic stress conditions. Plant physiology and biochemistry : PPB. 2011 Jan; 49(1):96-102. doi: 10.1016/j.plaphy.2010.10.005. [PMID: 21074448]
  • Jun Cheul Ahn, Dae-Won Kim, Young Nim You, Min Sook Seok, Jeong Mee Park, Hyunsik Hwang, Beom-Gi Kim, Sheng Luan, Hong-Seog Park, Hye Sun Cho. Classification of rice (Oryza sativa L. Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC plant biology. 2010 Nov; 10(?):253. doi: 10.1186/1471-2229-10-253. [PMID: 21087465]
  • Quan-You Yu, Cheng Lu, Wen-Le Li, Zhong-Huai Xiang, Ze Zhang. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori. BMC genomics. 2009 Nov; 10(?):553. doi: 10.1186/1471-2164-10-553. [PMID: 19930670]
  • Qing-Nian Cai, Ying Han, Ya-Zhong Cao, Yuan Hu, Xin Zhao, Jian-Long Bi. Detoxification of gramine by the cereal aphid Sitobion avenae. Journal of chemical ecology. 2009 Mar; 35(3):320-5. doi: 10.1007/s10886-009-9603-y. [PMID: 19224277]
  • Yu Hong, Hong-Ying Hu, Xing Xie, Akiyoshi Sakoda, Masaki Sagehashi, Feng-Min Li. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquatic toxicology (Amsterdam, Netherlands). 2009 Feb; 91(3):262-9. doi: 10.1016/j.aquatox.2008.11.014. [PMID: 19131120]
  • Daniel J Kliebenstein. A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PloS one. 2008 Mar; 3(3):e1838. doi: 10.1371/journal.pone.0001838. [PMID: 18350173]
  • Lili Zhou, Andrew A Hopkins, David V Huhman, Lloyd W Sumner. Efficient and sensitive method for quantitative analysis of alkaloids in hardinggrass (Phalaris aquatica L.). Journal of agricultural and food chemistry. 2006 Dec; 54(25):9287-91. doi: 10.1021/jf061819k. [PMID: 17147408]
  • Kristina A E Larsson, Ingvor Zetterlund, Gabriele Delp, Lisbeth M V Jonsson. N-Methyltransferase involved in gramine biosynthesis in barley: cloning and characterization. Phytochemistry. 2006 Sep; 67(18):2002-8. doi: 10.1016/j.phytochem.2006.06.036. [PMID: 16930646]
  • Sebastian Grün, Monika Frey, Alfons Gierl. Evolution of the indole alkaloid biosynthesis in the genus Hordeum: distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri. Phytochemistry. 2005 Jun; 66(11):1264-72. doi: 10.1016/j.phytochem.2005.01.024. [PMID: 15907959]
  • Ramón Aguiar, Michael Wink. Do naïve ruminants degrade alkaloids in the rumen?. Journal of chemical ecology. 2005 Apr; 31(4):761-87. doi: 10.1007/s10886-005-3543-y. [PMID: 16124250]
  • P Mayser, A Töws, H-J Krämer, R Weiss. Further characterization of pigment-producing Malassezia strains. Mycoses. 2004 Feb; 47(1-2):34-9. doi: 10.1046/j.1439-0507.2003.00957.x. [PMID: 14998397]
  • Richard E Staub, Leonard F Bjeldanes. Convenient synthesis of 5,6,11,12,17,18- hexahydrocyclononal[1,2-b:4,5-b':7,8-b'']triindole, a novel phytoestrogen. The Journal of organic chemistry. 2003 Jan; 68(1):167-9. doi: 10.1021/jo020415y. [PMID: 12515475]
  • H Matsuo, K Taniguchi, T Hiramoto, T Yamada, Y Ichinose, K Toyoda, K Takeda, T Shiraishi. Gramine increase associated with rapid and transient systemic resistance in barley seedlings induced by mechanical and biological stresses. Plant & cell physiology. 2001 Oct; 42(10):1103-11. doi: 10.1093/pcp/pce139. [PMID: 11673626]
  • B Pastuszewska, S Smulikowska, J Wasilewko, L Buraczewska, A Ochtabińska, A Mieczkowska, R Lechowski, W Bielecki. Response of animals to dietary gramine. I. Performance and selected hematological, biochemical and histological parameters in growing chicken, rats and pigs. Archiv fur Tierernahrung. 2001; 55(1):1-16. doi: 10.1080/17450390109386178. [PMID: 11901976]
  • B Pastuszewska, A Ochtabińska, R Lechowski. Response of animals to dietary gramine. II. Effects of feeding high-gramine yellow lupin seeds on reproductive performance of rats and on selected hematological and biochemical parameters in offspring. Archiv fur Tierernahrung. 2001; 55(1):17-24. doi: 10.1080/17450390109386179. [PMID: 11901977]
  • E L Barker, K R Moore, F Rakhshan, R D Blakely. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999 Jun; 19(12):4705-17. doi: . [PMID: 10366604]
  • E L Hautala, J K Holopainen. Gramine and free amino acids as indicators of fluoride-induced stress in barley and its consequences to insect herbivory. Ecotoxicology and environmental safety. 1995 Aug; 31(3):238-45. doi: 10.1006/eesa.1995.1069. [PMID: 7498062]
  • C A Bourke, M J Carrigan, R J Dixon. Experimental evidence that tryptamine alkaloids do not cause Phalaris aquatica sudden death syndrome in sheep. Australian veterinary journal. 1988 Jul; 65(7):218-20. doi: 10.1111/j.1751-0813.1988.tb14462.x. [PMID: 3421887]
  • H M Niemeyer, O A Roveri. Effects of gramine on energy metabolism of rat and bovine mitochondria. Biochemical pharmacology. 1984 Oct; 33(19):2973-9. doi: 10.1016/0006-2952(84)90596-3. [PMID: 6487350]
  • M F Goelz, H Rothenbacher, J P Wiggins, W A Kendall, T V Hershberger. Some hematological and histopathological effects of the alkaloids gramine and hordenine on meadow voles (Microtus pennsylvanicus). Toxicology. 1980; 18(2):125-31. doi: 10.1016/0300-483x(80)90075-x. [PMID: 7020159]
  • V E TYLER. The ontogenesis of gramine in barley seedlings. Journal of the American Pharmaceutical Association. American Pharmaceutical Association. 1958 Feb; 47(2):97-8. doi: 10.1002/jps.3030470207. [PMID: 13502198]