Punicic acid (BioDeep_00000264843)

Main id: BioDeep_00000000717

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


cis-9, trans-11, cis-13-octadecatrienoic acid

化学式: C18H30O2 (278.2246)
中文名称: (Z,E,Z)-9,11,13-十八碳三烯酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(=C\C=C/CCCC)/C=C\CCCCCCCC(=O)O
InChI: InChI=1S/C18H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h5-10H,2-4,11-17H2,1H3,(H,19,20)/b6-5-,8-7+,10-9-



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ADIG, AKT1, CASP3, CAT, CTNNB1, CXCR4, HTT, PPARG, VEGFA
Endosome membrane 1 HTT
Endoplasmic reticulum membrane 1 SCD
Nucleus 11 ADIG, AKT1, CASP3, CTNNB1, GABPA, HTT, KLK3, PPARA, PPARG, PPARGC1A, VEGFA
autophagosome 1 HTT
cytosol 8 AKT1, CASP3, CAT, CTNNB1, HTT, PPARG, PPARGC1A, SLC2A4
dendrite 1 HTT
trans-Golgi network 1 SLC2A4
centrosome 1 CTNNB1
nucleoplasm 8 AKT1, CASP3, CTNNB1, GABPA, HTT, PPARA, PPARG, PPARGC1A
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 7 AKT1, CTNNB1, CXCR4, FNDC5, HTT, SLC2A4, TNF
lamellipodium 2 AKT1, CTNNB1
Multi-pass membrane protein 4 CXCR4, HTT, SCD, SLC2A4
Synapse 2 CTNNB1, HTT
cell cortex 2 AKT1, CTNNB1
cell junction 2 CTNNB1, CXCR4
cell surface 3 CXCR4, TNF, VEGFA
glutamatergic synapse 3 AKT1, CASP3, CTNNB1
Golgi apparatus 2 HTT, VEGFA
Golgi membrane 1 INS
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
presynaptic membrane 2 CTNNB1, HTT
sarcolemma 1 SLC2A4
Lysosome 1 CXCR4
Presynapse 1 SLC2A4
plasma membrane 8 AKT1, CTNNB1, CXCR4, FNDC5, HTT, KLK3, SLC2A4, TNF
Membrane 9 ADIG, AKT1, CAT, CTNNB1, CXCR4, FNDC5, SCD, SLC2A4, VEGFA
axon 1 HTT
basolateral plasma membrane 1 CTNNB1
extracellular exosome 5 CAT, CTNNB1, CXCR4, KLK3, SLC2A4
endoplasmic reticulum 4 FNDC5, HTT, SCD, VEGFA
extracellular space 6 CXCL8, IL6, INS, KLK3, TNF, VEGFA
perinuclear region of cytoplasm 4 CTNNB1, HTT, PPARG, SLC2A4
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 2 CTNNB1, VEGFA
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
mitochondrion 1 CAT
protein-containing complex 6 AKT1, CAT, CTNNB1, CXCR4, HTT, KLK3
intracellular membrane-bounded organelle 2 CAT, PPARG
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 FNDC5
Secreted 6 ADIG, CXCL8, FNDC5, IL6, INS, VEGFA
extracellular region 9 ADIG, CAT, CXCL8, FNDC5, IL6, INS, KLK3, TNF, VEGFA
Single-pass membrane protein 1 ADIG
mitochondrial matrix 1 CAT
anchoring junction 1 CXCR4
transcription regulator complex 1 CTNNB1
external side of plasma membrane 3 CXCR4, SLC2A4, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
multivesicular body 1 SLC2A4
T-tubule 1 SLC2A4
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
cytoplasmic vesicle 1 CXCR4
microtubule cytoskeleton 1 AKT1
nucleolus 1 SCD
Wnt signalosome 1 CTNNB1
Early endosome 2 CXCR4, HTT
apical part of cell 1 CTNNB1
cell-cell junction 2 AKT1, CTNNB1
clathrin-coated pit 1 SLC2A4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
postsynaptic membrane 2 CTNNB1, HTT
Cytoplasm, perinuclear region 1 SLC2A4
Membrane raft 3 HTT, SLC2A4, TNF
Cell junction, focal adhesion 1 HTT
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 3 CAT, CTNNB1, HTT
spindle 1 AKT1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
sarcoplasmic reticulum 1 SLC2A4
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 2 CAT, FNDC5
Nucleus, PML body 1 PPARGC1A
PML body 1 PPARGC1A
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 2 KLK3, VEGFA
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
Late endosome 2 CXCR4, HTT
receptor complex 1 PPARG
Cell projection, neuron projection 1 HTT
neuron projection 1 HTT
ciliary basal body 1 AKT1
chromatin 4 GABPA, PPARA, PPARG, PPARGC1A
cell leading edge 1 CXCR4
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
centriole 1 HTT
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
Endomembrane system 3 CTNNB1, HTT, SLC2A4
endosome lumen 1 INS
Lipid droplet 1 ADIG
Cytoplasmic vesicle membrane 2 HTT, SLC2A4
euchromatin 1 CTNNB1
Peroxisome membrane 1 FNDC5
clathrin-coated vesicle 1 SLC2A4
trans-Golgi network transport vesicle 1 SLC2A4
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 IL6, INS
platelet alpha granule lumen 1 VEGFA
transport vesicle 1 INS
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 SLC2A4
[Isoform 1]: Nucleus 1 PPARGC1A
protein-DNA complex 1 CTNNB1
death-inducing signaling complex 1 CASP3
postsynaptic cytosol 1 HTT
catenin complex 1 CTNNB1
presynaptic cytosol 1 HTT
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
inclusion body 1 HTT
interleukin-6 receptor complex 1 IL6
insulin-responsive compartment 1 SLC2A4
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
beta-catenin-TCF7L2 complex 1 CTNNB1
serotonergic synapse 1 HTT
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
[Huntingtin]: Cytoplasm 1 HTT
[Huntingtin, myristoylated N-terminal fragment]: Cytoplasmic vesicle, autophagosome 1 HTT
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[Isoform B4]: Nucleus 1 PPARGC1A
[Isoform B4-8a]: Cytoplasm 1 PPARGC1A
[Isoform B5]: Nucleus 1 PPARGC1A
[Isoform 9]: Nucleus 1 PPARGC1A


文献列表

  • Liping Chen, Yifan Lei, Changxin Lu, Dingyang Liu, Wenyu Ma, Hengqian Lu, Yongzhong Wang. Punicic acid ameliorates obesity-related hyperlipidemia and fatty liver in mice via regulation of intestinal flora and lipopolysaccharide-related signaling pathways. Food & function. 2024 May; 15(9):5012-5025. doi: 10.1039/d4fo00502c. [PMID: 38618675]
  • Kaifeng Wang, Yueyue Zhou, Lizhen Cao, Lu Lin, Rodrigo Ledesma-Amaro, Xiao-Jun Ji. Engineering Yarrowia lipolytica for Sustainable Production of the Pomegranate Seed Oil-Derived Punicic Acid. Journal of agricultural and food chemistry. 2024 Jan; ?(?):. doi: 10.1021/acs.jafc.3c08718. [PMID: 38282297]
  • Veronika Urbanikova, Young-Kyoung Park, Daniela Krajciova, Mehdi Tachekort, Milan Certik, Ioana Grigoras, Roman Holic, Jean-Marc Nicaud, Peter Gajdos. Yarrowia lipolytica as a Platform for Punicic Acid Production. International journal of molecular sciences. 2023 May; 24(10):. doi: 10.3390/ijms24108823. [PMID: 37240172]
  • Aleksandra Zielińska, Krzysztof Wójcicki, Dorota Klensporf-Pawlik, Marta Marzec, Massimo Lucarini, Alessandra Durazzo, Joel Fonseca, Antonello Santini, Izabela Nowak, Eliana B Souto. Cold-Pressed Pomegranate Seed Oil: Study of Punicic Acid Properties by Coupling of GC/FID and FTIR. Molecules (Basel, Switzerland). 2022 Sep; 27(18):. doi: 10.3390/molecules27185863. [PMID: 36144599]
  • Gaofeng Yuan, Meijuan Tan, Xiaoe Chen. Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice. Food & function. 2021 Sep; 12(17):7897-7908. doi: 10.1039/d1fo01152a. [PMID: 34241611]
  • Juli Wang, Yang Xu, Roman Holic, Xiaochen Yu, Stacy D Singer, Guanqun Chen. Improving the Production of Punicic Acid in Baker's Yeast by Engineering Genes in Acyl Channeling Processes and Adjusting Precursor Supply. Journal of agricultural and food chemistry. 2021 Aug; 69(33):9616-9624. doi: 10.1021/acs.jafc.1c03256. [PMID: 34428902]
  • Perrine Vermonden, Matthias Vancoppenolle, Emeline Dierge, Eric Mignolet, Géraldine Cuvelier, Bernard Knoops, Melissa Page, Cathy Debier, Olivier Feron, Yvan Larondelle. Punicic Acid Triggers Ferroptotic Cell Death in Carcinoma Cells. Nutrients. 2021 Aug; 13(8):. doi: 10.3390/nu13082751. [PMID: 34444911]
  • Maissa Khemakhem, Youkabed Zarroug, Khaled Jabou, Sawsen Selmi, Nabiha Bouzouita. Physicochemical characterization of oil, antioxidant potential, and phenolic profile of seeds isolated from Tunisian pomegranate (Punica granatum L.) cultivars. Journal of food science. 2021 Mar; 86(3):852-859. doi: 10.1111/1750-3841.15636. [PMID: 33580521]
  • Monique T Ngo Njembe, Barbara Pachikian, Irina Lobysheva, Nancy Van Overstraeten, Louis Dejonghe, Eleonore Verstraelen, Marine Buchet, Catherine Rasse, Cécile Gardin, Eric Mignolet, Jean-Luc Balligand, Yvan Larondelle. A Three-Month Consumption of Eggs Enriched with ω-3, ω-5 and ω-7 Polyunsaturated Fatty Acids Significantly Decreases the Waist Circumference of Subjects at Risk of Developing Metabolic Syndrome: A Double-Blind Randomized Controlled Trial. Nutrients. 2021 Feb; 13(2):. doi: 10.3390/nu13020663. [PMID: 33670720]
  • Yang Xu, Elzbieta Mietkiewska, Saleh Shah, Randall J Weselake, Guanqun Chen. Punicic acid production in Brassica napus. Metabolic engineering. 2020 11; 62(?):20-29. doi: 10.1016/j.ymben.2020.08.011. [PMID: 32841680]
  • K Zamora-López, L G Noriega, A Estanes-Hernández, I Escalona-Nández, S Tobón-Cornejo, A R Tovar, V Barbero-Becerra, C Pérez-Monter. Punica granatum L.-derived omega-5 nanoemulsion improves hepatic steatosis in mice fed a high fat diet by increasing fatty acid utilization in hepatocytes. Scientific reports. 2020 09; 10(1):15229. doi: 10.1038/s41598-020-71878-y. [PMID: 32943651]
  • Tafadzwa Kaseke, Umezuruike Linus Opara, Olaniyi Amos Fawole. Effect of Blanching Pomegranate Seeds on Physicochemical Attributes, Bioactive Compounds and Antioxidant Activity of Extracted Oil. Molecules (Basel, Switzerland). 2020 May; 25(11):. doi: 10.3390/molecules25112554. [PMID: 32486338]
  • Illana Louise Pereira de Melo, Ana Mara de Oliveira E Silva, Luciana Tedesco Yoshime, José Augusto Gasparotto Sattler, Eliane Bonifácio Teixeira de Carvalho, Jorge Mancini-Filho. Punicic acid was metabolised and incorporated in the form of conjugated linoleic acid in different rat tissues. International journal of food sciences and nutrition. 2019 Jun; 70(4):421-431. doi: 10.1080/09637486.2018.1519528. [PMID: 30326753]
  • Yaser Khajebishak, Laleh Payahoo, Mohammadreza Alivand, Beitollah Alipour. Punicic acid: A potential compound of pomegranate seed oil in Type 2 diabetes mellitus management. Journal of cellular physiology. 2019 03; 234(3):2112-2120. doi: 10.1002/jcp.27556. [PMID: 30317607]
  • Teresa Banaszkiewicz, Agnieszka Białek, Andrzej Tokarz, Karol Kaszperuk. Effect of dietary grape and pomegranate seed oil on the post-slaughter value and physicochemical properties of muscles of broiler chickens. Acta scientiarum polonorum. Technologia alimentaria. 2018 Jul; 17(3):199-209. doi: 10.17306/j.afs.0563. [PMID: 30269459]
  • Roman Holic, Yang Xu, Kristian Mark P Caldo, Stacy D Singer, Catherine J Field, Randall J Weselake, Guanqun Chen. Bioactivity and biotechnological production of punicic acid. Applied microbiology and biotechnology. 2018 Apr; 102(8):3537-3549. doi: 10.1007/s00253-018-8883-y. [PMID: 29502183]
  • Martina Garaiova, Elzbieta Mietkiewska, Randall J Weselake, Roman Holic. Metabolic engineering of Schizosaccharomyces pombe to produce punicic acid, a conjugated fatty acid with nutraceutic properties. Applied microbiology and biotechnology. 2017 Nov; 101(21):7913-7922. doi: 10.1007/s00253-017-8498-8. [PMID: 28918508]
  • Ziliang Song, Elzbieta Mietkiewska, Randall J Weselake. The linin promoter is highly effective in enhancing punicic acid production in Arabidopsis. Plant cell reports. 2017 Mar; 36(3):447-457. doi: 10.1007/s00299-016-2094-8. [PMID: 27999978]
  • Agnieszka Bialek, Malgorzata Czerwonka, Malgorzata Bialek, Tomasz Lepionka, Karol Kaszperuk, Teresa Banaszkiewicz, Andrzej Tokarz. INFLUENCE OF POMEGRANATE SEED OIL AND GRAPE SEED OIL ON CHOLESTEROL CONTENT AND FATTY ACIDS PROFILE IN LIVERS OF CHICKENS. Acta poloniae pharmaceutica. 2017 Mar; 74(2):624-632. doi: . [PMID: 29624268]
  • Illana Louise Pereira de Melo, Ana Mara de Oliveira e Silva, Eliane Bonifácio Teixeira de Carvalho, Luciana Tedesco Yoshime, José Augusto Gasparotto Sattler, Jorge Mancini-Filho. Incorporation and effects of punicic acid on muscle and adipose tissues of rats. Lipids in health and disease. 2016 Feb; 15(?):40. doi: 10.1186/s12944-016-0214-7. [PMID: 26922800]
  • Paolo Lucci, Deborah Pacetti, Monica R Loizzo, Natale G Frega. Punica granatum cv. Dente di Cavallo seed ethanolic extract: antioxidant and antiproliferative activities. Food chemistry. 2015 Jan; 167(?):475-83. doi: 10.1016/j.foodchem.2014.06.123. [PMID: 25149014]
  • Pinyi Lu, Raquel Hontecillas, Vida Abedi, Shiv Kale, Andrew Leber, Chase Heltzel, Mark Langowski, Victoria Godfrey, Casandra Philipson, Nuria Tubau-Juni, Adria Carbo, Stephen Girardin, Aykut Uren, Josep Bassaganya-Riera. Modeling-Enabled Characterization of Novel NLRX1 Ligands. PloS one. 2015; 10(12):e0145420. doi: 10.1371/journal.pone.0145420. [PMID: 26714018]
  • Susan Costantini, Fabiola Rusolo, Valentina De Vito, Stefania Moccia, Gianluca Picariello, Francesca Capone, Eliana Guerriero, Giuseppe Castello, Maria Grazia Volpe. Potential anti-inflammatory effects of the hydrophilic fraction of pomegranate (Punica granatum L.) seed oil on breast cancer cell lines. Molecules (Basel, Switzerland). 2014 Jun; 19(6):8644-60. doi: 10.3390/molecules19068644. [PMID: 24962397]
  • Mélanie Spilmont, Laurent Léotoing, Marie-Jeanne Davicco, Patrice Lebecque, Sylvie Mercier, Elisabeth Miot-Noirault, Paul Pilet, Laurent Rios, Yohann Wittrant, Véronique Coxam. Pomegranate seed oil prevents bone loss in a mice model of osteoporosis, through osteoblastic stimulation, osteoclastic inhibition and decreased inflammatory status. The Journal of nutritional biochemistry. 2013 Nov; 24(11):1840-8. doi: 10.1016/j.jnutbio.2013.04.005. [PMID: 23953990]
  • Mustafa Çam, Fatma Erdoğan, Duygu Aslan, Merve Dinç. Enrichment of functional properties of ice cream with pomegranate by-products. Journal of food science. 2013 Oct; 78(10):C1543-C1550. doi: 10.1111/1750-3841.12258. [PMID: 24102443]
  • Jihane Gasmi, J Thomas Sanderson. Jacaric acid and its octadecatrienoic acid geoisomers induce apoptosis selectively in cancerous human prostate cells: a mechanistic and 3-D structure-activity study. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2013 Jun; 20(8-9):734-42. doi: 10.1016/j.phymed.2013.01.012. [PMID: 23453308]
  • Siddhartha S Saha, Mahua Ghosh. Protective effect of conjugated linolenic acid isomers present in vegetable oils against arsenite-induced renal toxicity in rat model. Nutrition (Burbank, Los Angeles County, Calif.). 2013 Jun; 29(6):903-10. doi: 10.1016/j.nut.2012.12.013. [PMID: 23422533]
  • Siddhartha S Saha, Mahua Ghosh. Antioxidant and anti-inflammatory effect of conjugated linolenic acid isomers against streptozotocin-induced diabetes. The British journal of nutrition. 2012 Sep; 108(6):974-83. doi: 10.1017/s0007114511006325. [PMID: 22182422]
  • Siddhartha S Saha, Anirban Chakraborty, Santinath Ghosh, Mahua Ghosh. Comparative study of hypocholesterolemic and hypolipidemic effects of conjugated linolenic acid isomers against induced biochemical perturbations and aberration in erythrocyte membrane fluidity. European journal of nutrition. 2012 Jun; 51(4):483-95. doi: 10.1007/s00394-011-0233-0. [PMID: 21814874]
  • Richa Rawat, Xiao-Hong Yu, Marie Sweet, John Shanklin. Conjugated fatty acid synthesis: residues 111 and 115 influence product partitioning of Momordica charantia conjugase. The Journal of biological chemistry. 2012 May; 287(20):16230-7. doi: 10.1074/jbc.m111.325316. [PMID: 22451660]
  • Ching-Shu Lai, Mei-Ling Tsai, Vladimir Badmaev, Miguel Jimenez, Chi-Tang Ho, Min-Hsiung Pan. Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARγ and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways. Journal of agricultural and food chemistry. 2012 Feb; 60(4):1094-101. doi: 10.1021/jf204862d. [PMID: 22224971]
  • Irene O C M Vroegrijk, Janna A van Diepen, Sjoerd van den Berg, Irene Westbroek, Hiskias Keizer, Luisa Gambelli, Raquel Hontecillas, Josep Bassaganya-Riera, Gerben C M Zondag, Johannes A Romijn, Louis M Havekes, Peter J Voshol. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2011 Jun; 49(6):1426-30. doi: 10.1016/j.fct.2011.03.037. [PMID: 21440024]
  • Siddhartha S Saha, Mahua Ghosh. Antioxidant effect of vegetable oils containing conjugated linolenic acid isomers against induced tissue lipid peroxidation and inflammation in rat model. Chemico-biological interactions. 2011 Apr; 190(2-3):109-20. doi: 10.1016/j.cbi.2011.02.030. [PMID: 21382362]
  • Jihane Gasmi, J Thomas Sanderson. Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells. Journal of agricultural and food chemistry. 2010 Dec; 58(23):12149-56. doi: 10.1021/jf103306k. [PMID: 21067181]
  • S S Saha, M Ghosh. Ameliorative role of conjugated linolenic acid isomers against oxidative DNA damage induced by sodium arsenite in rat model. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2010 Dec; 48(12):3398-405. doi: 10.1016/j.fct.2010.09.011. [PMID: 20851731]
  • Michael E Grossmann, Nancy K Mizuno, Todd Schuster, Margot P Cleary. Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation. International journal of oncology. 2010 Feb; 36(2):421-6. doi: . [PMID: 20043077]
  • S S Saha, M Ghosh. Comparative study of antioxidant activity of alpha-eleostearic acid and punicic acid against oxidative stress generated by sodium arsenite. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2009 Oct; 47(10):2551-6. doi: 10.1016/j.fct.2009.07.012. [PMID: 19619603]
  • Gaofeng Yuan, Andrew J Sinclair, Chaojiong Xu, Duo Li. Incorporation and metabolism of punicic acid in healthy young humans. Molecular nutrition & food research. 2009 Oct; 53(10):1336-42. doi: 10.1002/mnfr.200800520. [PMID: 19753607]
  • Raquel Hontecillas, Marianne O'Shea, Alexandra Einerhand, Margaret Diguardo, Josep Bassaganya-Riera. Activation of PPAR gamma and alpha by punicic acid ameliorates glucose tolerance and suppresses obesity-related inflammation. Journal of the American College of Nutrition. 2009 Apr; 28(2):184-95. doi: 10.1080/07315724.2009.10719770. [PMID: 19828904]
  • Gao-Feng Yuan, Jing-Qun Yuan, Duo Li. Punicic acid from Trichosanthes kirilowii seed oil is rapidly metabolized to conjugated linoleic acid in rats. Journal of medicinal food. 2009 Apr; 12(2):416-22. doi: 10.1089/jmf.2007.0541. [PMID: 19459746]
  • Kazunori Koba, Jun Imamura, Asuka Akashoshi, Junko Kohno-Murase, Shoko Nishizono, Mari Iwabuchi, Kazunari Tanaka, Michihiro Sugano. Genetically modified rapeseed oil containing cis-9,trans-11,cis-13-octadecatrienoic acid affects body fat mass and lipid metabolism in mice. Journal of agricultural and food chemistry. 2007 May; 55(9):3741-8. doi: 10.1021/jf063264z. [PMID: 17394332]
  • S Y Schubert, E P Lansky, I Neeman. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. Journal of ethnopharmacology. 1999 Jul; 66(1):11-7. doi: 10.1016/s0378-8741(98)00222-0. [PMID: 10432202]