3,4-Dimethoxybenzaldehyde (BioDeep_00000000811)

 

Secondary id: BioDeep_00000862805

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


InChI=1/C9H10O3/c1-11-8-4-3-7(6-10)5-9(8)12-2/h3-6H,1-2H

化学式: C9H10O3 (166.063)
中文名称: 藜芦醛, 3,4-二甲氧基苯甲醛
谱图信息: 最多检出来源 Homo sapiens(plant) 10.42%

分子结构信息

SMILES: COC1=C(C=C(C=C1)C=O)OC
InChI: InChI=1S/C9H10O3/c1-11-8-4-3-7(6-10)5-9(8)12-2/h3-6H,1-2H3

描述信息

Veratraldehyde appears as needles or chunky light peach powder. Has an odor of vanilla beans. (NTP, 1992)
Veratraldehyde is a dimethoxybenzene that is benzaldehyde substituted by methoxy groups at positions 3 and 4. It is found in peppermint, ginger, raspberry, and other fruits. It has a role as an antifungal agent. It is a member of benzaldehydes and a dimethoxybenzene.
3,4-Dimethoxybenzaldehyde is a natural product found in Polygala senega, Pluchea sagittalis, and other organisms with data available.
3,4-Dimethoxybenzaldehyde is found in fruits. 3,4-Dimethoxybenzaldehyde is isolated from peppermint, raspberry, ginger and Bourbon vanilla. 3,4-Dimethoxybenzaldehyde is used in vanilla flavour
Isolated from peppermint, raspberry, ginger and Bourbon vanilla. It is used in vanilla flavours. 3,4-Dimethoxybenzaldehyde is found in peppermint, herbs and spices, and fruits.
CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3940; ORIGINAL_PRECURSOR_SCAN_NO 3939
CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3955; ORIGINAL_PRECURSOR_SCAN_NO 3954
CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3930; ORIGINAL_PRECURSOR_SCAN_NO 3929
CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3941; ORIGINAL_PRECURSOR_SCAN_NO 3940
CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3963; ORIGINAL_PRECURSOR_SCAN_NO 3961
CONFIDENCE standard compound; INTERNAL_ID 1016; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3961; ORIGINAL_PRECURSOR_SCAN_NO 3960
Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries.
Veratraldehyde is an important chemical used in perfumery, agrochemical, and pharmaceutical industries.

同义名列表

50 个代谢物同义名

InChI=1/C9H10O3/c1-11-8-4-3-7(6-10)5-9(8)12-2/h3-6H,1-2H; VERAPAMIL HYDROCHLORIDE IMPURITY G [EP IMPURITY]; Veratraldehyde (3,4-Dimethoxybenzaldehyde); Benzaldehyde, 3,4-dimethoxy-veratraldehyde; Benzaldehyde, 3-methoxy-4-(methoxy-d3)-; Dimethoxy-Benzaldehyde-O-Methylvanillin; Protocatechuic aldehyde dimethyl ether; Protocatechuecaldehyde dimethyl ether; Protocatechualdehyde dimethyl ether; 3,4-Dimethoxybenzaldehyde, 99\\%; 3,4-Dimethoxybenzenecarbonal; Benzaldehyde, 3,4-dimethoxy-; 3,4-DIMETHOXY-BENZALDEHYDE; Veratraldehyde, >=98\\%, FG; 3,4-Dimethoxy benzaldehyde; 3, 4-Dimethoxybenzaldehyde; 4,3-dimethoxybenzaldehyde; 3,4-dimethoxybenzaidehyde; 3,4-Dimethoxybenzaldehyde; 4,5-dimethoxybenzaldehyde; 3,4 dimethoxybenzaldehyde; Benzaldehyde,4-dimethoxy-; 3,4dimethoxybenzaldehyde; 3,4-dimethoxybenzaldeyde; VERATRALDEHYDE [FHFI]; Vanillin methyl ether; VERATRALDEHYDE [FCC]; p-Veratric aldehyde; VERATRALDEHYDE [MI]; 4-O-Methylvanillin; Veratryl aldehyde; Veratric aldehyde; Veratrum aldehyde; WLN: VHR CO1 DO1; Veratrumaldehyde; UNII-UI88P68JZD; ratryl aldehyde; Methyl vanillin; Veratraldehyde; Methylvanillin; 3,4-dimethoxy; Tox21_201566; Tox21_303074; veratrumald; UI88P68JZD; FEMA 3109; AI3-08099; Veratral; Veratraldehyde; Veratraldehyde



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

14 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ABCB1, ANXA5, EGFR, ELANE, HMBS, PPP4C, PTGS1, PTGS2, SLC6A3, TYR
Peripheral membrane protein 3 ANXA5, PTGS1, PTGS2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 3 EGFR, PTGS1, PTGS2
Mitochondrion membrane 1 ABCG2
Nucleus 4 EGFR, MN1, PARP1, PPP4C
cytosol 9 ACOX1, ADH6, AKR1A1, ANXA5, CLC, ELANE, HMBS, PARP1, PPP4C
mitochondrial membrane 1 ABCG2
nuclear body 1 PARP1
phagocytic vesicle 1 ELANE
centrosome 1 PPP4C
nucleoplasm 3 ABCG2, PARP1, PPP4C
Cell membrane 5 ABCB1, ABCC1, ABCG2, EGFR, SLC6A3
ruffle membrane 1 EGFR
Cell projection, axon 1 SLC6A3
Cytoplasmic granule 1 CLC
Early endosome membrane 1 EGFR
Multi-pass membrane protein 4 ABCB1, ABCC1, ABCG2, SLC6A3
Synapse 1 AKR1A1
cell junction 1 EGFR
cell surface 4 ABCB1, EGFR, ELANE, SLC6A3
glutamatergic synapse 1 EGFR
Golgi apparatus 1 PTGS1
Golgi membrane 1 EGFR
neuronal cell body 1 SLC6A3
presynaptic membrane 1 SLC6A3
sarcolemma 1 ANXA5
Cytoplasm, cytosol 3 AKR1A1, CLC, PARP1
Lysosome 1 TYR
endosome 1 EGFR
plasma membrane 7 ABCB1, ABCC1, ABCG2, EGFR, LIPI, PPP4C, SLC6A3
Membrane 8 ABCB1, ABCC1, ABCG2, ACOX1, ANXA5, EGFR, PARP1, SLC6A3
apical plasma membrane 5 ABCB1, ABCC1, ABCG2, AKR1A1, EGFR
axon 1 SLC6A3
basolateral plasma membrane 2 ABCC1, EGFR
caveola 1 PTGS2
extracellular exosome 7 ABCB1, ABCC1, ADH6, AKR1A1, ANXA5, ELANE, PTGS1
endoplasmic reticulum 1 PTGS2
extracellular space 5 AKR1A1, CLC, EGFR, ELANE, LIPI
perinuclear region of cytoplasm 2 EGFR, TYR
mitochondrion 1 PARP1
protein-containing complex 3 EGFR, PARP1, PTGS2
intracellular membrane-bounded organelle 2 PTGS1, TYR
Microsome membrane 2 PTGS1, PTGS2
Single-pass type I membrane protein 2 EGFR, TYR
Secreted 2 CLC, LIPI
extracellular region 4 ANXA5, CLC, ELANE, LIPI
neuronal cell body membrane 1 SLC6A3
transcription regulator complex 1 PARP1
photoreceptor outer segment 1 PTGS1
nuclear membrane 1 EGFR
external side of plasma membrane 1 ANXA5
nucleolus 1 PARP1
Melanosome membrane 1 TYR
Golgi-associated vesicle 1 TYR
postsynaptic membrane 1 SLC6A3
Apical cell membrane 3 ABCB1, ABCG2, AKR1A1
Membrane raft 3 ABCG2, EGFR, SLC6A3
focal adhesion 2 ANXA5, EGFR
flotillin complex 1 SLC6A3
Peroxisome 1 ACOX1
intracellular vesicle 1 EGFR
peroxisomal matrix 1 ACOX1
peroxisomal membrane 1 ACOX1
collagen-containing extracellular matrix 3 ANXA5, CLC, ELANE
secretory granule 1 ELANE
lateral plasma membrane 1 ABCC1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 EGFR
Cell projection, neuron projection 1 SLC6A3
Zymogen granule membrane 1 ANXA5
neuron projection 3 PTGS1, PTGS2, SLC6A3
chromatin 2 PARP1, PPP4C
Chromosome 1 PARP1
brush border membrane 1 ABCG2
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
[Isoform 2]: Cell membrane 1 LIPI
site of double-strand break 1 PARP1
nuclear envelope 1 PARP1
Endomembrane system 1 PTGS1
Melanosome 1 TYR
basal plasma membrane 2 ABCC1, EGFR
synaptic membrane 1 EGFR
endoplasmic reticulum lumen 1 PTGS2
transcription repressor complex 1 ELANE
axon terminus 1 SLC6A3
specific granule lumen 1 ELANE
azurophil granule lumen 1 ELANE
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGFR
protein-DNA complex 1 PARP1
external side of apical plasma membrane 2 ABCB1, ABCG2
[Isoform 1]: Cell membrane 1 LIPI
dopaminergic synapse 1 SLC6A3
Cytoplasmic vesicle, phagosome 1 ELANE
site of DNA damage 1 PARP1
CRLF-CLCF1 complex 1 CLC
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
CNTFR-CLCF1 complex 1 CLC
protein phosphatase 4 complex 1 PPP4C


文献列表

  • Megan E Wolf, Anne T Lalande, Brianne L Newman, Alissa C Bleem, Chad T Palumbo, Gregg T Beckham, Lindsay D Eltis. The catabolism of lignin-derived p-methoxylated aromatic compounds by Rhodococcus jostii RHA1. Applied and environmental microbiology. 2024 Mar; 90(3):e0215523. doi: 10.1128/aem.02155-23. [PMID: 38380926]
  • Hyun Wook Huh, Hee-Yong Song, Young-Guk Na, Minki Kim, Mingu Han, Thi Mai Anh Pham, Hyeonmin Lee, Jungkyu Suh, Seok-Jong Lee, Hong-Ki Lee, Cheong-Weon Cho. Bioanalytical Method Development and Validation of Veratraldehyde and Its Metabolite Veratric Acid in Rat Plasma: An Application for a Pharmacokinetic Study. Molecules (Basel, Switzerland). 2020 Jun; 25(12):. doi: 10.3390/molecules25122800. [PMID: 32560470]
  • Pierluigi Caboni, Nadhem Aissani, Tiziana Cabras, Andrea Falqui, Roberto Marotta, Barbara Liori, Nikoletta Ntalli, Giorgia Sarais, Nicola Sasanelli, Graziella Tocco. Potent nematicidal activity of phthalaldehyde, salicylaldehyde, and cinnamic aldehyde against Meloidogyne incognita. Journal of agricultural and food chemistry. 2013 Feb; 61(8):1794-803. doi: 10.1021/jf305164m. [PMID: 23379671]
  • Erin D Scully, Kelli Hoover, John Carlson, Ming Tien, Scott M Geib. Proteomic analysis of Fusarium solani isolated from the Asian longhorned beetle, Anoplophora glabripennis. PloS one. 2012; 7(4):e32990. doi: 10.1371/journal.pone.0032990. [PMID: 22496740]
  • Martin Pareja, Erika Qvarfordt, Ben Webster, Patrick Mayon, John Pickett, Michael Birkett, Robert Glinwood. Herbivory by a Phloem-feeding insect inhibits floral volatile production. PloS one. 2012; 7(2):e31971. doi: 10.1371/journal.pone.0031971. [PMID: 22384116]
  • Jong H Kim, Kathleen L Chan, Natália C G Faria, M de L Martins, Bruce C Campbell. Targeting the oxidative stress response system of fungi with redox-potent chemosensitizing agents. Frontiers in microbiology. 2012; 3(?):88. doi: 10.3389/fmicb.2012.00088. [PMID: 22438852]
  • Jong H Kim, Kathleen L Chan, Noreen Mahoney, Bruce C Campbell. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation. Annals of clinical microbiology and antimicrobials. 2011 May; 10(?):23. doi: 10.1186/1476-0711-10-23. [PMID: 21627838]
  • João Paulo B de Sousa, Mateus F Leite, Renata F Jorge, Dimas O Resende, Ademar A da Silva Filho, Niege A J C Furtado, Ademilson E E Soares, Augusto C C Spadaro, Pedro Melillo de Magalhães, Jairo K Bastos. Seasonality Role on the Phenolics from Cultivated Baccharis dracunculifolia. Evidence-based complementary and alternative medicine : eCAM. 2011; 2011(?):464289. doi: 10.1093/ecam/nep077. [PMID: 19605554]
  • Amy E Trunkfield, Sudagar S Gurcha, Gurdyal S Besra, Timothy D H Bugg. Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal transferase by uridine-linked transition state mimics. Bioorganic & medicinal chemistry. 2010 Apr; 18(7):2651-63. doi: 10.1016/j.bmc.2010.02.026. [PMID: 20226679]
  • Matthias Kinne, Marzena Poraj-Kobielska, Sally A Ralph, René Ullrich, Martin Hofrichter, Kenneth E Hammel. Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. The Journal of biological chemistry. 2009 Oct; 284(43):29343-9. doi: 10.1074/jbc.m109.040857. [PMID: 19713216]
  • Ashwini Kumar, Baldev Singh, Ashok Kumar Malik, Dhananjay K Tiwary. Determination of some aldehydes by using solid-phase microextraction and high-performance liquid chromatography with UV detection. Journal of AOAC International. 2007 Nov; 90(6):1689-94. doi: . [PMID: 18193749]
  • J H Kim, B C Campbell, N Mahoney, K L Chan, R J Molyneux, G S May. Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Letters in applied microbiology. 2007 Aug; 45(2):134-41. doi: 10.1111/j.1472-765x.2007.02159.x. [PMID: 17651208]
  • J H Kim, B C Campbell, N Mahoney, K L Chan, G S May. Targeting antioxidative signal transduction and stress response system: control of pathogenic Aspergillus with phenolics that inhibit mitochondrial function. Journal of applied microbiology. 2006 Jul; 101(1):181-9. doi: 10.1111/j.1365-2672.2006.02882.x. [PMID: 16834605]
  • Alexander N Kapich, Kari T Steffen, Martin Hofrichter, Annele Hatakka. Involvement of lipid peroxidation in the degradation of a non-phenolic lignin model compound by manganese peroxidase of the litter-decomposing fungus Stropharia coronilla. Biochemical and biophysical research communications. 2005 May; 330(2):371-7. doi: 10.1016/j.bbrc.2005.02.167. [PMID: 15796893]
  • B Suresh, G A Ravishankar. Methyl jasmonate modulated biotransformation of phenylpropanoids to vanillin related metabolites using Capsicum frutescens root cultures. Plant physiology and biochemistry : PPB. 2005 Feb; 43(2):125-31. doi: 10.1016/j.plaphy.2005.01.006. [PMID: 15820659]
  • Jong H Kim, Bruce C Campbell, Noreen E Mahoney, Kathleen L Chan, Russell J Molyneux. Identification of phenolics for control of Aspergillus flavus using Saccharomyces cerevisiae in a model target-gene bioassay. Journal of agricultural and food chemistry. 2004 Dec; 52(26):7814-21. doi: 10.1021/jf0487093. [PMID: 15612761]
  • Arundhati Ghosh, Juliet C Frankland, Christopher F Thurston, Clare H Robinson. Enzyme production by Mycena galopus mycelium in artificial media and in Picea sitchensis F1 horizon needle litter. Mycological research. 2003 Aug; 107(Pt 8):996-1008. doi: 10.1017/s0953756203008177. [PMID: 14531622]
  • Carol Larroy, M Rosario Fernández, Eva González, Xavier Parés, Josep A Biosca. Properties and functional significance of Saccharomyces cerevisiae ADHVI. Chemico-biological interactions. 2003 Feb; 143-144(?):229-38. doi: 10.1016/s0009-2797(02)00166-7. [PMID: 12604208]
  • N M Cuong, W C Taylor, V T Sung. A new cyclobutane lignan from Cinnamomum balansae. Natural product letters. 2001; 15(5):331-8. doi: 10.1080/10575630108041300. [PMID: 11841117]