Liquiritin

(2S)-7-hydroxy-2-(4-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O9 (418.1264)


Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). Liquiritin is found in herbs and spices. Liquiritin is isolated from Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].

   

Demethoxyyangonin

2H-Pyran-2-one, 4-methoxy-6-(2-phenylethenyl)-, (E)- (9CI)

C14H12O3 (228.0786)


5,6-Dehydrokawain is an aromatic ether and a member of 2-pyranones. Desmethoxyyangonin is a natural product found in Alpinia blepharocalyx, Alpinia rafflesiana, and other organisms with data available. See also: Piper methysticum root (part of). 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in beverages. 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damag Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.

   

Hirsutine

INDOLO(2,3-A)QUINOLIZINE-2-ACETIC ACID, 3-ETHYL-1,2,3,4,6,7,12,12B-OCTAHYDRO-.ALPHA.-(METHOXYMETHYLENE)-, METHYL ESTER, (.ALPHA.E,2S,3R,12BR)-

C22H28N2O3 (368.21)


Annotation level-1 Hirsutine is a natural product found in Uncaria tomentosa, Mitragyna hirsuta, and other organisms with data available. See also: Cats Claw (part of).

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

Linderane

(1S,4E,12S,13S)-5,10-dimethyl-8,14,16-trioxatetracyclo[10.2.2.01,13.07,11]hexadeca-4,7(11),9-trien-15-one

C15H16O4 (260.1049)


Linderane is a member of dioxanes. Linderane is a natural product found in Cryptocarya densiflora, Neolitsea villosa, and other organisms with data available. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1]. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1].

   

Reserpine

methyl (1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-[(3,4,5-trimethoxyphenyl)carbonyloxy]-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4,6,8-tetraene-19-carboxylate

C33H40N2O9 (608.2734)


Reserpine appears as white or cream to slightly yellow crystals or crystalline powder. Odorless with a bitter taste. (NTP, 1992) Reserpine is an alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. It has a role as an antihypertensive agent, a first generation antipsychotic, an adrenergic uptake inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an environmental contaminant, a xenobiotic and a plant metabolite. It is an alkaloid ester, a methyl ester and a yohimban alkaloid. It is functionally related to a reserpic acid. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. The FDA withdrew its approval for the use of all oral dosage form drug products containing more than 1 mg of reserpine. Reserpine is a Catecholamine-depleting Sympatholytic. The physiologic effect of reserpine is by means of Decreased Sympathetic Activity. Reserpine is an oral antihypertensive medication that acts through inhibitor of alpha-adrenergic transmission and was one of the first antihypertensive agents introduced into clinical practice. Despite widescale use for many years, reserpine has not been shown to cause clinically apparent liver injury. Reserpine is a natural product found in Rauvolfia yunnanensis, Alstonia constricta, and other organisms with data available. Reserpine is an alkaloid, derived from the roots of Rauwolfia serpentine and vomitoria, and an adrenergic uptake inhibitor with antihypertensive effects. Reserpine is lipid soluble and can penetrate blood-brain barrier. This agent binds and inhibits catecholamine pump on the storage vesicles in central and peripheral adrenergic neurons, thereby inhibiting the uptake of norepinephrine, dopamine serotonin into presynaptic storage vesicles. This results in catecholamines and serotonin lingering in the cytoplasm where they are destroyed by intraneuronal monoamine oxidase, thereby causing the depletion of catecholamine and serotonin stores in central and peripheral nerve terminals. Depletion results in a lack of active transmitter discharge from nerve endings upon nerve depolarization, and consequently leads to a decreased heart rate and decreased arterial blood pressure as well as sedative effects. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. See also: Hydroflumethiazide; reserpine (component of); Polythiazide; reserpine (component of); Chlorthalidone; reserpine (component of) ... View More ... An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators C1744 - Multidrug Resistance Modulator CONFIDENCE standard compound; EAWAG_UCHEM_ID 2682 [Raw Data] CBA02_Reserpine_pos_30eV.txt [Raw Data] CBA02_Reserpine_pos_10eV.txt [Raw Data] CBA02_Reserpine_pos_20eV.txt [Raw Data] CBA02_Reserpine_pos_40eV.txt [Raw Data] CBA02_Reserpine_pos_50eV.txt Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2). Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2).

   

Ruscogenin

(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,14R,16R)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-14,16-diol

C27H42O4 (430.3083)


Ruscogenin is a triterpenoid. Ruscogenin is a natural product found in Cordyline rubra, Cordyline banksii, and other organisms with data available. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2]. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2].

   

Ginsenoside Rg3

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O13 (784.4973)


(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. (20R)-Ginsenoside Rg3 is found in tea. (20R)-Ginsenoside Rg3 is isolated from Panax ginseng (ginseng). D000970 - Antineoplastic Agents 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression.

   

Sudan_III

1-((4-(Phenyldiazenyl)phenyl)diazenyl)naphthalen-2-ol, tech grade

C22H16N4O (352.1324)


Sudan III is a bis(azo) compound that is 2-naphthol substituted at position 1 by a 4-{[(2-methylphenyl)diazenyl]phenyl}diazenyl group. A fat-soluble dye predominantly used for demonstrating triglycerides in frozen sections, but which may also stain some protein bound lipids in paraffin sections. It has a role as a fluorochrome, a histological dye and a carcinogenic agent. It is a member of azobenzenes, a bis(azo) compound and a member of naphthols. It is functionally related to a 2-naphthol. D004396 - Coloring Agents

   

Bergaptol

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-hydroxy- (8CI)(9CI)

C11H6O4 (202.0266)


Bergaptol is a member of psoralens and a 5-hydroxyfurocoumarin. It is a conjugate acid of a bergaptol(1-). Bergaptol is a natural product found in Citrus canaliculata, Hansenia forbesii, and other organisms with data available. Bergaptol is a secondary metabolite of psoralen which has been hydroxylated by liver enzymes during phase I metabolism. Bergaptol is a biomarker for the consumption of citrus fruits. Present in various citrus subspecies Bergaptol is found in many foods, some of which are common hazelnut, hazelnut, alaska blueberry, and groundcherry. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties. Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties.

   

Galactitol

Galactitol, Pharmaceutical Secondary Standard; Certified Reference Material

C6H14O6 (182.079)


Galactitol or dulcitol is a sugar alcohol that is a metabolic breakdown product of galactose. Galactose is derived from lactose in food (such as dairy products). When lactose is broken down by the enzyme lactase it produces glucose and galactose. Galactitol has a slightly sweet taste. It is produced from galactose in a reaction catalyzed by aldose reductase. When present in sufficiently high levels, galactitol can act as a metabotoxin, a neurotoxin, and a hepatotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A hepatotoxin as a compound that disrupts or attacks liver tissue or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of galactitol are associated with at least two inborn errors of metabolism, including galactosemia and galactosemia type II. Galactosemia is a rare genetic metabolic disorder that affects an individuals ability to metabolize the sugar galactose properly. Excess lactose consumption in individuals with galactose intolerance or galactosemia activates aldose reductase to produce galactitol, thus depleting NADPH and leading to lowered glutathione reductase activity. As a result, hydrogen peroxide or other free radicals accumulate causing serious oxidative damage to various cells and tissues. In individuals with galactosemia, the enzymes needed for the further metabolism of galactose (galactose-1-phosphate uridyltransferase) are severely diminished or missing entirely, leading to toxic levels of galactose 1-phosphate, galactitol, and galactonate. High levels of galactitol in infants are specifically associated with hepatomegaly (an enlarged liver), cirrhosis, renal failure, cataracts, vomiting, seizure, hypoglycemia, lethargy, brain damage, and ovarian failure. Galactitol is an optically inactive hexitol having meso-configuration. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. Galactitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Galactitol is a natural product found in Elaeodendron croceum, Salacia chinensis, and other organisms with data available. Galactitol is a naturally occurring product of plants obtained following reduction of galactose. It appears as a white crystalline powder with a slight sweet taste. It may form in excess in the lens of the eye in galactosemias a deficiency of galactokinase. A naturally occurring product of plants obtained following reduction of GALACTOSE. It appears as a white crystalline powder with a slight sweet taste. It may form in excess in the lens of the eye in GALACTOSEMIAS, a deficiency of GALACTOKINASE. A naturally occurring product of plants obtained following reduction of galactose. It appears as a white crystalline powder with a slight sweet taste.; Dulcitol (or galactitol) is a sugar alcohol, the reduction product of galactose. Galactitol in the urine is a biomarker for the consumption of milk. Galactitol is found in many foods, some of which are elliotts blueberry, italian sweet red pepper, catjang pea, and green bean. An optically inactive hexitol having meso-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose.

   

Paucine

(Z,2Z)-N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)propa-2-enimidic acid

C13H18N2O3 (250.1317)


N-caffeoylputrescine is a N-substituted putrescine. It is a conjugate base of a N-caffeoylputrescinium(1+). N-Caffeoylputrescine is a natural product found in Iochroma cyaneum, Solanum tuberosum, and Selaginella moellendorffii with data available. Paucine is found in avocado. Paucine is an alkaloid from the famine food Pentaclethra macrophylla and from Persea gratissima (avocado Alkaloid from the famine food Pentaclethra macrophylla and from Persea gratissima (avocado). Paucine is found in avocado and fruits.

   

Hyoscyamine

BENZENEACETIC ACID, .ALPHA.-(HYDROXYMETHYL)-, (3-ENDO)-8-METHYL-8-AZABICYCLO(3.2.1)OCT-3-YL ESTER, (.ALPHA.S)-

C17H23NO3 (289.1678)


(S)-atropine is an atropine with a 2S-configuration. It is functionally related to a (S)-tropic acid. It is a conjugate base of a (S)-atropinium. Hyoscyamine is a tropane alkaloid and the levo-isomer of [atropine]. It is commonly extracted from plants in the Solanaceae or nightshade family. Research into the action of hyoscyamine in published literature dates back to 1826. Hyoscyamine is used for a wide variety of treatments and therapeutics due to its antimuscarinic properties. Although hyoscyamine is marketed in the United States, it is not FDA approved. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. L-Hyoscyamine is a natural product found in Datura ferox, Crenidium spinescens, and other organisms with data available. Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. The 3(S)-endo isomer of atropine. Hyoscyamine is a chemical compound, a tropane alkaloid it is the levo-isomer to atropine. It is a secondary metabolite of some plants, particularly henbane (Hyoscamus niger.). Hyoscyamine is used to provide symptomatic relief to various gastrointestinal disorders including spasms, peptic ulcers, irritable bowel syndrome, pancreatitis, colic and cystitis. It has also been used to relieve some heart problems, control some of the symptoms of Parkinsons disease, as well as for control of respiratory secretions in end of life care. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2269 D002491 - Central Nervous System Agents KEIO_ID H045; [MS2] KO008998 KEIO_ID H045 L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). Constituent of Salvia sclarea (clary sage). Sclareol is found in many foods, some of which are common thyme, herbs and spices, tea, and nutmeg. Sclareol is found in alcoholic beverages. Sclareol is a constituent of Salvia sclarea (clary sage) Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

IsoRhy

SPIRO(3H-INDOLE-3,1(5H)-INDOLIZINE)-7-ACETIC ACID, 6-ETHYL-1,2,2,3,6,7,8,8A-OCTAHYDRO-.ALPHA.-(METHOXYMETHYLENE)-2-OXO-, METHYL ESTER, (.ALPHA.E,1S,6R,7S,8AS)-

C22H28N2O4 (384.2049)


Isorhynchophylline is a member of indolizines. It has a role as a metabolite. Isorhynchophylline is a natural product found in Uncaria tomentosa, Mitragyna inermis, and other organisms with data available. See also: Cats Claw (part of). A natural product found in Uncaria macrophylla. Isorhynchophylline is an alkaloid compound isolated from Uncaria. It can lower blood pressure, relax blood vessels, and protect nerves from damage caused by local ischemia. Isorhynchophylline is an alkaloid compound isolated from Uncaria. It can lower blood pressure, relax blood vessels, and protect nerves from damage caused by local ischemia.

   

Jintan

(2S,3S,4S,5R,6R)-6-[(2S,3R,4S,5S,6S)-2-[[(3S,4aR,6aR,6bS,8aS,11S,12aR,14aR,14bS)-11-carboxy-4,4,6a,6b,8a,11,14b-heptamethyl-14-oxo-2,3,4a,5,6,7,8,9,10,12,12a,14a-dodecahydro-1H-picen-3-yl]oxy]-6-carboxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid;azane

C42H61O16.NH4 (839.4303)


Monoammonium glycyrrhizinate is an organic molecular entity. An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation. D000893 - Anti-Inflammatory Agents Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities. Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities.

   

Camalexin

3-(1,3-thiazol-2-yl)-1H-indole

C11H8N2S (200.0408)


Camalexin is an indole phytoalexin that is indole substituted at position 3 by a 1,3-thiazol-2-yl group. It has a role as a metabolite. It is an indole phytoalexin and a member of 1,3-thiazoles. Camalexin is a natural product found in Arabidopsis, Arabidopsis thaliana, and Camelina sativa with data available. Camalexin is found in fats and oils. Camalexin is an alkaloid from the leaves of Camelina sativa (false flax) infected by the fungus Alternaria brassica Alkaloid from the leaves of Camelina sativa (false flax) infected by the fungus Alternaria brassicae. Camalexin is found in fats and oils. An indole phytoalexin that is indole substituted at position 3 by a 1,3-thiazol-2-yl group. D000890 - Anti-Infective Agents Camalexin is a phytoalexin isolated from Camelina sativa (Cruciferae) with antibacterial, antifungal, antiproliferative and anticancer activities. Camalexin can induce reactive oxygen species (ROS) production[1][2][3]. Camalexin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=135531-86-1 (retrieved 2024-08-14) (CAS RN: 135531-86-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Petunidin

1-Benzopyrylium, 2-(3,4-dihydroxy-5-methoxyphenyl)-3,5,7-trihydroxy-, chloride

C16H13ClO7 (352.035)


Petunidin chloride is an anthocyanidin chloride that has petunidin as the cationic component. It has a role as a metabolite. An anthocyanidin chloride that has petunidin as the cationic component.

   

Dimethyl trisulfide

FLAMMABLE LIQUID, N.O.S. (DIMETHYL TRISULPHIDE)

C2H6S3 (125.9632)


Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, and is involved in the unpalatable aroma of aged beer and stale Japanese sake. It is a decomposition product from bacterial decomposition, including from the early stages of human decomposition, and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). These flies are attracted to the odor of fetid meat and help pollinate this plant. DMTS contributes to the foul odor given off by the fungus Phallus impudicus, also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, and contributes to the odor of human feces. Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097) (Wikipedia). Found in essential oil of hop (Humulus lupulus), garlic (Allium sativum), shallot (Allium cepa) and ramsons (Allium ursinum)and is also found in pineapple, raw cabbage, kohrabi, roasted filberts, roasted peanuts, edible mushrooms, brussel sprouts, fermented radish, Chinese cabbage, parsnips, scallop and squid. The major off-flavour principle of overcooked brassicas. Flavouring ingredient. Dimethyl trisulfide is an organic trisulfide. Dimethyl trisulfide is a natural product found in Psidium guajava, Allium chinense, and other organisms with data available. dimethyltrisulfide is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

   

Punicic_acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


(9Z,11E,13Z)-octadecatrienoic acid is a 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum). It has a role as an antineoplastic agent and a plant metabolite. Punicic acid is a natural product found in Trichosanthes nervifolia, Punica granatum, and other organisms with data available. Punicic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 5th, 7th and 9th positions from the methyl end, with these three bonds in the cis-, trans- and cis- configurations, respectively. See also: Pomegranate Seed Oil (has part). A 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum).

   

Azulene

InChI=1/C10H8/c1-2-5-9-7-4-8-10(9)6-3-1/h1-8

C10H8 (128.0626)


Azulene is a mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. It has a role as a plant metabolite and a volatile oil component. It is an ortho-fused bicyclic arene, a member of azulenes and a mancude carbobicyclic parent. Azulene is a natural product found in Anthemis cretica, Achillea millefolium, and other organisms with data available. Azulene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. (L10) A mancude carbobicyclic parent consisting of a cycloheptatriene and cyclopentadiene rings. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Same as: D09768 Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].

   

L-Ascorbic acid

(5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one

C6H8O6 (176.0321)


L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-81-7 (retrieved 2024-10-29) (CAS RN: 50-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Picrotoxinin

3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-8b-methyl-9-(1-methylethenyl)-, (1aR-(1a-alpha,2a-beta,3-beta,6-beta,6a-beta,8as*,8b-beta,9R*))-

C15H16O6 (292.0947)


Picrotoxinin belongs to the class of organic compounds known as furopyrans. These are organic polycyclic compounds containing a furan ring fused to a pyran ring. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Pyran a six-membered heterocyclic, non-aromatic ring, made up of five carbon atoms and one oxygen atom and containing two double bonds. Picrotoxinin is soluble (in water) and a very weakly acidic compound (based on its pKa). D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists Picrotoxinin is a picrotoxane sesquiterpenoid that is 3a,4,5,6,7,7a-hexahydro-1H-indene-3,7-dicarboxylic acid which is substituted at positions 3a, 6, and 7a by methyl, isopropenyl, and hydroxy groups, respectively; in which the double bond at position 2-3 has been epoxidised; and in which the carboxy groups at positions 3 and 7 have undergone gamma-lactone formation by O-alkylation to positions 4 and 5, respectively. A component of picrotoxin. It has a role as a plant metabolite, a GABA antagonist and a serotonergic antagonist. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone and a picrotoxane sesquiterpenoid. Picrotoxinin is a natural product found in Picrodendron baccatum and Anamirta cocculus with data available. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1]. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1].

   

Adenosine triphosphate

({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H16N5O13P3 (506.9957)


Adenosine triphosphate, also known as atp or atriphos, is a member of the class of compounds known as purine ribonucleoside triphosphates. Purine ribonucleoside triphosphates are purine ribobucleotides with a triphosphate group linked to the ribose moiety. Adenosine triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine triphosphate can be found in a number of food items such as lichee, alpine sweetvetch, pecan nut, and black mulberry, which makes adenosine triphosphate a potential biomarker for the consumption of these food products. Adenosine triphosphate can be found primarily in blood, cellular cytoplasm, cerebrospinal fluid (CSF), and saliva, as well as throughout most human tissues. Adenosine triphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine triphosphate is involved in several metabolic pathways, some of which include phosphatidylethanolamine biosynthesis PE(16:0/18:4(6Z,9Z,12Z,15Z)), carteolol action pathway, phosphatidylethanolamine biosynthesis PE(20:3(5Z,8Z,11Z)/15:0), and carfentanil action pathway. Adenosine triphosphate is also involved in several metabolic disorders, some of which include lysosomal acid lipase deficiency (wolman disease), phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), propionic acidemia, and the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, adenosine triphosphate is found to be associated with rachialgia, neuroinfection, stroke, and subarachnoid hemorrhage. Adenosine triphosphate is a non-carcinogenic (not listed by IARC) potentially toxic compound. Adenosine triphosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine triphosphate (ATP) is a complex organic chemical that participates in many processes. Found in all forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts to either the di- or monophosphates, respectively ADP and AMP. Other processes regenerate ATP such that the human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA . ATP is able to store and transport chemical energy within cells. ATP also plays an important role in the synthesis of nucleic acids. ATP can be produced by various cellular processes, most typically in mitochondria by oxidative phosphorylation under the catalytic influence of ATP synthase. The total quantity of ATP in the human body is about 0.1 mole. The energy used by human cells requires the hydrolysis of 200 to 300 moles of ATP daily. This means that each ATP molecule is recycled 2000 to 3000 times during a single day. ATP cannot be stored, hence its consumption must closely follow its synthesis (DrugBank). Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure (T3DB). ATP is an adenosine 5-phosphate in which the 5-phosphate is a triphosphate group. It is involved in the transportation of chemical energy during metabolic pathways. It has a role as a nutraceutical, a micronutrient, a fundamental metabolite and a cofactor. It is an adenosine 5-phosphate and a purine ribonucleoside 5-triphosphate. It is a conjugate acid of an ATP(3-). An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine-5-triphosphate is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Adenosine Triphosphate is an adenine nucleotide comprised of three phosphate groups esterified to the sugar moiety, found in all living cells. Adenosine triphosphate is involved in energy production for metabolic processes and RNA synthesis. In addition, this substance acts as a neurotransmitter. In cancer studies, adenosine triphosphate is synthesized to examine its use to decrease weight loss and improve muscle strength. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (A3367, A3368, A3369, A3370, A3371). Adenosine triphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (PMID: 15490415, 15129319, 14707763, 14696970, 11157473). 5′-ATP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-65-5 (retrieved 2024-07-01) (CAS RN: 56-65-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Orcinol

InChI=1/C7H8O2/c1-5-2-6(8)4-7(9)3-5/h2-4,8-9H,1H

C7H8O2 (124.0524)


Orcinol is a 5-alkylresorcinol in which the alkyl group is specified as methyl. It has a role as an Aspergillus metabolite. It is a 5-alkylresorcinol and a dihydroxytoluene. Orcinol is a natural product found in Calluna vulgaris, Rumex patientia, and other organisms with data available. A 5-alkylresorcinol in which the alkyl group is specified as methyl. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.272 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.266 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263 KEIO_ID O013

   

(+)-Epicatechin

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2S-cis)-

C15H14O6 (290.079)


(+)-epicatechin is a catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). It has a role as a cyclooxygenase 1 inhibitor and a plant metabolite. It is a catechin and a polyphenol. It is an enantiomer of a (-)-epicatechin. (+)-Epicatechin is a natural product found in Gambeya perpulchra, Pavetta owariensis, and other organisms with data available. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. ent-Epicatechin is found in many foods, some of which are tea, apple, star fruit, and common buckwheat. A catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). (+)-Epicatechin is found in apple. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Trehalose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Futoquinol

2,5-Cyclohexadien-1-one, 4-(2-(1,3-benzodioxol-5-yl)-1-methylethenyl)-4,5-dimethoxy-2-(2-propenyl)-, (E)-

C21H22O5 (354.1467)


Futoquinol is a monoterpenoid. Futoquinol is a natural product found in Piper wightii, Piper hymenophyllum, and other organisms with data available.

   

Ricinoleic acid

(Z,12R)-12-hydroxyoctadec-9-enoic acid

C18H34O3 (298.2508)


Ricinoleic acid is found in corn. Ricinoleic acid occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea) Ricinoleic acid (12-hydroxy-9-cis-octadecenoic acid) is an unsaturated omega-9 fatty acid that naturally occurs in mature Castor plant (Ricinus communis L., Euphorbiaceae) seeds or in sclerotium of ergot (Claviceps purpurea Tul., Clavicipitaceae). About 90\\% of the fatty acid content in castor oil is the triglyceride formed from ricinoleic acid. Ricinoleic acid is manufactured for industries by saponification or fractional distillation of hydrolyzed castor oil. The zinc salt is used in personal care products, such as deodorants Ricinoleic acid is a (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration.. It is a conjugate acid of a ricinoleate. Ricinoleic acid is a natural product found in Cephalocroton cordofanus, Crotalaria retusa, and other organisms with data available. See also: Polyglyceryl-6 polyricinoleate (monomer of); Polyglyceryl-4 polyricinoleate (monomer of); Polyglyceryl-5 polyricinoleate (monomer of) ... View More ... CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5632; ORIGINAL_PRECURSOR_SCAN_NO 5630 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5657; ORIGINAL_PRECURSOR_SCAN_NO 5655 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5730; ORIGINAL_PRECURSOR_SCAN_NO 5728 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5664 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5630; ORIGINAL_PRECURSOR_SCAN_NO 5629 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5662 Occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea)

   

Geraniol

cis-3,7-Dimethyl-2,6-octadien-1-ol, >=97\\%, FCC, FG

C10H18O (154.1358)


Geraniol, also known as beta-Geraniol, (E)-nerol (the isomer of nerol) or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. In plants, the biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. It is found as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. An alternate application has been found in the use of insect repellents or deterrants. Though it may repel mosquitoes, flies, lice, cockroaches, ants, and ticks, it is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Extensive testing by Dr. Jerry Butler at the University of Florida has shown geraniol to be one of natures most effective insect repellents (PMID:20836800). Nerol is the (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. It has a role as a volatile oil component, a plant metabolite and a fragrance. Nerol is a natural product found in Eupatorium cannabinum, Vitis rotundifolia, and other organisms with data available. Nerol is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of many essential oils including neroli and bergamot oils. In essential oils it is a minor component always accompanied by geraniol. Flavouring agent The (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

Cycloartenol

(1S,3R,6S,8R,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.01,3.03,8.012,16]octadecan-6-ol

C30H50O (426.3861)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

Solanidine

(1S,2S,7S,10R,11S,14S,15R,16S,17R,20S,23S)-10,14,16,20-tetramethyl-22-azahexacyclo[12.10.0.02,11.05,10.015,23.017,22]tetracos-4-en-7-ol

C27H43NO (397.3344)


Solanidine is a steroid alkaloid fundamental parent, a 3beta-hydroxy-Delta(5)-steroid and a solanid-5-en-3-ol. It has a role as a plant metabolite and a toxin. It is a conjugate base of a solanidine(1+). Solanidine is a natural product found in Fritillaria delavayi, Fritillaria tortifolia, and other organisms with data available. Alkaloid from potato (Solanum tuberosum). Glycosides, (especies Solanines and chaconine) are trace toxic constits. of potato tubers (especies greened tubers), and interbreeding of potatoes with wild strains may increase their concn. or introduce other more toxic, solanidine glycosides Solanidine is a steroidal alkaloid, and its glycosides have been reported to have caused poisoning in man and animals. Solanidine is present in sera of healthy individuals and in amounts dependent on their dietary potato consumption. (PMID: 4007882). Solanidine is a cholestane alkaloid isolated from several potato species including Solanum demissum, Solanum acaule, and Solanum tuberosum. Solanidine can inhibit proliferation and exhibit obvious antitumor effect[1]. Solanidine is a cholestane alkaloid isolated from several potato species including Solanum demissum, Solanum acaule, and Solanum tuberosum. Solanidine can inhibit proliferation and exhibit obvious antitumor effect[1].

   

2-Hydroxyacetophenone

2-Hydroxy-1-phenylethan-1-one

C8H8O2 (136.0524)


2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2]. 2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2].

   

alpha-Terpinene

InChI=1/C10H16/c1-8(2)10-6-4-9(3)5-7-10/h4,6,8H,5,7H2,1-3H

C10H16 (136.1252)


Alpha-Terpinene is one of four isomers of terpinene (the other three being beta terpinene, gamma terpenine, and delta terpinine or terpimolene) that differ in the position of carbon-carbon double bonds. Alpha-Terpinene belongs to the class of organic compounds known as menthane monoterpenes. These are monoterpenes with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpinene is a naturally occurring monoterpene found in allspice, cardamom, and marjoram. alpha-Terpinene is a constituent of many essential oils with oil from Litsea ceylanica being is a major source (20\\\\%) of it. alpha-Terpinene has been found in Citrus, Eucalyptus and Juniperus species, and cannabis plants (PMID:6991645 ). ±-Terpinene is a flavouring agent and is produced industrially by acid-catalyzed rearrangement of ±-pinene. It has perfume and flavoring properties but is mainly used to confer a pleasant odor to industrial fluids. Alpha-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. It has a role as a volatile oil component and a plant metabolite. It is a monoterpene and a cyclohexadiene. alpha-Terpinene is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. One of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. Alpha-terpinene, also known as 1-isopropyl-4-methyl-1,3-cyclohexadiene or 1-methyl-4-(1-methylethyl)-1,3-cyclohexadiene, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, alpha-terpinene is considered to be an isoprenoid lipid molecule. Alpha-terpinene is a camphoraceous, citrus, and herbal tasting compound and can be found in a number of food items such as summer savory, cabbage, pot marjoram, and wild celery, which makes alpha-terpinene a potential biomarker for the consumption of these food products. Alpha-terpinene can be found primarily in saliva. Alpha-terpinene exists in all eukaryotes, ranging from yeast to humans. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].

   

Paraxanthine

3,7-Dihydro-1,7-dimethyl-1H-purine-2,6-dione

C7H8N4O2 (180.0647)


Paraxanthine, also known as p-xanthine, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Paraxanthine exists in all living organisms, ranging from bacteria to humans. Within humans, paraxanthine participates in a number of enzymatic reactions. In particular, paraxanthine and formaldehyde can be biosynthesized from caffeine; which is catalyzed by the enzyme cytochrome P450 1A2. In addition, paraxanthine and acetyl-CoA can be converted into 5-acetylamino-6-formylamino-3-methyluracil through its interaction with the enzyme arylamine N-acetyltransferase 2. In humans, paraxanthine is involved in caffeine metabolism. 1,7-dimethylxanthine (paraxanthine) is the preferential path of caffeine metabolism in humans. Acquisition and generation of the data is financially supported in part by CREST/JST. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.

   

Cyprodinil

4-Cyclopropyl-6-methyl-N-phenyl-2-pyrimidinamine, 9ci

C14H15N3 (225.1266)


CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9314; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9293; ORIGINAL_PRECURSOR_SCAN_NO 9292 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9313; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9269; ORIGINAL_PRECURSOR_SCAN_NO 9268 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9257; ORIGINAL_PRECURSOR_SCAN_NO 9256 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9257 CONFIDENCE standard compound; EAWAG_UCHEM_ID 148 CONFIDENCE standard compound; INTERNAL_ID 2569 KEIO_ID C172; [MS2] KO008908 Cyprodinil is a fungicide. Cyprodinil is a fungicide KEIO_ID C172

   

Fenpropimorph

(2R,6S)-4-[(2S)-3-[4-(1,1-Dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethylmorpholine

C20H33NO (303.2562)


Fenpropimorph (CAS: 67564-91-4) belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. Fenpropimorph is possibly neutral. Fenpropimorph is an agricultural fungicide used against powdery mildews on sugar beets, beans, and leek. Agricultural fungicide used against powdery mildews on sugar beet, beans and leeks CONFIDENCE standard compound; INTERNAL_ID 8406 CONFIDENCE standard compound; INTERNAL_ID 2573 D016573 - Agrochemicals D010575 - Pesticides

   

Prometryn

N-[4-(methylsulfanyl)-6-[(propan-2-yl)imino]-1,2,5,6-tetrahydro-1,3,5-triazin-2-ylidene]propan-2-amine

C10H19N5S (241.1361)


CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8564; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8550; ORIGINAL_PRECURSOR_SCAN_NO 8549 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8580; ORIGINAL_PRECURSOR_SCAN_NO 8577 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8544; ORIGINAL_PRECURSOR_SCAN_NO 8542 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8538 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8686; ORIGINAL_PRECURSOR_SCAN_NO 8681 CONFIDENCE standard compound; INTERNAL_ID 4037 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Spiroxamine

8-(1,1-Dimethylethyl)-N-ethyl-N-propyl-1,4-dioxaspiro(4.5)decane-2-methanamine

C18H35NO2 (297.2668)


CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1800 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2789 CONFIDENCE standard compound; INTERNAL_ID 8403 CONFIDENCE standard compound; INTERNAL_ID 2571 CONFIDENCE standard compound; INTERNAL_ID 4019 D016573 - Agrochemicals D010575 - Pesticides

   

2,4-Quinolinediol

4-hydroxy-1,2-dihydroquinolin-2-one

C9H7NO2 (161.0477)


   

Tryptophol

3-(2-Hydroxyethyl)-1H-indole

C10H11NO (161.0841)


Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

   

3,4-Dihydroxyphenylglycol

4-(1,2-dihydroxyethyl)benzene-1,2-diol

C8H10O4 (170.0579)


3,4-Dihydroxyphenylglycol, also known as DHPG or DOPEG, belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-Dihydroxyphenylglycol is an extremely weak basic (essentially neutral) compound. 3,4-Dihydroxyphenylglycol exists in all living organisms, ranging from bacteria to plants to humans. It is a potent antioxidant (PMID: 30007612). In mammals, 3,4-Dihydroxyphenylglycol is the primary metabolite of norepinephrine and is generated through the action of the enzyme monoamine oxidase (MAO). DHPG is then further metabolized by the enzyme Catechol-O-methyltransferase (COMT) to 3-methoxy-4-hydroxyphenylglycol (MHPG). Within humans, 3,4-dihydroxyphenylglycol participates in a number of enzymatic reactions. In particular, 3,4-dihydroxyphenylglycol can be biosynthesized from 3,4-dihydroxymandelaldehyde; which is mediated by the enzyme alcohol dehydrogenase 1A. In addition, 3,4-dihydroxyphenylglycol and guaiacol can be converted into vanylglycol and pyrocatechol through its interaction with the enzyme catechol O-methyltransferase. Outside of the human body, 3,4-dihydroxyphenylglycol is found, on average, in the highest concentration in olives. High levels of DHPG (up to 368 mg/kg of dry weight) have been found in the pulp of natural black olives. This could make 3,4-dihydroxyphenylglycol a potential biomarker for the consumption of olives and olive oil. 3,4-Dihydroxyphenylglycol has been linked to Menkes disease (PMID: 19234788). DHPG level are lower in Menkes patients (3.57 ± 0.40 nM) than healthy infants 8.91 ± 0.77 nM). Menkes disease (also called “kinky hair disease”) is an X-linked recessive neurodevelopmental disorder caused by defects in a gene that encodes a copper-transporting ATPase (ATP7A). Affected infants typically appear healthy at birth and show normal neurodevelopment for 2-3 months. Subsequently there is loss of milestones (e.g., smiling, visual tracking, head control) and death in late infancy or childhood (PMID: 19234788). 3,4-Dihydroxyphenylglycol (DOPEG) is a normal norepinephrine metabolite present in CSF, plasma and urine in humans (PMID 6875564). In healthy individuals there is a tendency for free DOPEG to increase and for conjugated DOPEG to decrease with age; plasmatic DOPEG levels are significantly lower in depressed patients as compared to healthy controls (PMID 6671452). DL-1-(3,4-Dihydroxyphenyl)-1,2-ethanediol is found in olive. 4-(1,2-Dihydroxyethyl)benzene-1,2-diol, a normal norepinephrine metabolite, is found to be associated with Menkes syndrome.

   

3-Aminophenol

3-Aminophenol monopotassium salt

C6H7NO (109.0528)


   

3-Succinoylpyridine

4-OXO-4-(PYRIDIN-3-YL)BUTANOIC ACID

C9H9NO3 (179.0582)


3-succinoylpyridine is the byproduct of tobacco-specific N-nitrosamines generated by the enzyme cytochrome P 450 which catalyzes methylnitrosaminopyridylbutanone hydroxylation. (PMID: 11368333). This nicotine metabolite is commonly found in the urine of smokers. (PMID: 14581070). 3-succinoylpyridine is the byproduct of tobacco-specific N-nitrosamines generated by the enzyme cytochrome P 450 which catalyzes methylnitrosaminopyridylbutanone hydroxylation. (PMID: 11368333)

   

3-ureidopropionate

3-[(Aminocarbonyl)amino]propanoic acid

C4H8N2O3 (132.0535)


Ureidopropionic acid, also known as 3-ureidopropanoate or N-carbamoyl-beta-alanine, belongs to the class of organic compounds known as ureas. Ureas are compounds containing two amine groups joined by a carbonyl (C=O) functional group. Ureidopropionic acid is an intermediate in the metabolism of uracil. More specifically, it is a breakdown product of dihydrouracil and is produced by the enzyme dihydropyrimidase. It is further decomposed into beta-alanine via the enzyme beta-ureidopropionase. Ureidopropionic acid is essentially a urea derivative of beta-alanine. High levels of ureidopropionic acid are found in individuals with beta-ureidopropionase (UP) deficiency (PMID: 11675655). Enzyme deficiencies in pyrimidine metabolism are associated with a risk for severe toxicity against the antineoplastic agent 5-fluorouracil. Ureidopropionic acid has been detected, but not quantified in, several different foods, such as gram beans, broccoli, climbing beans, oriental wheat, and mandarin orange (clementine, tangerine). This could make ureidopropionic acid a potential biomarker for the consumption of these foods. N-Carbamoyl-β-alanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=462-88-4 (retrieved 2024-07-01) (CAS RN: 462-88-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ureidopropionic acid (3-Ureidopropionic acid) is an intermediate in the metabolism of uracil.

   

3-Hydroxybenzoic acid

3-Hydroxybenzoic acid, copper (2+) (1:1) salt

C7H6O3 (138.0317)


3-Hydroxybenzoic acid, also known as 3-hydroxybenzoate or 3-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3-Hydroxybenzoic acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 3-hydroxybenzoic acid is found, on average, in the highest concentration in american cranberries and beers. 3-hydroxybenzoic acid has also been detected, but not quantified in a few different foods, such as bilberries, citrus, and corns. As well, 3-Hydroxybenzoic Acid can be found in the pineapple fruit. It can also be formed by a Pseudomonas species from 3-Chlorobenzoic acid. 3-Hydroxybenzoic acid is a monohydroxybenzoic acid. 3-Hydroxybenzoic acid can be obtained by the alkali fusion of 3-sulfobenzoic acid between 210-220 °C. 3-Hydroxybenzoic acid is a component of castoreum, the exudate from the castor sacs of the mature North American beaver (Castor canadensis) and the European beaver (Castor fiber), used in perfumery. Present in fruits. Isolated from Citrus paradisi (grapefruit) CONFIDENCE standard compound; ML_ID 13 KEIO_ID H019 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.

   

Argininosuccinic acid disodium

(2S)-2-[[N-[(4S)-4-amino-4-carboxybutyl]carbamimidoyl]amino]butanedioic acid

C10H18N4O6 (290.1226)


Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the argininosuccinate lyase enzyme can lead to argininosuccinate lyase deficiency, which is an inborn error of metabolism. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (argininosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the arginosuccinate lyase enzyme can lead to arginosuccinate lyase deficiency. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (arginosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. [HMDB] KEIO_ID A039; [MS2] KO008844 KEIO_ID A039

   

ST 24:4;O5

1beta,3beta,14beta-trihydroxy-5beta-bufa-20,22-dienolide

C24H34O5 (402.2406)


C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D01693

   

Salicyluric acid

2-[(2-hydroxyphenyl)formamido]acetic acid

C9H9NO4 (195.0532)


Salicyluric acid is an aryl glycine conjugate formed by the body to eliminate excess salicylates, including aspirin. Aspirin is rapidly hydrolysed to salicylic acid which is further metabolized to various compounds, including salicyluric acid (SU) as well as various acyl and phenolic glucuronides, and hydroxylated metabolites. SU is the major metabolite of SA excreted in urine and it is present in the urine of people who have not taken salicylate drugs, although it has no anti-inflammatory effects in humans or in animals. More salicyluric acid (SU) is excreted in the urine of vegetarians than in non-vegetarians, primarily because fruits and vegetables are important sources of dietary salicylates. However, significantly less (10-15X) SU is excreted by vegetarians than individuals taking low-dose aspirin (PMID: 12944546). The induction of the salicyluric acid formation is one of the saturable pathways of salicylate elimination. The formation of the methyl ester of salicyluric acid is observed during the quantitation of salicyluric acid and other salicylate metabolites in urine by high-pressure liquid chromatography. This methyl ester formation causes artificially low values for salicyluric acid and high values for salicylic acid. (PMID: 6101164, 6857178). Salicyluric acid has been found to be a microbial metabolite. Constituent of milk KEIO_ID H028 Salicyluric acid is an endogenous metabolite.

   

Panthenol

D(+)-alpha,gamma-Dihydroxy-N-(3-hydroxypropyl)-beta,beta-dimethylbutyramide

C9H19NO4 (205.1314)


In cosmetics, panthenol (also called pantothenol) is a humectant, emollient, and moisturizer. It binds to hair follicles readily and is a frequent component of shampoos and hair conditioners (in concentrations of 0.1-1\\\%). It coats the hair and seals its surface, lubricating follicles and making strands appear shiny. Panthenol (specifically D-panthenol or dexpanthenol) is the alcohol analog of pantothenic acid (vitamin B5), and is thus the provitamin of B5. In organisms, it is quickly oxidized into pantothenate. Panthenol is a viscous transparent liquid at room temperature, but salts of pantothenic acid (for example sodium pantothenate) are powders (typically white). It is very soluble in water, alcohol, and propylene glycol, soluble in ether and chloroform, and only slightly soluble in glycerin. D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants A - Alimentary tract and metabolism > A11 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Dietary supplement D-Panthenol is the biologically-active alcohol of pantothenic acid, which leads to an elevation in the amount of coenzyme A in the cell.

   

Parathion

p-Nitrophenol O-ester with O,O-diethylphosphorothioic acid

C10H14NO5PS (291.033)


Parathion is a highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. [HMDB] C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Pipecolic acid

Pipecolic acid, 14C-labeled CPD, (+,-)-isomer

C6H11NO2 (129.079)


Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients (PMID 12705501). Pipecolic acid is found to be associated with adrenoleukodystrophy, infantile Refsum disease, and peroxisomal biogenesis defect, which are also inborn errors of metabolism. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients. (PMID 12705501) [HMDB]. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P048 L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

Baclofen

beta-(Aminomethyl)-4-chlorobenzenepropanoic acid

C10H12ClNO2 (213.0557)


Baclofen is a gamma-amino-butyric acid (GABA) derivative used as a skeletal muscle relaxant. Baclofen stimulates GABA-B receptors leading to decreased frequency and amplitude of muscle spasms. It is especially useful in treating muscle spasticity associated with spinal cord injury. It appears to act primarily at the spinal cord level by inhibiting spinal polysynaptic afferent pathways and, to a lesser extent, monosynaptic afferent pathways. M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1]. Baclofen, a lipophilic derivative of γ-aminobutyric acid (GABA), is an orally active, selective metabotropic GABAB receptor (GABABR) agonist. Baclofen mimics the action of GABA and produces slow presynaptic inhibition through the GABAB receptor. Baclofen has high blood brain barrier penetrance. Baclofen has the potential for muscle spasticity research[1][2][3].

   

Tolmetin

2-[1-methyl-5-(4-methylbenzoyl)-1H-pyrrol-2-yl]acetic acid

C15H15NO3 (257.1052)


Tolmetin is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory agent (anti-inflammatory agents, NON-steroidal) similar in mode of action to indomethacin. [PubChem]The mode of action of tolmetin is not known. However, studies in laboratory animals and man have demonstrated that the anti-inflammatory action of tolmetin is not due to pituitary-adrenal stimulation. Tolmetin inhibits prostaglandin synthetase in vitro and lowers the plasma level of prostaglandin E in man. This reduction in prostaglandin synthesis may be responsible for the anti-inflammatory action. Tolmetin does not appear to alter the course of the underlying disease in man. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents KEIO_ID T044; [MS2] KO009288 D004791 - Enzyme Inhibitors KEIO_ID T044

   

Triethanolamine

Triethanolamine tartrate (1:1), (R-(r*,r*))-isomer

C6H15NO3 (149.1052)


Triethanolamine, also known as H3TEA or trolamine, belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. A 2009 study stated that patch test reactions reveal a slight irritant potential instead of a true allergic response in several cases, and also indicated the risk of skin sensitization to TEOA seems to be very low. Triethanolamine is a drug. Triethanolamine is a potentially toxic compound. Triethanolamine aka Trolamine (abbr. as TEOA to distinguish it from TEA which is for triethylamine) is a viscous organic compound that is both a tertiary amine and a triol. TEOA is used to provide a sensitivity boost to silver-halide-based holograms, and also as a swelling agent to color shift holograms. Approximately 150,000 tonnes were produced in 1999. D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID T022

   

N-Acetyltryptophan

(2S)-2-[(1-hydroxyethylidene)amino]-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004)


N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\\% of all human proteins and 68\\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.

   

Flonicamid

Pesticide4_Flonicamid_C9H6F3N3O_N-(Cyanomethyl)-4-(trifluoromethyl)nicotinamide

C9H6F3N3O (229.0463)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2943 EAWAG_UCHEM_ID 2943; CONFIDENCE standard compound

   

Actara

Thiamethoxam

C8H10ClN5O3S (291.0193)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5832; ORIGINAL_PRECURSOR_SCAN_NO 5830 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5856; ORIGINAL_PRECURSOR_SCAN_NO 5853 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5865; ORIGINAL_PRECURSOR_SCAN_NO 5862 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5851; ORIGINAL_PRECURSOR_SCAN_NO 5850 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5874; ORIGINAL_PRECURSOR_SCAN_NO 5871 CONFIDENCE standard compound; INTERNAL_ID 1241; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5871; ORIGINAL_PRECURSOR_SCAN_NO 5868 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2941 CONFIDENCE standard compound; INTERNAL_ID 2595 CONFIDENCE standard compound; INTERNAL_ID 8471

   

Garlon

Triclopyr-(3,5,6-trichloro-2-pyridl-oxyacetic acid)

C7H4Cl3NO3 (254.9257)


CONFIDENCE standard compound; INTERNAL_ID 59; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4237; ORIGINAL_PRECURSOR_SCAN_NO 4232 CONFIDENCE standard compound; INTERNAL_ID 59; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4245; ORIGINAL_PRECURSOR_SCAN_NO 4242 CONFIDENCE standard compound; INTERNAL_ID 59; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4244; ORIGINAL_PRECURSOR_SCAN_NO 4241 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2946 EAWAG_UCHEM_ID 2946; CONFIDENCE standard compound D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

dGDP

[({[(2R,3S,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.0294)


dGDP is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of GTP has been removed, most likely by hydrolysis . [HMDB]. dGDP is found in many foods, some of which are tea, black chokeberry, european plum, and roman camomile. dGDP is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that one of the phosphoryl groups of GTP has been removed, most likely by hydrolysis (Wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2'-Deoxyadenosine 5'-phosphate

{[(2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O6P (331.0682)


Deoxyadenosine monophosphate (dAMP), also known as deoxyadenylic acid or deoxyadenylate in its conjugate acid and conjugate base forms, respectively, is a derivative of the common nucleic acid AMP, or adenosine monophosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been reduced to just a hydrogen atom (hence the "deoxy-" part of the name). Additionally, the monophosphate of the name indicates that two of the phosphoryl groups of GTP have been removed, most likely by hydrolysis. It is a monomer used in DNA. Adenosine is a nucleoside comprised of adenine attached to a ribose (ribofuranose) moiety via a -N9-glycosidic bond. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1]. 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1].

   

Threonic acid

2,3,4-Trihydroxy-(threo)-butanoic acid

C4H8O5 (136.0372)


Threonic acid, also known as threonate, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in the treatment of androgenic alopecia (PMID:21034532). Threonic acid is probably derived from glycated proteins or from degradation of ascorbic acid. It is a normal component in aqueous humour and blood (PMID:10420182). Threonic acid is a substrate of L-threonate 3-dehydrogenase (EC 1.1.1.129) in the ascorbate and aldarate metabolism pathway (KEGG). It has been found to be a microbial metabolite (PMID:20615997). L-threonic acid, also known as L-threonate or L-threonic acid magnesium salt, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. L-threonic acid is soluble (in water) and a weakly acidic compound (based on its pKa). L-threonic acid can be found in a number of food items such as buffalo currant, yam, purslane, and bayberry, which makes L-threonic acid a potential biomarker for the consumption of these food products. L-threonic acid can be found primarily in blood. Threonic acid is a sugar acid derived from threose. The L-isomer is a metabolite of ascorbic acid (vitamin C). One study suggested that because L-threonate inhibits DKK1 expression in vitro, it may have potential in treatment of androgenic alopecia .

   

Taurolithocholate 3-sulfate

2-[[(4R)-4-[(3R,5R,10S,13R,17R)-10,13-dimethyl-3-sulfooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid

C26H45NO8S2 (563.2586)


Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids KEIO_ID T072

   

M-Coumaric acid

trans-3-(m-Hydroxyphenyl)-2-propenoic acid

C9H8O3 (164.0473)


m-Coumaric acid, also known as 3-coumarate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. m-Coumaric acid exists in all living organisms, ranging from bacteria to humans. m-Coumaric acid (CAS: 588-30-7) is a polyphenol metabolite from caffeic acid, formed by the gut microflora. Outside of the human body, m-Coumaric acid is found, on average, in the highest concentration within a few different foods, such as olives, corns, and beers. m-Coumaric acid has also been detected, but not quantified in several different foods, such as carrots, strawberries, grape wines, garden tomato, and bilberries. MCT-mediated absorption of phenolic compounds per se and their colonic metabolites would exert a significant impact on human health (PMID:16870009, 15479001, 15479001). m-Coumaric acid is transported by the monocarboxylic acid transporter (MCT). The amount of this compound in human biofluids is diet-dependant. m-Coumaric acid is detected after the consumption of whole grain. Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. m-Coumaric acid is found in many foods, some of which are corn, garden tomato (variety), grape wine, and beer. Acquisition and generation of the data is financially supported in part by CREST/JST. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.

   

Glucaric acid

(2S,3S,4S,5R)-2,3,4,5-tetrahydroxyhexanedioic acid

C6H10O8 (210.0376)


Glucaric acid, also known as glucarate or D-saccharic acid, belongs to the class of organic compounds known as glucuronic acid derivatives. Glucuronic acid derivatives are compounds containing a glucuronic acid moiety (or a derivative), which consists of a glucose moiety with the C6 carbon oxidized to a carboxylic acid. Glucaric acid is a sugar acid derived from D-glucose in which both the aldehydic carbon atom and the carbon atom bearing the primary hydroxyl group are oxidized to carboxylic acid groups. D-glucaric acid is found in fruits, vegetables, and mammals. The highest concentrations of glucaric acid are found in grapefruits, apples, oranges, and cruciferous vegetables (PMID: 18772850). Glucaric acid is produced through the oxidation of glucose. Cytochrome P450 is thought to be responsible for the production of D-glucaric acid in vivo (PMID: 3779687). In mammals, D-glucaric acid and D-glucaro-l,4-lactone are also known end-products of the D-glucuronic acid pathway (PMID: 18772850). Glucaric is available as a dietary supplement in the form of calcium D-glucarate and has been studied for therapeutic purposes including cholesterol reduction and cancer chemotherapy (PMID: 9101079). D-Glucaric acid has a potential use as a building block for a number of polymers, including new nylons and hyperbranched polyesters. D-glucaric acid produced from D-glucose has been successfully utilized to produce a hydroxylated nylon. A sugar acid derived from D-glucose in which both the aldehydic carbon atom and the carbon atom bearing the primary hydroxyl group are oxidized to carboxylic acid groups. [HMDB] KEIO_ID S025

   

D-myo-Inositol 1,4-bisphosphate

{[(1R,2R,3R,4R,5R,6S)-2,3,5,6-tetrahydroxy-4-(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H14O12P2 (339.9961)


D-myo-Inositol 1,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). D-myo-Inositol 1,4-bisphosphate is a substrate for several proteins including inositol polyphosphate 1-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, skeletal muscle and kidney enriched inositol phosphatase, and type I inositol-1,4,5-trisphosphate 5-phosphatase. 1D-Myo-inositol 1,4-bisphosphate is a substrate for Inositol polyphosphate 1-phosphatase, Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, Skeletal muscle and kidney enriched inositol phosphatase and Type I inositol-1,4,5-trisphosphate 5-phosphatase. [HMDB]

   

Dibutyl succinate

2,4-Dinitrofluorobenzene Sulfonic Acid

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

(±)-2-(1-Methylpropyl)-4,6-dinitrophenol

2-butan-2-yl-4,6-dinitrophenol

C10H12N2O5 (240.0746)


CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5273; ORIGINAL_PRECURSOR_SCAN_NO 5272 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5303; ORIGINAL_PRECURSOR_SCAN_NO 5302 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5259; ORIGINAL_PRECURSOR_SCAN_NO 5256 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4695; ORIGINAL_PRECURSOR_SCAN_NO 4691 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4674; ORIGINAL_PRECURSOR_SCAN_NO 4673 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5235; ORIGINAL_PRECURSOR_SCAN_NO 5234 D010575 - Pesticides > D005659 - Fungicides, Industrial > D004140 - Dinitrophenols CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8186 CONFIDENCE standard compound; EAWAG_UCHEM_ID 257 CONFIDENCE standard compound; INTERNAL_ID 2330 D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D006540 - Herbicides Acaricide and weed kille D016573 - Agrochemicals

   

Bendroflumethiazide

+--3-Benzyl-3,4-dihydro-6-(trifluoromethyl)-2H-1,2,4-benzothiadiazine-7-sulphonamide 1,1-dioxide

C15H14F3N3O4S2 (421.0378)


Bendroflumethiazide is only found in individuals that have used or taken this drug. It is a thiazide diuretic with actions and uses similar to those of hydrochlorothiazide. It has been used in the treatment of familial hyperkalemia, hypertension, edema, and urinary tract disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p810)As a diuretic, bendroflumethiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like bendroflumethiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of bendroflumethiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

Betaxolol

1-(4-(2-(Cyclopropylmethoxy)ethyl)phenoxy)-3-((1-methylethyl)amino)-2-propanol

C18H29NO3 (307.2147)


Betaxolol is only found in individuals that have used or taken this drug. It is a cardioselective beta-1-adrenergic antagonist with no partial agonist activity. [PubChem]Betaxolol selectively blocks catecholamine stimulation of beta(1)-adrenergic receptors in the heart and vascular smooth muscle. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Betaxolol can also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles, causing bronchospasm. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

Biperiden

1-{bicyclo[2.2.1]hept-5-en-2-yl}-1-phenyl-3-(piperidin-1-yl)propan-1-ol

C21H29NO (311.2249)


A muscarinic antagonist that has effects in both the central and peripheral nervous systems. It has been used in the treatment of arteriosclerotic, idiopathic, and postencephalitic parkinsonism. It has also been used to alleviate extrapyramidal symptoms induced by phenothiazine derivatives and reserpine. [PubChem] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

Aristospan

Triamcinolone hexacetonide

C30H41FO7 (532.2836)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

spirodiclofen

Pesticide7_Spirodiclofen_C21H24Cl2O4_Butanoic acid, 2,2-dimethyl-, 3-(2,4-dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl ester

C21H24Cl2O4 (410.1052)


   

Sparteine

(1S,2R,9S,10S)-7,15-diazatetracyclo[7.7.1.02,7.010,15]heptadecane

C15H26N2 (234.2096)


Sparteine is a quinolizidine alkaloid and a quinolizidine alkaloid fundamental parent. Sparteine is a plant alkaloid derived from Cytisus scoparius and Lupinus mutabilis which may chelate calcium and magnesium. It is a sodium channel blocker, so it falls in the category of class 1a antiarrhythmic agents. Sparteine is not currently FDA-approved for human use, and its salt, sparteine sulfate, is one of the products that have been withdrawn or removed from the market for reasons of safety or effectiveness. Sparteine is a natural product found in Ormosia coarctata, Thermopsis chinensis, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. See also: Cytisus scoparius flowering top (part of). C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 39 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 32 INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395 beta-Isosparteine is a natural product found in Ulex airensis, Ulex densus, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (+)-Sparteine is a natural product found in Baptisia australis, Dermatophyllum secundiflorum, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (-)-Sparteine is a natural alkaloid isolated from beans. (-)-Sparteine is a natural alkaloid isolated from beans. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.

   
   

Phenthoate

ethyl 2-{[dimethoxy(sulfanylidene)-λ⁵-phosphanyl]sulfanyl}-2-phenylacetate

C12H17O4PS2 (320.0306)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Pendimethalin

N-(1-Ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine

C13H19N3O4 (281.1375)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3116 CONFIDENCE standard compound; INTERNAL_ID 2549 CONFIDENCE standard compound; INTERNAL_ID 4059 CONFIDENCE standard compound; INTERNAL_ID 8435 D010575 - Pesticides > D006540 - Herbicides KEIO_ID P183; [MS2] KO009157 KEIO_ID P183; [MS3] KO009158 D016573 - Agrochemicals KEIO_ID P183

   

Orphenadrine

N,N-Dimethyl-2-[(O-methyl-alpha-phenylbenzyl)oxy]ethylamine

C18H23NO (269.178)


Orphenadrine is only found in individuals that have used or taken this drug. It is a muscarinic antagonist used to treat drug-induced parkinsonism and to relieve pain from muscle spasm. [PubChem]Orphenadrine binds and inhibits both histamine H1 receptors and NMDA receptors. It restores the motor disturbances induced by neuroleptics, in particular the hyperkinesia. The dopamine deficiency in the striatum increases the stimulating effects of the cholinergic system. This stimulation is counteracted by the anticholinergic effect of orphenadrine. It may have a relaxing effect on skeletal muscle spasms and it has a mood elevating effect. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065686 - Cytochrome P-450 CYP2B6 Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant CONFIDENCE standard compound; EAWAG_UCHEM_ID 3276

   

4-Chlorophenoxyacetic acid

4-Chlorophenoxyacetic acid, potassium salt

C8H7ClO3 (186.0084)


CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3757; ORIGINAL_PRECURSOR_SCAN_NO 3752 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3829; ORIGINAL_PRECURSOR_SCAN_NO 3825 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4159; ORIGINAL_PRECURSOR_SCAN_NO 4154 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3737; ORIGINAL_PRECURSOR_SCAN_NO 3736 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4074; ORIGINAL_PRECURSOR_SCAN_NO 4072 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4080; ORIGINAL_PRECURSOR_SCAN_NO 4076 KEIO_ID C151

   

Fenpropidin

1-(2-Methyl-3-(4-(2-methyl-2-propanyl)phenyl)propyl)piperidine

C19H31N (273.2456)


CONFIDENCE standard compound; INTERNAL_ID 8461 CONFIDENCE standard compound; INTERNAL_ID 2589 D016573 - Agrochemicals D010575 - Pesticides

   

P-Toluenesulfonamide

4-Toluenesulfonamide, mercury (+2) salt (2:1)

C7H9NO2S (171.0354)


CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4179; ORIGINAL_PRECURSOR_SCAN_NO 4178 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4160; ORIGINAL_PRECURSOR_SCAN_NO 4155 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4177; ORIGINAL_PRECURSOR_SCAN_NO 4175 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4145; ORIGINAL_PRECURSOR_SCAN_NO 4142 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4171; ORIGINAL_PRECURSOR_SCAN_NO 4169 CONFIDENCE standard compound; INTERNAL_ID 926; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4164; ORIGINAL_PRECURSOR_SCAN_NO 4159 C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3618 CONFIDENCE standard compound; INTERNAL_ID 4185 CONFIDENCE standard compound; INTERNAL_ID 2869 CONFIDENCE standard compound; INTERNAL_ID 8805 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Difloxacin

1-(4-Fluorophenyl)-6-fluoro-7-(4-methyl-1-piperazinyl)-1,4-dihydro-4-oxoquinoline-3-carboxylic acid

C21H19F2N3O3 (399.1394)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3666 CONFIDENCE standard compound; INTERNAL_ID 1028

   

Nafcillin

(2S,5R,6R)-6-{[(2-ethoxynaphthalen-1-yl)carbonyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C21H22N2O5S (414.1249)


Nafcillin is only found in individuals that have used or taken this drug. It is a semi-synthetic antibiotic related to penicillin. [PubChem]Penicillinase-resistant penicillins exert a bactericidal action against penicillin-susceptible microorganisms during the state of active multiplication. All penicillins inhibit the biosynthesis of the bacterial cell wall. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3206

   

Chlorpyrifos-methyl

Phosphorothioic acid, O,O-dimethyl O-(3,5,6-trichloro-2-pyridinyl) ester

C7H7Cl3NO3PS (320.895)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2951

   

trifluralin

alpha,alpha,alpha-Trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine

C13H16F3N3O4 (335.1093)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 123 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

4,4'-Methylenedianiline

4,4-Diaminodiphenylmethane, sodium chloride (3:1)

C13H14N2 (198.1157)


4,4’-Methylenedianiline (MDA) is an industrial chemical that is produced and used industrially as a precursor to polyamides, epoxy resins, and polyurethane foams (PMID: 20621954). It is a primary aromatic amine, belonging to the family of compounds known as Diphenylmethanes. Diphenylmethanes are compounds consisting of methane with two of the hydrogen atoms replaced by phenyl groups. MDA is used mainly as a precursor to 4,4 ́-methylene diphenyl diisocyanate (MDI), which is a precursor to many polyurethane foams. To generate MDI, which is a highly reactive isocyanate, MDA is treated with phosgene. Workers exposed to MDI may develop sensitization, leading to occupational asthma. MDI is metabolized in the body and secreted in the urine as MDA, Therefore MDA is a urinary biomarker of MDI exposure. On its own, MDA is a known animal carcinogen, and human hepatotoxin. MDA produces genotoxic effects by forming DNA adducts in the liver and inducing DNA damage to hepatocytes (PMID: 32038824). The Occupational Safety and Health Administration has set a permissible exposure limit at 0.01 ppm over an eight-hour time-weighted average, and a short-term exposure limit at 0.10 ppm. D009676 - Noxae > D002273 - Carcinogens

   

Hexythiazox

Pesticide5_Hexythiazox_C17H21ClN2O2S_(4S,5S)-5-(4-Chlorophenyl)-N-cyclohexyl-4-methyl-2-oxo-1,3-thiazolidine-3-carboxamide

C17H21ClN2O2S (352.1012)


   

4-Heptylphenol

p-Hydroxyheptylbenzene

C13H20O (192.1514)


   

1-Methyladenosine

(2R,3S,4R,5R)-2-(hydroxymethyl)-5-(6-imino-1-methyl-6,9-dihydro-1H-purin-9-yl)oxolane-3,4-diol

C11H15N5O4 (281.1124)


1-Methyladenosine, also known as M1A, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Precise m6A mapping by m6A-CLIP/IP (briefly m6A-CLIP) revealed that a majority of m6A locates in the last exon of mRNAs in multiple tissues/cultured cells of mouse and human, and the m6A enrichment around stop codons is a coincidence that many stop codons locate round the start of last exons where m6A is truly enriched. The methylation of adenosine is directed by a large m6A methyltransferase complex containing METTL3 as the SAM-binding sub-unit. Insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1-3) are reported as a novel class of m6A readers. 1-Methyladenosine is an RNA modification originating essentially from two different reaction types, one catalyzed by enzymes and the other the result of the reaction of RNA with certain alkylating agents. 1-Methyladenosine is an RNA modification originating essentially from two different reaction types, one catalyzed by enzymes and the other the result of the reaction of RNA with certain alkylating agents.

   

Procymidone

3-(3,5-dichlorophenyl)-1,5-dimethyl-3-azabicyclo[3.1.0]hexane-2,4-dione

C13H11Cl2NO2 (283.0167)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3102 CONFIDENCE standard compound; INTERNAL_ID 8485 D016573 - Agrochemicals D010575 - Pesticides

   

Phosmet

S-((1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)methyl)phosphorodithioic acid O,O-dimethyl ester

C11H12NO4PS2 (316.9945)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Methyl 2-aminobenzoate

Methyl ester OF O-aminobenzoic acid

C8H9NO2 (151.0633)


Methyl 2-aminobenzoate is found in alcoholic beverages. Methyl 2-aminobenzoate is found in essential oils, including bergamot, orange peel, lemon peel, jasmine, ylang-ylang and neroli. Also present in concord grape, strawberry, star fruit, wines, cocoa, black tea and rice bran. Methyl 2-aminobenzoate is a flavouring agent Found in essential oils, including bergamot, orange peel, lemon peel, jasmine, ylang-ylang and neroliand is also present in concord grape, strawberry, star fruit, wines, cocoa, black tea and rice bran. Flavouring agent.

   

Clomifene

2-(4-(2-Chloro-1,2-diphenylethenyl)phenoxy)-N,N-diethylethanamine

C26H28ClNO (405.1859)


Clomifene is only found in individuals that have used or taken this drug. It is a triphenyl ethylene stilbene derivative which is an estrogen agonist or antagonist depending on the target tissue. [PubChem]Clomifene has both estrogenic and anti-estrogenic properties, but its precise mechanism of action has not been determined. Clomifene appears to stumulate the release of gonadotropins, follicle-stimulating hormone (FSH), and leuteinizing hormone (LH), which leads to the development and maturation of ovarian follicle, ovulation, and subsequent development and function of the coprus luteum, thus resulting in pregnancy. Gonadotropin release may result from direct stimulation of the hypothalamic-pituitary axis or from a decreased inhibitory influence of estrogens on the hypothalamic-pituitary axis by competing with the endogenous estrogens of the uterus, pituitary, or hypothalamus. Clomifene has no apparent progestational, androgenic, or antrandrogenic effects and does not appear to interfere with pituitary-adrenal or pituitary-thyroid function. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03G - Gonadotropins and other ovulation stimulants > G03GB - Ovulation stimulants, synthetic D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D012102 - Reproductive Control Agents > D005299 - Fertility Agents C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist C1892 - Chemopreventive Agent

   

Retrorsine

(1R,4Z,6R,7S,17R)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.014,17]heptadec-11-ene-3,8-dione

C18H25NO6 (351.1682)


Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid found in certain plants. Despite its toxicity, it may have several biological functions, both in the plants that produce it and in the organisms that ingest it. Here are some possible biological functions of Retrorsine: Defense Mechanism: In plants, Retrorsine likely serves as a chemical defense against herbivores and pathogens. Its toxicity can deter animals from feeding on the plant and can inhibit the growth of microbial pathogens. Allelopathy: Retrorsine may be involved in allelopathy, which is the process by which plants release chemicals into the environment to inhibit the growth of competing plants. This can help the producing plant secure resources such as light, water, and nutrients. Insecticidal Properties: The compound may have insecticidal properties, helping to protect the plant from insect pests. Medicinal Uses: In traditional medicine, plants containing Retrorsine have been used for their supposed medicinal properties, although the use is cautioned due to the compound's toxicity. Ecological Role: Retrorsine may play a role in the ecological interactions of the plant, affecting the behavior and population dynamics of herbivores and other organisms in the ecosystem. Cell Cycle Inhibition: In biological systems, Retrorsine has been shown to inhibit cell proliferation, particularly in liver cells. This property is of interest in medical research for understanding liver toxicity and cancer. Genotoxic Effects: Retrorsine can bind to DNA, causing genotoxic effects. This can lead to mutations and has implications for cancer research. Pharmacological Research: Due to its biological activity, Retrorsine is used in pharmacological research to study the mechanisms of toxicity, carcinogenesis, and potential therapeutic targets. It's important to note that while Retrorsine has these potential biological functions, its toxicity makes it hazardous to humans and animals, and it is not used in modern medicine due to the risks associated with its ingestion. Research on Retrorsine is typically focused on understanding its mechanisms of action and toxicity to inform safety guidelines and potential therapeutic applications. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.363 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.358 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.361 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2325 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 177 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 117 INTERNAL_ID 147; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 147 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 137 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 157 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 167 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 127 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 107 D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=480-54-6 (retrieved 2025-03-17) (CAS RN: 480-54-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Trihexyphenidyl

Pharmaceutical associates brand OF trihexyphenidyl hydrochloride

C20H31NO (301.2406)


Trihexyphenidyl is only found in individuals that have used or taken this drug. It is one of the centrally acting muscarinic antagonists used for treatment of parkinsonian disorders and drug-induced extrapyramidal movement disorders and as an antispasmodic. [PubChem]Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinsons disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Didanosine

9-[(2R,5S)-5-(Hydroxymethyl)tetrahydrofuran-2-yl]-1,9-dihydro-6H-purin-6-one

C10H12N4O3 (236.0909)


A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by a hydrogen. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. Didanosine is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA by binding to reverse transcriptase; ddI is then metabolized to dideoxyadenosine triphosphate, its putative active metabolite. [PubChem] J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3135 Didanosine (2',3'-Dideoxyinosine; ddI) is a a potent and orally active dideoxynucleoside analogue, and also is a potent nucleoside reverse transcriptase inhibitor. Didanosine shows antiretroviral activity for HIV[1][2][3].

   

Cefaclor

(6R,7R)-7-[(2R)-2-amino-2-phenylacetamido]-3-chloro-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C15H14ClN3O4S (367.0394)


Cefaclor is only found in individuals that have used or taken this drug. It is a semisynthetic, broad-spectrum antibiotic derivative of cephalexin. [PubChem]Cefaclor, like the penicillins, is a beta-lactam antibiotic. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, it inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. It is possible that cefaclor interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3069 Cefaclor is a well-absorbed orally active cephalosporin antibiotic. Cefaclor can specifically bind to specific for penicillin-binding protein 3 (PBP3). Cefaclor can be used for the research of depression and kinds of infections caused by bacteria, such as respiratory tract infections, bacterial bronchitis, pharyngitis and skin infections[1][2][3][4].

   

Clofentezine

3,6-Bis(O-chlorophenyl)-1,2,4,5-tetrazine

C14H8Cl2N4 (302.0126)


   

Fenamiphos

Ethyl 3-methyl-4-(methylsulphanyl)phenyl (1-methylethyl)amidophosphoric acid

C13H22NO3PS (303.1058)


CONFIDENCE standard compound; INTERNAL_ID 1097; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9512; ORIGINAL_PRECURSOR_SCAN_NO 9511 CONFIDENCE standard compound; INTERNAL_ID 1097; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9468; ORIGINAL_PRECURSOR_SCAN_NO 9467 CONFIDENCE standard compound; INTERNAL_ID 1097; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9521; ORIGINAL_PRECURSOR_SCAN_NO 9519 CONFIDENCE standard compound; INTERNAL_ID 1097; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9503; ORIGINAL_PRECURSOR_SCAN_NO 9502 CONFIDENCE standard compound; INTERNAL_ID 1097; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9453; ORIGINAL_PRECURSOR_SCAN_NO 9452 CONFIDENCE standard compound; INTERNAL_ID 1097; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9474; ORIGINAL_PRECURSOR_SCAN_NO 9473 Systemic agricultural nematocide. Cholinesterase inhibitor Fenamiphos is an organophosphate acetylcholinesterase inhibitor used as an insecticide C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D016573 - Agrochemicals D010575 - Pesticides

   

Fenthion

Phosphorothioic acid, O,O-dimethyl O-(3-methyl-4-(methylthio)phenyl) ester

C10H15O3PS2 (278.02)


Fenthion is an insecticide with low mammalian toxicity. Fenthion is used in agriculture and against mosquito larvae in tropical fresh waters.Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via cholinesterase inhibition. Due to its relatively low toxicity towards humans and mammals, fenthion is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class. (Wikipedia). Insecticide with low mammalian toxicity. It is used in agriculture and against mosquito larvae in tropical fresh waters D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Meclizine

1-[(4-chlorophenyl)(phenyl)methyl]-4-[(3-methylphenyl)methyl]piperazine

C25H27ClN2 (390.1863)


Meclizine is only found in individuals that have used or taken this drug. It is a histamine H1 antagonist used in the treatment of motion sickness, vertigo, and nausea during pregnancy and radiation sickness. [PubChem]Along with its actions as an antagonist at H1-receptors, meclizine also possesses anticholinergic, central nervous system depressant, and local anesthetic effects. Meclizine depresses labyrinth excitability and vestibular stimulation and may affect the medullary chemoreceptor trigger zone. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3084 D002491 - Central Nervous System Agents D018926 - Anti-Allergic Agents

   

19(S)-HETE

(5Z,8Z,11Z,14Z)-(19S)-19-Hydroxyeicosa-5,8,11,14-tetraenoic acid

C20H32O3 (320.2351)


19(S)-HETE is an intermediate in Arachidonic acid metabolism. 19(S)-HETE is converted from Arachidonic acid via the enzyme CYP2U and Unspecific. Monooxygenase. (EC:1.14.14.1). 19(S)-HETE is an intermediate in Arachidonic acid metabolism. 19(S)-HETE is converted from Arachidonic acid via the enzyme CYP2U and Unspecific

   

Safrole

4-Allyl-1,2-(methylenedioxy)benzene, 8ci

C10H10O2 (162.0681)


Safrole, also known as shikimol, is a colorless or slightly yellow oily liquid. It is typically extracted from the root-bark or the fruit of sassafras plants in the form of sassafras oil, or synthesized from other related methylenedioxy compounds. It is the principal component of brown camphor oil, and is found in small amounts in a wide variety of plants, where it functions as a natural pesticide. Safrole is found in anise and nutmeg. Banned by FDA for use in food. Safrole is formerly used as a food flavour It is a precursor in the synthesis of the insecticide synergist piperonyl butoxide and the recreational drug MDMA ("Ecstacy"). Safrole is a natural plant constituent, found in oil of sassafras and certain other essential oils. It is a member of the methylenedioxybenzene group of compounds, many of which (e.g. piperonyl butoxide) are extensively used as insecticide synergists. Safrole is a major source of human exposure to safrole is through consumption of spices, such as nutmeg, cinnamon and black pepper, in which safrole is a constituent. Safrole is also present in root beer, and has been used as an additive in chewing gum, toothpaste, soaps and certain pharmaceutical preparations. Safrole is a weak hepatocarcinogen and it is a matter of considerable interest whether the ally1 moiety or the methylenedioxy group, or both, are involved in the mechanism of its carcinogenesis. Safrole is extensively metabolized, giving rise to a large number of metabolites. Metabolism involves essentially two major routes, oxidation of the ally1 side chain, and oxidation of the methylenedioxy group with subsequent cleavage to form the catechol. Safrole undergoes oxidation of the allylic group to yield the 2, 3-epoxide (safrole epoxide). The dihydrodiol is one of the metabolites of safrole, and presumably arises from the hydration of the 2, 3-epoxide. The principal route of metabolism of safrole is through cleavage of the methylenedioxy group, the major metabolites being allylcatechol and its isomer, propenylcatechol. Eugenol and its isomer I-methoxy- 2-hydroxy-4-allylbenzene have been detected as minor metabolites in rat, mouse and human (PMID:6719936). The Ocotea cymbarum oil made of the Ocotea pretiosa, a plant growing in Brazil, and sassafras oil made of Sassafras albidum, a tree growing in eastern North America, are the main natural sources for safrole. It has a characteristic "candy-shop" aroma Occurs in nutmeg. Banned by FDA for use in food. Formerly used as a food flavour

   

(+)-Gallocatechin

(2R,3S)-3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3,5,7-triol

C15H14O7 (306.0739)


Widespread in plants; found especies in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. Gallocatechin is found in many foods, some of which are broad bean, broccoli, quince, and common grape. (+)-Gallocatechin is found in adzuki bean. (+)-Gallocatechin is widespread in plants; found especially in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Debromohymenialdisine

(Z)-Debromohymenialdisine

C11H11N5O2 (245.0913)


   

Lignoceric acid (C24)

Tetracosanoic acid

C24H48O2 (368.3654)


Lignoceric acid, also known as N-tetracosanoic acid or tetraeicosanoate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, lignoceric acid is considered to be a fatty acid lipid molecule. Lignoceric acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lignoceric acid can be found in a number of food items such as hazelnut, cheese, rye bread, and cetacea (dolphin, porpoise, whale), which makes lignoceric acid a potential biomarker for the consumption of these food products. Lignoceric acid can be found primarily in blood and feces, as well as in human fibroblasts tissue. Lignoceric acid exists in all eukaryotes, ranging from yeast to humans. In humans, lignoceric acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Lignoceric acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Lignoceric acid, or tetracosanoic acid, is the saturated fatty acid with formula C23H47COOH. It is found in wood tar, various cerebrosides, and in small amounts in most natural fats. The fatty acids of peanut oil contain small amounts of lignoceric acid (1.1\\\\% – 2.2\\\\%). This fatty acid is also a byproduct of lignin production . Tetracosanoic acid is a C24 straight-chain saturated fatty acid. It has a role as a volatile oil component, a plant metabolite, a human metabolite and a Daphnia tenebrosa metabolite. It is a very long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetracosanoate. Tetracosanoic acid, also known as N-tetracosanoate or lignoceric acid, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tetracosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tetracosanoic acid is a potentially toxic compound. Acquisition and generation of the data is financially supported in part by CREST/JST. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

Ritodrine

4-(2-{[(1R,2S)-1-hydroxy-1-(4-hydroxyphenyl)propan-2-yl]amino}ethyl)phenol

C17H21NO3 (287.1521)


Ritodrine is only found in individuals that have used or taken this drug. It is an adrenergic beta-agonist used to control premature labor. [PubChem]Ritodrine is beta-2 adrenergic agonist. It binds to beta-2 adrenergic receptors on outer membrane of myometrial cell, activates adenyl cyclase to increase the level of cAMP which decreases intracellular calcium and leads to a decrease of uterine contractions. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CA - Sympathomimetics, labour repressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Dermorphin

Dermorphin

C40H50N8O10 (802.365)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1]. Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1]. Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1].

   

Diglycidyl resorcinol ether

Diglycidyl resorcinol ether

C12H14O4 (222.0892)


   

Fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


Fenoprofen is only found in individuals that have used or taken this drug. It is an anti-inflammatory analgesic and antipyretic highly bound to plasma proteins. It is pharmacologically similar to aspirin, but causes less gastrointestinal bleeding. [PubChem]Fenoprofens exact mode of action is unknown, but it is thought that prostaglandin synthetase inhibition is involved. Fenoprofen has been shown to inhibit prostaglandin synthetase isolated from bovine seminal vesicles. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Flunisolide

(1S,2S,4R,8S,9S,11S,12S,13R,19S)-19-fluoro-11-hydroxy-8-(2-hydroxyacetyl)-6,6,9,13-tetramethyl-5,7-dioxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosa-14,17-dien-16-one

C24H31FO6 (434.2105)


Flunisolide is only found in individuals that have used or taken this drug. It is a corticosteroid often prescribed as treatment for allergic rhinitis.Flunisolide is a glucocorticoid receptor agonist. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Flunisolide binds to plasma transcortin, and it becomes active when it is not bound to transcortin. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents CONFIDENCE standard compound; INTERNAL_ID 2812 D000893 - Anti-Inflammatory Agents

   

Isoetharine

4-{1-hydroxy-2-[(propan-2-yl)amino]butyl}benzene-1,2-diol

C13H21NO3 (239.1521)


Isoetharine is only found in individuals that have used or taken this drug. It is a selective adrenergic beta-2 agonist used as fast acting bronchodilator for emphysema, bronchitis and asthma. [PubChem]The pharmacologic effects of isoetharine are attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic AMP. Increased cyclic AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

Orciprenaline

5-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,3-diol

C11H17NO3 (211.1208)


Orciprenaline is only found in individuals that have used or taken this drug. It is a beta-adrenergic agonist used in the treatment of asthma and bronchospasms. [PubChem]Orciprenaline is a moderately selective beta(2)-adrenergic agonist that stimulates receptors of the smooth muscle in the lungs, uterus, and vasculature supplying skeletal muscle, with minimal or no effect on alpha-adrenergic receptors. Intracellularly, the actions of orciprenaline are mediated by cAMP, the production of which is augmented by beta stimulation. The drug is believed to work by activating adenylate cyclase, the enzyme responsible for producing the cellular mediator cAMP. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CB - Non-selective beta-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AB - Non-selective beta-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Paramethasone Acetate

6alpha-fluoro-11beta,17alpha,21-trihydroxy-16alpha-methylpregna-1,4-diene-3,20-dione acetate

C24H31FO6 (434.2105)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D01229

   

D-Chicoric acid

(2S,3S)-2,3-Bis[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]butanedioic acid

C22H18O12 (474.0798)


D-Chicoric acid is found in green vegetables. D-Chicoric acid is isolated from chicory (Cichorium intybus) and Cichorium endivia (endive). Isolated from chicory (Cichorium intybus) and Cichorium endivia (endive). D-Chicoric acid is found in green vegetables. Chicoric acid (Cichoric acid), an orally active dicaffeyltartaric acid, induces reactive oxygen species (ROS) generation. Chicoric acid inhibits cell viability and induces mitochondria-dependent apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. Chicoric acid increases glucose uptake, improves insulin resistance, and attenuates glucosamine-induced inflammation. Chicoric acid has antidiabetic properties and antioxidant, anti-inflammatory effects[1][2][3]. Chicoric acid (Cichoric acid), an orally active dicaffeyltartaric acid, induces reactive oxygen species (ROS) generation. Chicoric acid inhibits cell viability and induces mitochondria-dependent apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways. Chicoric acid increases glucose uptake, improves insulin resistance, and attenuates glucosamine-induced inflammation. Chicoric acid has antidiabetic properties and antioxidant, anti-inflammatory effects[1][2][3]. L-Chicoric Acid ((-)-Chicoric acid) is a dicaffeoyltartaric acid and a potent, selective and reversible HIV-1 integrase inhibitor with an IC50 of ~100 nM. L-Chicoric Acid inhibits HIV-1 replication in tissue culture[1][2][3]. L-Chicoric Acid ((-)-Chicoric acid) is a dicaffeoyltartaric acid and a potent, selective and reversible HIV-1 integrase inhibitor with an IC50 of ~100 nM. L-Chicoric Acid inhibits HIV-1 replication in tissue culture[1][2][3].

   

Dihomo-alpha-linolenic acid

11,14,17-Eicosatrienoic acid, (Z,Z,Z)-isomer

C20H34O2 (306.2559)


Dihomolinolenic acid, also known as 11,14,17-eicosatrienoic acid or (11z,14z,17z)-eicosa-11,14,17-trienoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, dihomolinolenic acid is considered to be a fatty acid lipid molecule. Dihomolinolenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Dihomolinolenic acid can be found in evening primrose, which makes dihomolinolenic acid a potential biomarker for the consumption of this food product. Dihomolinolenic acid can be found primarily in blood and feces. Dihomo-alpha-linolenic acid, also known as 11,14,17-eicosatrienoic acid, is a rare polyunsaturated fatty acid of the omega-3 series. In normal humans, it represents less than 0.25\\% of serum phospholipid fatty acids. However, it is one of the most active essential fatty acids when assayed for the inhibition of fatty acid elongation/desaturation reactions which convert dietary C-18 fatty acids to C-20 eicosanoid precursors. (http://www.caymanchem.com)

   

20alpha-Dihydroprogesterone

(1S,2R,10S,11S,14S,15S)-14-[(1S)-1-hydroxyethyl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H32O2 (316.2402)


20alpha-Dihydroprogesterone is a biologically active 20-alpha-reduced metabolite of progesterone. It is converted from progesterone to 20-alpha-hydroxypregn-4-en-3-one by the 20-alpha-hydroxysteroid dehydrogenase in the corpus luteum and the placenta. Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation), and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen (Wikipedia). During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine smooth muscle. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labour. In addition, progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production (Wikipedia). A biologically active 20-alpha-reduced metabolite of progesterone. It is converted from progesterone to 20-alpha-hydroxypregn-4-en-3-one by the 20-alpha-hydroxysteroid dehydrogenase in the corpus luteum and the placenta. -- Pubchem; Progesterone is a C-21 steroid hormone involved in the female menstrual cycle, pregnancy (supports gestation) and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestagens, and is the major naturally occurring human progestagen. -- Wikipedia; During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy. Progesterone decreases contractility of the uterine smooth muscle. The fetus metabolizes placental progesterone in the production of adrenal mineralo- and glucosteroids. A drop in progesterone levels is possibly one step that facilitates the onset of labor. In addition progesterone inhibits lactation during pregnancy. The fall in progesterone levels following delivery is one of the triggers for milk production. -- Wikipedia [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins

   

(±)-Methamidophos

Methyl phosphoramidothioate ((meo)(mes)p(O)(NH2))

C2H8NO2PS (141.0013)


(±)-Methamidophos is an agricultural systemic insecticide and acaricide. It is a metabolite of acephate DGK99-C C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Bentazone

3-(propan-2-yl)-3,4-dihydro-1H-2λ⁶,1,3-benzothiadiazine-2,2,4-trione

C10H12N2O3S (240.0569)


CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3883; ORIGINAL_PRECURSOR_SCAN_NO 3880 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3853; ORIGINAL_PRECURSOR_SCAN_NO 3852 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3872; ORIGINAL_PRECURSOR_SCAN_NO 3871 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3882; ORIGINAL_PRECURSOR_SCAN_NO 3878 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3897; ORIGINAL_PRECURSOR_SCAN_NO 3895 CONFIDENCE standard compound; INTERNAL_ID 1204; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3872; ORIGINAL_PRECURSOR_SCAN_NO 3868 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8380 CONFIDENCE standard compound; EAWAG_UCHEM_ID 253 CONFIDENCE standard compound; INTERNAL_ID 2313 CONFIDENCE standard compound; INTERNAL_ID 3258 D010575 - Pesticides > D006540 - Herbicides KEIO_ID B072; [MS2] KO008894 D016573 - Agrochemicals KEIO_ID B072

   

Epsilon-caprolactam

Hexahydro 2H azepin 2 one

C6H11NO (113.0841)


Caprolactam, also known as aminocaproic lactam or hexahydro-2h-azepin-2-one, is a member of the class of compounds known as caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Caprolactam is soluble (in water) and a very weakly acidic compound (based on its pKa). Caprolactam is an amine, bitter, and spicy tasting compound found in sunflower, which makes caprolactam a potential biomarker for the consumption of this food product. Caprolactam (CPL) is an organic compound with the formula (CH2)5C(O)NH. This colourless solid is a lactam (a cyclic amide) of caproic acid. Global demand for this compound is approximately 5 million tons per year, and the vast majority is used to make Nylon 6 filament, fiber, and plastics . Epsilon-caprolactam, also known as Caprolactam or Aminocaproic lactam, is classified as a member of the Caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Epsilon-caprolactam is considered to be soluble (in water) and relatively neutral. Epsilon-caprolactam is an amine, bitter, and spicy tasting compound found in Sunflowers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

N-NITROSOMORPHOLINE

alpha-Acetoxy-N-nitrosomorpholine

C4H8N2O2 (116.0586)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3454 CONFIDENCE standard compound; INTERNAL_ID 4127 CONFIDENCE standard compound; INTERNAL_ID 8689 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

Clofilium

Clofilium

C21H37ClN+ (338.2614)


C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators

   

Benzyl acetate

Benzyl acetate + glycine combination

C9H10O2 (150.0681)


Benzyl acetate, also known as benzyl ethanoate or fema 2135, belongs to the class of organic compounds known as benzyloxycarbonyls. These are organic compounds containing a carbonyl group substituted with a benzyloxyl group. Benzyl acetate is a sweet, apple, and apricot tasting compound. Benzyl acetate is found, on average, in the highest concentration within sweet basils. Benzyl acetate has also been detected, but not quantified, in several different foods, such as figs, fruits, pomes, tea, and alcoholic beverages. On high concnetrations benzyl acetate is a potentially toxic compound. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. Occurs in jasmine, apple, cherry, guava fruit and peel, wine grape, white wine, tea, plum, cooked rice, Bourbon vanilla, naranjila fruit (Solanum quitoense), Chinese cabbage and quince. Flavouring agent Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].

   

Brucine

(8ξ,12ξ)-2,3-dimethoxystrychnidin-10-one

C23H26N2O4 (394.1892)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D007155 - Immunologic Factors CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2329 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.545 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.540 ORIGINAL_ACQUISITION_NO 5860; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; ORIGINAL_PRECURSOR_SCAN_NO 5859 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5850; ORIGINAL_PRECURSOR_SCAN_NO 5847 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5870; ORIGINAL_PRECURSOR_SCAN_NO 5868 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5860; ORIGINAL_PRECURSOR_SCAN_NO 5859 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5841; ORIGINAL_PRECURSOR_SCAN_NO 5839 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5876; ORIGINAL_PRECURSOR_SCAN_NO 5873 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5855; ORIGINAL_PRECURSOR_SCAN_NO 5853 [Raw Data] CBA35_Brucine_pos_40eV_1-3_01_1629.txt [Raw Data] CBA35_Brucine_pos_10eV_1-3_01_1618.txt [Raw Data] CBA35_Brucine_pos_30eV_1-3_01_1628.txt [Raw Data] CBA35_Brucine_pos_20eV_1-3_01_1627.txt [Raw Data] CBA35_Brucine_pos_50eV_1-3_01_1630.txt

   

N-Methylalanine

N-Methylalanine hydrochloride, (DL-ala)-isomer

C4H9NO2 (103.0633)


N-Methylalanine, also known as (S)-2-methylaminopropanoate or N-methyl-L-alanine, is classified as an alanine or an alanine derivative. Alanines are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-Methylalanine is considered to be soluble (in water) and acidic. (ChemoSummarizer) Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M028

   

Methyl acetate

Ethyl ester OF monoacetic acid

C3H6O2 (74.0368)


Methyl acetate belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Methyl acetate is present in apple, grape, banana and other fruits. Methyl acetate is a flavouring ingredient and it is an ester that, in the laboratory, is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants Methyl acetate is an ester that is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature.; Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. Methyl acetate is VOC exempt.; The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a flavouring agent and can be found in many foods, some of which are apple, grape, banana, orange mint, and ginger.

   

7alpha-Hydroxycholesterol

(1S,2R,5S,9S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-ene-5,9-diol

C27H46O2 (402.3498)


7alpha-Hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation (PMID: 17386651). Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery (PMID: 17364953). 7alpha-Hydroxycholesterol is a cholesterol oxide that has been described as a biomarker of oxidative stress in subjects with impaired glucose tolerance and diabetes (PMID: 16634125). 7alpha-Hydroxycholesterol has been identified in the human placenta (PMID: 32033212). 7alpha-hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation. (PMID: 17386651) Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery. (PMID: 17364953) 7α-Hydroxycholesterol is a cholesterol oxide and is formed by both enzymatic and non-enzymatic oxidation. 7α-Hydroxycholesterol can be used as a biomarker for lipid peroxidation[1][2].

   

Benzo[b]fluoranthene

pentacyclo[10.7.1.0²,⁷.0⁸,²⁰.0¹³,¹⁸]icosa-1(19),2,4,6,8(20),9,11,13,15,17-decaene

C20H12 (252.0939)


   

Endrin

3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-2,7:3,6-Dimethanonaph[2,3-b]oxirene, 9ci

C12H8Cl6O (377.8706)


Endrin has been found as a contaminant throughout the environment, including foodstuffs, fish, human milk, etc Has been found as a contaminant throughout the environment, including foodstuffs, fish, human milk, etc.

   

(S)-2-Azetidinecarboxylic acid

1-Azetidinecarboxylicacid, 2-(aminocarbonyl)-, 1,1-dimethylethyl ester, (2S)-

C4H7NO2 (101.0477)


Azetidine-2-carboxylic acid is an azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. It has a role as a plant metabolite and a teratogenic agent. It is an azetidinecarboxylic acid and an amino acid. A proline analog that acts as a stoichiometric replacement of proline. It causes the production of abnormal proteins with impaired biological activity. (S)-2-Azetidinecarboxylic acid is found in common beet. (S)-2-Azetidinecarboxylic acid is present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the US Present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the USA. (S)-2-Azetidinecarboxylic acid is found in red beetroot and common beet. An azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. KEIO_ID A219 Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.

   

3,4-Dihydroxyhydrocinnamic acid

3,4-dihydroxyphenylpropionic acid, potassium salt

C9H10O4 (182.0579)


3,4-Dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid (DHCA), is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID: 15607645) and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract (PMID: 15693705). Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans (PMID: 16038718). Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure conveys the antioxidant effect in plasma and in erythrocytes (PMID: 11768243). 3,4-Dihydroxyhydrocinnamic acid is a microbial metabolite found in Bifidobacterium, Escherichia, Lactobacillus, and Clostridium (PMID: 28393285). 3,4-Dihydroxyhydrocinnamic acid (or Dihydrocaffeic acid, DHCA) is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID 15607645), and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract. (PMID 15693705) Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans. (PMID 16038718) Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure convey the antioxidant effect in plasma and in erythrocytes. (PMID 11768243) [HMDB]. 3-(3,4-Dihydroxyphenyl)propanoic acid is found in red beetroot, common beet, and olive. KEIO_ID D047 Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].

   

Glutamylglutamic acid

(2S)-2-[(2S)-2-amino-4-carboxybutanamido]pentanedioic acid

C10H16N2O7 (276.0957)


Glutamylglutamic acid is a dipeptide composed of two glutamic acid residues, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. Glutamylglutamic acid is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. KEIO_ID G043; [MS2] KO008970 KEIO_ID G043

   

Octylamine

Octylamine hydrochloride

C8H19N (129.1517)


KEIO_ID O007

   

Peonidin-3-glucoside

5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C22H23O11]+ (463.124)


Peonidin-3-glucoside has been proposed by Wu et al. [PMID: 12097661] to be a secondary metabolite of cyanidin-3-glucoside which may be methylated by liver enzymes during phase II metabolism. Peonidin 3-glucoside is isolated from grapes and many other plant spp. It is found in red wine, common wheat, and lowbush blueberry. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Solasodin

(3beta,22alpha,25R)-spirosol-5-en-3-ol

C27H43NO2 (413.3294)


Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2286; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2286 Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2].

   

Galactinol

Galactinol (1-α-d-galactosyl-myo-inositol)

C12H22O11 (342.1162)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Masoprocol

4-[(2S,3R)-3-[(3,4-dihydroxyphenyl)methyl]-2-methylbutyl]benzene-1,2-diol

C18H22O4 (302.1518)


Masoprocol is the meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. It has a role as an antineoplastic agent, a lipoxygenase inhibitor, a hypoglycemic agent and a metabolite. Masoprocol is a natural product found in Larrea divaricata, Schisandra chinensis, and Larrea tridentata with data available. Masoprocol is a naturally occurring antioxidant dicatechol originally derived from the creosote bush Larrea divaricatta with antipromoter, anti-inflammatory, and antineoplastic activities. Masoprocol directly inhibits activation of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu receptor, resulting in decreased proliferation of susceptible tumor cell populations. This agent may induce apoptosis in susceptible tumor cell populations as a result of disruption of the actin cytoskeleton in association with the activation of stress activated protein kinases (SAPKs). In addition, masoprocol inhibits arachidonic acid 5-lipoxygenase (5LOX), resulting in diminished synthesis of inflammatory mediators such as prostaglandins and leukotrienes. It may prevent leukocyte infiltration into tissues and the release of reactive oxygen species. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Masoprocol, also known as actinex or meso-ndga, belongs to the class of organic compounds known as dibenzylbutane lignans. These are lignan compounds containing a 2,3-dibenzylbutane moiety. Symptoms of overdose or allergic reaction include bluish coloration of skin, dizziness, or feeling faint, wheezing or trouble in breathing. Masoprocol also inhibits prostaglandins but the significance of this action is not yet known. Masoprocol is a drug which is used for the treatment of actinic keratoses (precancerous skin growths that can become malignant if left untreated). It also serves as an antioxidant in fats and oils. Masoprocol is a potentially toxic compound. It is not known exactly how masoprocol works. Although the exact mechanism of action is not known, studies have shown that masoprocol is a potent 5-lipoxygenase inhibitor and has antiproliferative activity against keratinocytes in tissue culture, but the relationship between this activity and its effectiveness in actinic keratoses is unknown. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4658; ORIGINAL_PRECURSOR_SCAN_NO 4657 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4580; ORIGINAL_PRECURSOR_SCAN_NO 4576 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4548 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4643; ORIGINAL_PRECURSOR_SCAN_NO 4642 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4651; ORIGINAL_PRECURSOR_SCAN_NO 4650 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4591; ORIGINAL_PRECURSOR_SCAN_NO 4587 Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.

   

Tamarixetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)-

C16H12O7 (316.0583)


Tamarixetin is a monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. It has a role as a metabolite and an antioxidant. It is a 7-hydroxyflavonol, a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. Tamarixetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Trifolium pratense flower (part of). A monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2]. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2].

   

1-Pyrroline-5-carboxylic acid

delta-1-Pyrroline-5-carboxylate, 14C-labeled, (+-)-isomer

C5H7NO2 (113.0477)


1-Pyrroline-5-carboxylic acid (CAS: 2906-39-0) is an enamine or an imino acid that forms upon the spontaneous dehydration of L-glutamate gamma-semialdehyde in aqueous solutions. The stereoisomer (S)-1-pyrroline-5-carboxylate is an intermediate in glutamate metabolism, arginine degradation, and proline biosynthesis and degradation. It can also be converted into or be formed from three amino acids: L-glutamate, L-ornithine, and L-proline. In particular, it is synthesized via the oxidation of proline by pyrroline-5-carboxylate reductase 1 (PYCR1) (EC 1.5.1.2) or by proline dehydrogenase (PRODH) (EC 1.5.99.8). It is hydrolyzed into L-glutamate by delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) (EC 1.5.1.12). It is also one of the few metabolites that can act as a precursor to other metabolites of both the urea cycle and the tricarboxylic acid (TCA) cycle. Under certain conditions, pyrroline-5-carboxylate can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyrroline-5-carboxylate are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. Hyperprolinemia type II results in high levels of pyrroline-5-carboxylate. People with hyperprolinemia type II have signs and symptoms that vary in severity, but they are more likely than type I to have seizures or intellectual disability. Pyrroline-5-carboxylate is highly reactive and excess quantities have been shown to cause cell death and apoptosis (PMID: 15548746). (s)-1-pyrroline-5-carboxylate, also known as delta-1-pyrroline-5-carboxylate, (+-)-isomer, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-1-pyrroline-5-carboxylate is soluble (in water) and a moderately acidic compound (based on its pKa). (s)-1-pyrroline-5-carboxylate can be found in a number of food items such as beech nut, mango, oyster mushroom, and other bread, which makes (s)-1-pyrroline-5-carboxylate a potential biomarker for the consumption of these food products (s)-1-pyrroline-5-carboxylate may be a unique E.coli metabolite.

   

Ergonovine

(4R,7R)-N-[(2S)-1-hydroxypropan-2-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C19H23N3O2 (325.179)


Ergonovine is only found in individuals that have used or taken this drug. It is an ergot alkaloid with uterine and vascular smooth muscle contractile properties. [PubChem]Ergonovine directly stimulates the uterine muscle to increase force and frequency of contractions. With usual doses, these contractions precede periods of relaxation; with larger doses, basal uterine tone is elevated and these relaxation periods will be decreased. Contraction of the uterine wall around bleeding vessels at the placental site produces hemostasis. Ergonovine also induces cervical contractions. The sensitivity of the uterus to the oxytocic effect is much greater toward the end of pregnancy. The oxytocic actions of ergonovine are greater than its vascular effects. Ergonovine, like other ergot alkaloids, produces arterial vasoconstriction by stimulation of alpha-adrenergic and serotonin receptors and inhibition of endothelial-derived relaxation factor release. It is a less potent vasoconstrictor than ergotamine. As a diagnostic aid (coronary vasospasm), ergonovine causes vasoconstriction of coronary arteries. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics

   

Cupressuflavone

8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-8-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C30H18O10 (538.09)


Cupressuflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities. It has a role as an EC 3.4.21.37 (leukocyte elastase) inhibitor, a radical scavenger and a metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Cupressuflavone is a natural product found in Fitzroya cupressoides, Juniperus drupacea, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities.

   

N6,N6,N6-Trimethyl-L-lysine

S)-5-Amino-5-carboxy-N,N,N-trimethyl-1-pentanaminium

C9H20N2O2 (188.1525)


N6,N6,N6-Trimethyl-L-lysine is a methylated derivative of the amino acid lysine. It is a component of histone proteins, a precursor of carnitine and a coenzyme of fatty acid oxidation. N6,N6,N6-Trimethyl-L-lysine residues are found in a number of proteins and are generated by the action of S-adenosyl-L-methionine on exposed lysine residues. When trimethyllysine is released from cognate proteins via proteolysis, it serves as a precursor for carnitine biosynthesis. Mitochondrial 6-N-trimethyllysine dioxygenase converts 6-N-trimethyllysine to 3-hydroxy-6-N-trimethyllysine as the first step for carnitine biosynthesis. Because the subsequent carnitine biosynthesis enzymes are cytosolic, 3-hydroxy-6-N-trimethyllysine must be transported out of the mitochondria by a putative mitochondrial 6-N-trimethyllysine/3-hydroxy-6-N-trimethyllysine transporter system. Plasma -N-trimethyllysine concentrations are significantly lower in systemic carnitine deficiency patients compared to normal individuals, but no significant difference in urinary -N-trimethyllysine excretion is seen between the two groups. [HMDB] N6,N6,N6-Trimethyl-L-lysine is a methylated derivative of the amino acid lysine. It is a component of histone proteins, a precursor of carnitine and a coenzyme of fatty acid oxidation. N6,N6,N6-Trimethyl-L-lysine residues are found in a number of proteins and are generated by the action of S-adenosyl-L-methionine on exposed lysine residues. When trimethyllysine is released from cognate proteins via proteolysis, it serves as a precursor for carnitine biosynthesis. Mitochondrial 6-N-trimethyllysine dioxygenase converts 6-N-trimethyllysine to 3-hydroxy-6-N-trimethyllysine as the first step for carnitine biosynthesis. Because the subsequent carnitine biosynthesis enzymes are cytosolic, 3-hydroxy-6-N-trimethyllysine must be transported out of the mitochondria by a putative mitochondrial 6-N-trimethyllysine/3-hydroxy-6-N-trimethyllysine transporter system. Plasma -N-trimethyllysine concentrations are significantly lower in systemic carnitine deficiency patients compared to normal individuals, but no significant difference in urinary -N-trimethyllysine excretion is seen between the two groups. D050258 - Mitosis Modulators > D008934 - Mitogens

   

FT-0775149

methyl (Z)-2-[(2S,3R,12bS)-3-ethyl-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl]-3-methoxyprop-2-enoate

C22H28N2O3 (368.21)


   

Enterodiol

[R-(R*,r*)]-2,3-bis[(3-hydroxyphenyl)methyl]-1,4-butanediol

C18H22O4 (302.1518)


Enterodiol is one of the most important lignan-type phytoestrogens identified in serum, urine, bile and seminal fluids of humans and animals. Phytoestrogens are a diverse group of compounds found in many edible plants that have, as their common denominator, a phenolic group that they share with estrogenic steroids. This phenolic group appears to play an important role in determining the estrogenic agonist/antagonistic properties of these compounds. Phytoestrogens have been categorized according to their chemical structures as isoflavones, lignans and coumestans. Enterodiol is formed by bacteria in the intestinal tract from the plant lignans matairesinol and secoisolariciresinol, which exist in various whole-grain cereals (barley, rye and wheat), seeds, nuts, legumes and vegetables. (PMID: 12270221, J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Sep 25;777(1-2):289-309.) [HMDB]. Enterodiol is a biomarker for the consumption of soy beans and other soy products. Enterodiol is one of the most important lignan-type phytoestrogens identified in serum, urine, bile, and seminal fluids of humans and animals. Phytoestrogens are a diverse group of compounds found in many edible plants that have, as their common denominator, a phenolic group that they share with estrogenic steroids. This phenolic group appears to play an important role in determining the estrogenic agonist/antagonistic properties of these compounds. Phytoestrogens have been categorized according to their chemical structures as isoflavones, lignans, and coumestans. Enterodiol is formed by bacteria in the intestinal tract from the plant lignans matairesinol and secoisolariciresinol, which exist in various whole-grain cereals (barley, rye, and wheat), seeds, nuts, legumes, and vegetables (PMID: 12270221, J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Sep 25;777(1-2):289-309.). Enterodiol is a biomarker for the consumption of soy beans and other soy products. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens

   

Solasonine

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-5-hydroxy-6-(hydroxymethyl)-2-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-piperidine]-16-yl]oxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H73NO16 (883.4929)


Solasonine is an azaspiro compound, an oxaspiro compound and a steroid. Solasonine is a natural product found in Solanum americanum, Solanum dimidiatum, and other organisms with data available. Solasonine is a steroidal glycoalkaloid isolated from Solanum nigrum L.. Solasonine has cytotoxicity to human gastric cancer cells[1]. Solasonine is a steroidal glycoalkaloid isolated from Solanum nigrum L.. Solasonine has cytotoxicity to human gastric cancer cells[1].

   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Heptanal

Oenanthic aldehyde

C7H14O (114.1045)


Heptanal, also known as enanthal or N-heptaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, heptanal is considered to be a fatty aldehyde lipid molecule. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants. Heptanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heptanal exists in all eukaryotes, ranging from yeast to humans. Heptanal is an aldehydic, citrus, and fat tasting compound. heptanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and sweet oranges and in a lower concentration in lemons, wild carrots, and carrots. heptanal has also been detected, but not quantified, in several different foods, such as horned melons, common beets, dills, red bell peppers, and malus (crab apple). This could make heptanal a potential biomarker for the consumption of these foods. The formation of heptanal in the fractional distillation of castor oil was already described in 1878. The large-scale production is based on the pyrolytic cleavage of ricinoleic acid ester (Arkema method) and on the hydroformylation of 1-hexene with rhodium 2-ethylhexanoate as a catalyst upon addition of some 2-ethylhexanoic acid (Oxea method):Heptanal naturally occurs in the essential oils of ylang-ylang (Cananga odorata), clary sage (Salvia sclarea), lemon (Citrus x limon), bitter orange (Citrus x aurantium), rose (Rosa) and hyacinth (Hyacinthus). Heptanal is a potentially toxic compound. Heptanal has been found to be associated with several diseases such as ulcerative colitis, crohns disease, uremia, and nonalcoholic fatty liver disease; also heptanal has been linked to the inborn metabolic disorders including celiac disease. The compound has a flash point of 39.5 °C. The explosion range is between 1.1\\% by volume as the lower explosion limit (LEL) and 5.2\\% by volume as the upper explosion limit. Heptanal or heptanaldehyde is an alkyl aldehyde. Full hydrogenation provides the branched primary alcohol 2-pentylnonan-1-ol, also accessible from the Guerbet reaction from heptanol. A by-product of the given reaction is the unpleasant rancid smelling (Z)-2-pentyl-2-nonenal. Heptanal forms flammable vapor-air mixtures. Heptanal is a flammable, slightly volatile colorless liquid of pervasive fruity to oily-greasy odor, which is miscible with alcohols and practically insoluble in water. Heptanal reacts with benzaldehyde in a Knoevenagel reaction under basic catalysis with high yield and selectivity (> 90\\%) to alpha-pentylcinnamaldehyde (also called jasmine aldehyde because of the typical jasmine odor), which is mostly used in many fragrances as a cis/trans isomer mixture. Found in essential oils of ylang-ylang, clary sage, California orange, bitter orange and others. Flavouring agent

   

(R)-1-Octen-3-ol

1-Octen-3-ol, (+-)-isomer

C8H16O (128.1201)


Isolated from a number of essential oils, e.g. lavender, leek, mint and mushrooms. Food odorant responsible for typical mushroom odour. Flavouring ingredient. (R)-1-Octen-3-ol is found in mushrooms, onion-family vegetables, and herbs and spices. (R)-1-Octen-3-ol, also known as 1-vinylhexanol or 3-hydroxy-1-octene, belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

1-Pentanol

N-Pentanol, 1-(13)C-labeled CPD

C5H12O (88.0888)


1-Pentanol, also known as butylcarbinol or 1-pentyl alcohol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-pentanol is considered to be a fatty alcohol lipid molecule. 1-Pentanol is an organic compound with the formula C5H12O. 1-Pentanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. All eight isomers of 1-Pentanol are known:; It is a colourless liquid of density 0.8247 g/cm3 (0 oC), boiling at 131.6 oC, slightly soluble in water, easily soluble in organic solvents. 1-Pentanol exists in all eukaryotes, ranging from yeast to humans. 1-Pentanol is a sweet, balsamic, and fusel tasting compound. 1-Pentanol can be found in a few different foods, such as black walnuts, common thymes, and tea and in a lower concentration in safflowers, highbush blueberries, and kohlrabis. 1-Pentanol has also been detected, but not quantified, in several different foods, such as corns, garden tomato (var.), allspices, cherry tomato, and evergreen blackberries. It possesses a characteristic strong smell and a sharp burning taste. The other amyl alcohols may be obtained synthetically. It is a solid that melts at 48 to 50 °C and boils at 112.3 °C. On passing its vapour through a red-hot tube, it decomposes with production of acetylene, ethylene, propylene, and other compounds. Of these, tertiary 1-Pentanol has been the most difficult to obtain, its synthesis having first been reported in 1891, by L. Tissier (Comptes Rendus, 1891, 112, p. 1065) by the reduction of a mixture of trimethyl acetic acid and trimethylacetyl chloride with sodium amalgam. It is oxidized by chromic acid to isovaleraldehyde, and it forms crystalline addition compounds with calcium chloride and tin(IV) chloride. When pure, it is nontoxic, while the impure product is toxic. Widely distributed in plant sources, e.g. peppermint oil, tomatoes, tea, potatoes. Flavouring ingredient

   

2-Furanmethanol

(2-FURYL)-methanol (furfurylalcohol)

C5H6O2 (98.0368)


2-Furanmethanol, also known as 2-furylcarbinol or furfural alcohol, belongs to the class of organic compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. Its structure is that of a furan bearing a hydroxymethyl substituent at the 2-position. 2-Furanmethanol is a sweet, alcoholic and bitter tasting compound. 2-Furanmethanol has been detected, but not quantified, in several different foods, such as cereals and cereal products, potato, white mustards, arabica coffee, and cocoa and cocoa products. This could make 2-furanmethanol a potential biomarker for the consumption of these foods. Isolated from coffee aroma, tea, wheat bread, crispbread, soybean, cocoa, rice, potato chips and other sources. Flavouring ingredient. 2-Furanmethanol is found in many foods, some of which are sesame, pulses, white mustard, and potato.

   

(±)-2-Methylbutanal

(+/-)-2-methylbutyraldehyde

C5H10O (86.0732)


(±)-2-Methylbutanal, also known as 2-methylbutyraldehyde, belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms. (±)-2-Methylbutanal exists in all eukaryotes, ranging from yeast to humans. (±)-2-Methylbutanal is an almond, cocoa, and coffee tasting compound. (±)-2-Methylbutanal is found, on average, in the highest concentration within kohlrabis and milk (cow). (±)-2-Methylbutanal has also been detected, but not quantified, in several different foods, such as sugar apples, horned melons, hyacinth beans, persian limes, and root vegetables. (±)-2-Methylbutanal, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis and nonalcoholic fatty liver disease; (±)-2-methylbutanal has also been linked to the inborn metabolic disorder celiac disease. (±)-2-methylbutanal, also known as 2-methylbutyraldehyde, is a member of the class of compounds known as short-chain aldehydes. Short-chain aldehydes are an aldehyde with a chain length containing between 2 and 5 carbon atoms (±)-2-methylbutanal is soluble (in water) and an extremely weak acidic compound (based on its pKa). (±)-2-methylbutanal can be found primarily in feces and saliva. Within the cell, (±)-2-methylbutanal is primarily located in the cytoplasm. It can also be found in the extracellular space.

   

Ethyl pentyl ketone

Ethyl N-pentyl ketone

C8H16O (128.1201)


Ethyl pentyl ketone, also known as 3-oxooctane or eak, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. Ethyl pentyl ketone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ethyl pentyl ketone is a sweet, butter, and fresh tasting compound and can be found in a number of food items such as rosemary, hyssop, spearmint, and rocket salad (sspecies), which makes ethyl pentyl ketone a potential biomarker for the consumption of these food products. Ethyl pentyl ketone can be found primarily in feces and saliva. Ethyl pentyl ketone exists in all eukaryotes, ranging from yeast to humans. Ethyl pentyl ketone, also known as 3-oxooctane or EAK, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group. Ethyl pentyl ketone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Ethyl pentyl ketone has been detected, but not quantified, in cardamoms and lemons. This could make ethyl pentyl ketone a potential biomarker for the consumption of these foods. Ethyl pentyl ketone, with regard to humans, has been linked to the inborn metabolic disorder celiac disease.

   

Proanthocyanidin A2

(1R,5R,6R,13S,21R)-5,13-bis(3,4-dihydroxyphenyl)-4,12,14-trioxapentacyclo[11.7.1.0²,¹¹.0³,⁸.0¹⁵,²⁰]henicosa-2(11),3(8),9,15(20),16,18-hexaene-6,9,17,19,21-pentol

C30H24O12 (576.1268)


Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].

   

Oleoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9Z)-octadec-9-enoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H68N7O17P3S (1031.3605)


Oleoyl-CoA is a substrate for Acyl-CoA desaturase and Protein FAM34A. [HMDB]. Oleoyl-CoA is found in many foods, some of which are cardoon, fruits, hyssop, and rice. Oleoyl-CoA is a substrate for Acyl-CoA desaturase and Protein FAM34A.

   

3-Mercaptopyruvic acid

beta-3-Mercapto-2-oxo-propanoic acid

C3H4O3S (119.9881)


3-Mercaptopyruvic acid, also known as 3-mercapto-2-oxopropanoate or beta-thiopyruvate, belongs to the class of organic compounds known as alpha-keto acids and derivatives. These are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. 3-Mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3-mercaptopyruvic acid participates in a number of enzymatic reactions. In particular, 3-mercaptopyruvic acid and cyanide can be converted into pyruvic acid and thiocyanate; which is mediated by the enzyme 3-mercaptopyruvate sulfurtransferase. In addition, 3-mercaptopyruvic acid can be biosynthesized from 3-mercaptolactic acid; which is mediated by the enzyme L-lactate dehydrogenase. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. In humans, 3-mercaptopyruvic acid is involved in cystinosis, ocular nonnephropathic. Outside of the human body, 3-mercaptopyruvic acid has been detected, but not quantified in several different foods, such as lima beans, spinachs, shallots, mexican groundcherries, and white lupines. This could make 3-mercaptopyruvic acid a potential biomarker for the consumption of these foods. 3-mercaptopyruvic acid, also known as beta-mercaptopyruvate or beta-thiopyruvic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-mercaptopyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-mercaptopyruvic acid can be found in a number of food items such as garland chrysanthemum, rubus (blackberry, raspberry), tarragon, and arrowhead, which makes 3-mercaptopyruvic acid a potential biomarker for the consumption of these food products. 3-mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-mercaptopyruvic acid is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. 3-mercaptopyruvic acid is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. Instead, prodrugs, such as sulfanegen, are being evaluated to compensate for the short half-life of 3-mercaptopyruvic acid .

   

3-deoxy-D-manno-octulosonate

(4R,5R,6R,7R)-4,5,6,7,8-pentahydroxy-2-oxooctanoic acid

C8H14O8 (238.0689)


3-deoxy-d-manno-octulosonate, also known as kdo or 2-dehydro-3-deoxy-D-octonate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-deoxy-d-manno-octulosonate is soluble (in water) and a moderately acidic compound (based on its pKa). 3-deoxy-d-manno-octulosonate can be found in a number of food items such as peppermint, okra, horseradish tree, and hazelnut, which makes 3-deoxy-d-manno-octulosonate a potential biomarker for the consumption of these food products. 3-deoxy-d-manno-octulosonate may be a unique E.coli metabolite.

   

ADP-Ribosyl-L-arginine

2-amino-5-[(E)-[amino({5-[({[({[5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-3,4-dihydroxyoxolan-2-yl}amino)methylidene]amino]pentanoic acid

C21H35N9O15P2 (715.1728)


ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc) [HMDB] ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc).

   

myo-Inositol 1,3,4,5,6-pentakisphosphate

{[(1R,2S,3r,4R,5S,6r)-3-hydroxy-2,4,5,6-tetrakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H17O21P5 (579.895)


myo-Inositol 1,3,4,5,6-pentakisphosphate, also known as Ins(1,3,4,5,6)P5 or inositol pentaphosphate, is an inositol polyphosphate of emerging significance in cellular signalling. Both Ins(1,3,4,5,6)P5 and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesized from the same myo-inositol-based precursor (PMID: 16755629). InsP6, Ins(1,3,4,5,6)P5, and their close metabolic relatives are amongst the more abundant intracellular inositol polyphosphates. They are involved in chromatin organization, DNA maintenance, gene transcription, nuclear mRNA transport, membrane trafficking, and control of cell proliferation (PMID: 14992690). myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. (PMID: 16755629)

   

Octane

CH3-[CH2]6-CH3

C8H18 (114.1408)


Octane, also known as N-oktanis a hydrocarbon and an alkane with the chemical formula C8H18, and the condensed structural formula CH3(CH2)6CH3. Octane has many structural isomers that differ by the amount and location of branching in the carbon chain. One of these isomers, 2,2,4-trimethylpentane (commonly called iso-octane) is used as one of the standard values in the octane rating scale. Octane belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, octane is considered to be a hydrocarbon lipid molecule. Octane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Octane is an alkane and gasoline tasting compound. Outside of the human body, octane has been detected, but not quantified in several different foods, such as pepper (Capsicum annuum), celery stalks, cauliflowers, alcoholic beverages, and corns. One of the isomers, 2,2,4-trimethylpentane or isooctane, is of major importance, as it has been selected as the 100 point on the octane rating scale, with n-heptane as the zero point. Octane is an alkane with the chemical formula C8H18. Octane is a potentially toxic compound. Treatment is mainly symptomatic and supportive. It has 18 isomers. Octane ratings are ratings used to represent the anti-knock performance of petroleum-based fuels (octane is less likely to prematurely combust under pressure than heptane), given as the percentage of 2,2,4-trimethylpentane in an 2,2,4-trimethylpentane / n-heptane mixture that would have the same performance. Found in hop oil

   

Viomycin

Tuberactinomycin B; Vinacetin A; Vioactane

C25H43N13O10 (685.3256)


A cyclic peptide antibiotic produced by the actinomycete Streptomyces puniceus, used in the treatment of tuberculosis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

L-Dopachrome

(2S)-2,3,5,6-Tetrahydro-5,6-dioxo-1H-indole-2-carboxylic acid

C9H7NO4 (193.0375)


Dopachrome is a cyclization product of L-DOPA and is an intermediate in the biosynthesis of melanin. Dopaquinone has an ortho-quinone ring, which is known to be neurotoxic and highly reactive with many other compounds (PMID: 413870). Dopachrome spontaneously gives rise to 5,6-dihydroxyindole (DHI) or it can be enzymatically metabolized by dopachrome tautomerase to give 5,6-dihydroxyindole-2-carboxylic acid (DHICA). DHI and its oxidation products are also toxic to cells. Many Parkinsons patients are treated with L-DOPA. However, long-term treatment with L-DOPA may actually worsen symptoms or may result in neurotic and psychotic symptoms. These may be due to dopachrome and dopaquinone accumulating in the brain of L-DOPA treated patients (PMID: 19131041, PMID: 12373519). The non-decarboxylative tautomerization of L-dopachrome to 5,6-dihydroxyindole-2-carboxylic acid in the melanin biosynthetic pathway is catalyzed by Tyrosinase-related protein-2, a melanocyte-specific enzyme. (PMID 11095412) [HMDB]

   

Ethanethioic acid

Thioacetic acid, potassium salt

C2H4OS (75.9983)


Ethanethioic acid is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

Thiocysteine

(2S)-2-amino-3-disulfanyl-propanoic acid

C3H7NO2S2 (152.9918)


The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665) [HMDB] The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665).

   

6-Methylsalicylic acid

2-HYDROXY-6-METHYLBENZOIC ACID

C8H8O3 (152.0473)


A monohydroxybenzoic acid that is salicylic acid in which the hydrogen ortho to the carboxylic acid group is substituted by a methyl group. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates

   

Kyotorphin

(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanoic acid

C15H23N5O4 (337.175)


Kyotorphin (L-tyrosyl-L-arginine) is a neuroactive dipeptide which plays a role in pain regulation in the brain. It was first isolated from bovine brain by Japanese scientists in 1979. Kyotorphin was named for the site of its discovery, Kyoto, Japan and because of its morphine- (or endorphin-) like analgesic activity. Kyotorphin has an analgesic effect, but it does not interact with the opioid receptors. Instead, it acts by releasing an Met-enkephalin and stabilizing it from degradation. It may also possess properties of neuromediator/neuromodulator. It has been shown that kyotorphin is present in the human cerebrospinal fluid and that it is lower in patients with persistent pain. [HMDB] Kyotorphin (L-tyrosyl-L-arginine) is a neuroactive dipeptide which plays a role in pain regulation in the brain. It was first isolated from bovine brain by Japanese scientists in 1979. Kyotorphin was named for the site of its discovery, Kyoto, Japan and because of its morphine- (or endorphin-) like analgesic activity. Kyotorphin has an analgesic effect, but it does not interact with the opioid receptors. Instead, it acts by releasing an Met-enkephalin and stabilizing it from degradation. It may also possess properties of neuromediator/neuromodulator. It has been shown that kyotorphin is present in the human cerebrospinal fluid and that it is lower in patients with persistent pain. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004723 - Endorphins Kyotorphin is an endogenou neuroactive dipeptide with analgesic properties. Kyotorphin possesses anti-inflammatory and antimicrobial activity. Kyotorphin levels in cerebro-spinal fluid correlate negatively with the progression of neurodegeneration in Alzheimer's Disease patients[1].

   

Adenosine tetraphosphate

{[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}phosphonic acid

C10H17N5O16P4 (586.9621)


Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4). [HMDB] Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4).

   

5alpha-Cholest-8-en-3beta-ol

(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C27H46O (386.3548)


5a-Cholest-8-en-3b-ol is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decrease and cholesterol precursor sterols such as zymostenol increase. (PMID: 15736111, 16709621, 16477216, 12756385) [HMDB]. 5a-Cholest-8-en-3b-ol is found in many foods, some of which are chinese water chestnut, garden tomato, calabash, and cassava. 5alpha-Cholest-8-en-3beta-ol, also known as zymostenol, is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in the serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decreased and cholesterol precursor sterols such as zymostenol increased (PMID: 15736111, 16709621, 16477216, 12756385).

   

Adenosine 2,5-bisphosphate

adenosine-2,5-bisphosphate

C10H15N5O10P2 (427.0294)


   

Diadenosine pentaphosphate

{[(2R,3S,4R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[({[({[(3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C20H29N10O22P5 (916.0146)


Diadenosine pentaphosphate (AP5A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP5A in nanomolar concentrations is found to significantly stimulate the proliferation of vascular smooth muscle cells. AP5A is a P2X agonist. The activation of nucleotide ion tropic receptors increases intracellular calcium concentration, resulting in calcium/calmodulin-dependent protein kinase II (CaMKII) activation. AP5A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP5A have been identified in human platelets and shown to be important modulator of cardiovascular function. AP5A is stored in synaptic vesicles and released upon nerve terminal depolarization. At the extracellular level, AP5A can stimulate presynaptic dinucleotide receptors. Responses to AP5A have been described in isolated synaptic terminals (synaptosomes) from several brain areas in different animal species, including man. Dinucleotide receptors are ligand-operated ion channels that allow the influx of cations into the terminals. These cations reach a threshold for N- and P/Q-type voltage-dependent calcium channels, which become activated. The activation of the dinucleotide receptor together with the activation of these calcium channels triggers the release of neurotransmitters. The ability of Ap5A to promote glutamate, GABA or acetylcholine release has been described. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 10094777, 16401072, 16819989, 17721817, 17361116, 14502438) [HMDB] Diadenosine pentaphosphate (AP5A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP5A in nanomolar concentrations is found to significantly stimulate the proliferation of vascular smooth muscle cells. AP5A is a P2X agonist. The activation of nucleotide ion tropic receptors increases intracellular calcium concentration, resulting in calcium/calmodulin-dependent protein kinase II (CaMKII) activation. AP5A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP5A have been identified in human platelets and shown to be important modulator of cardiovascular function. AP5A is stored in synaptic vesicles and released upon nerve terminal depolarization. At the extracellular level, AP5A can stimulate presynaptic dinucleotide receptors. Responses to AP5A have been described in isolated synaptic terminals (synaptosomes) from several brain areas in different animal species, including man. Dinucleotide receptors are ligand-operated ion channels that allow the influx of cations into the terminals. These cations reach a threshold for N- and P/Q-type voltage-dependent calcium channels, which become activated. The activation of the dinucleotide receptor together with the activation of these calcium channels triggers the release of neurotransmitters. The ability of Ap5A to promote glutamate, GABA or acetylcholine release has been described. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 10094777, 16401072, 16819989, 17721817, 17361116, 14502438). D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

CoM-S-S-CoB

Coenzyme M 7-mercaptoheptanoylthreonine-phosphate heterodisulfide; Coenzyme M-HTP heterodisulfide; CoM-S-S-CoB; N-{7-[(2-Sulfoethyl)dithio]heptanoyl}-3-O-phospho-L-threonine

C13H26NO10PS3 (483.0456)


   

(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid

(5Z,9E)-8-hydroxy-10-[(2S)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,9-dienoic acid

C20H32O4 (336.23)


(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid, also known as Hepoxilin a3 or 8-EH-2, is classified as a member of the Hepoxilins. Hepoxilins are eicosanoids containing an oxirane group attached to the fatty acyl chain. (5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-hydroxyicosa-5,9,14-trienoic Acid is considered to be practically insoluble (in water) and acidic

   

17a-Hydroxypregnenolone

1-[(1S,2R,5S,10R,11S,14R,15S)-5,14-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-14-yl]ethan-1-one

C21H32O3 (332.2351)


17a-Hydroxypregnenolone is a 21-carbon steroid that is converted from pregnenolone by cytochrome P450 17alpha hydroxylase/C17,20 lyase (CYP17, EC 1.14.99.9). 17a-Hydroxypregnenolone is an intermediate in the delta-5 pathway of biosynthesis of gonadal steroid hormones and the adrenal corticosteroids. The first, rate-limiting and hormonally regulated step in the biosynthesis of all steroid hormones is the conversion of cholesterol to pregnenolone. The conversion of cholesterol to pregnenolone is accomplished by the cleavage of the cholesterol side chain, catalyzed by a mitochondrial cytochrome P450 enzyme termed P450scc where scc designates Side Chain Cleavage. All steroid hormones are made from the pregnenolone produced by P450scc; thus, the presence or absence of each of the activities of CYP17 directs this pregnenolone towards its final metabolic pathway. While all cytochrome P450 enzymes can catalyze multiple reactions on a single active site, CYP17 is the only one described to date in which these multiple activities are differentially regulated by a physiologic process. 17a-Hydroxypregnenolone is converted to dehydroepiandrosterone by the 17,20 lyase activity of CYP17. The ratio of the 17,20 lyase to 17 alpha-hydroxylase activity of CYP17 determines the ratio of C21 to C19 steroids produced. This ratio is regulated post-translationally by at least three factors: the abundance of the electron-donating protein P450 oxidoreductase, the presence of cytochrome b5, and the serine phosphorylation of CYP17. (PMID: 12573809). C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA).

   

1-Benzyl-1,2,3,4-tetrahydroisoquinoline

1,2,3,4-tetrahydro-1-(Phenylmethyl)isoquinoline hydrochloride

C16H17N (223.1361)


1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) as a possible PD-eliciting neurotoxin and evaluated its characteristics relevant to Parkinson disease (PD). 1BnTIQ exist in mammals and is proposed as possible PD-eliciting neurotoxin. PD is believed to be induced by the interaction of genetic predisposition and environmental factors, and a type of neurotoxin is proposed to be one of the environmental factors. 1BnTIQ inhibits [3H] dopamine uptake in HEK293 cells which stably express dopamine transporter. 1BnTIQ also inhibits NADH-ubiquinone oxidoreductase (complex I) in the mitochondrial respiratory chain. 1BnTIQ decreases the dopamine content in the mesencephalon in both dose- and time-dependent manners and it irreversibly reduced the dopamine content. Furthermore, it causes morphological changes in tyrosine hydroxylase-positive cells in the mesencephalon and reduced the number of cells. (PMID 12440154) [HMDB] 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) as a possible PD-eliciting neurotoxin and evaluated its characteristics relevant to Parkinson disease (PD). 1BnTIQ exist in mammals and is proposed as possible PD-eliciting neurotoxin. PD is believed to be induced by the interaction of genetic predisposition and environmental factors, and a type of neurotoxin is proposed to be one of the environmental factors. 1BnTIQ inhibits [3H] dopamine uptake in HEK293 cells which stably express dopamine transporter. 1BnTIQ also inhibits NADH-ubiquinone oxidoreductase (complex I) in the mitochondrial respiratory chain. 1BnTIQ decreases the dopamine content in the mesencephalon in both dose- and time-dependent manners and it irreversibly reduced the dopamine content. Furthermore, it causes morphological changes in tyrosine hydroxylase-positive cells in the mesencephalon and reduced the number of cells. (PMID 12440154). D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists

   

5-Aminoimidazole

1H-imidazol-5-amine

C3H5N3 (83.0483)


Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054) [HMDB] Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054).

   

20alpha-Hydroxycholesterol

(1S,2R,5S,10S,11S,14S,15S)-14-[(2R)-2-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C27H46O2 (402.3498)


20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. [HMDB] 20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].

   

Indoxyl

1H-Indol-3-ol

C8H7NO (133.0528)


Indoxyl, also known as 1H-indol-3-ol, belongs to the class of organic compounds known as hydroxyindoles. These are organic compounds containing an indole moiety that carries a hydroxyl group. Indoxyl is isomeric with oxindol and is obtained as an oily liquid. Indoxyl exists in all living organisms, ranging from bacteria to humans. Indoxyl is obtained from indican, which is a glycoside. Obermayers reagent is a dilute solution FeCl3 in hydrochloric acid. The hydrolysis of indican yields β-D-glucose and indoxyl. Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent such as atmospheric oxygen. In chemistry, indoxyl is a nitrogenous substance with the chemical formula: C8H7NO. Indoxyl can be found in urine and is titrated with Obermayers reagent. Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent, eg. atmospheric oxygen.

   

(3Z)-Phycoerythrobilin

(3Z)-Phycoerythrobilin

C33H38N4O6 (586.2791)


   

Lacto-N-biose I

N-[(2S,3R,4R,5S,6R)-2,5-Dihydroxy-6-(hydroxymethyl)-4-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-3-yl]ethanimidate

C14H25NO11 (383.1428)


Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405) [HMDB] Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405).

   

5-Guanylylmethylenediphosphonate

Guanosine 5-monophosphate, monoanhydride with (phosphonomethyl)phosphonic acid

C11H18N5O13P3 (521.0114)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents

   

8-O-4'-Diferulic acid

1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene

C14H10Cl4 (317.9537)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

4-Chlorobenzaldehyde

4-chlorobenzaldehyde

C7H5ClO (140.0029)


   

Perchloroethylene

1,1,2,2-Tetrachloroethylene (acd/name 4.0)

C2Cl4 (163.8754)


Animal studies and a study of 99 twins by Dr. Samuel Goldman and researchers at the Parkinsons Institute in Sunnyvale, California determined there is a lot of circumstantial evidence that exposure to tetrachloroethene increases the risk of developing Parkinsons disease ninefold. Larger population studies are planned. Tetrachloroethene is a common soil contaminant. With a specific gravity greater than 1, tetrachloroethylene will be present as a dense nonaqueous phase liquid if sufficient quantities of liquid are spilled in the environment. Because of its mobility in groundwater, its toxicity at low levels, and its density (which causes it to sink below the water table), cleanup activities are more difficult than for oil spills. Recent research has focused on the in place remediation of soil and ground water pollution by tetrachloroethylene. Instead of excavation or extraction for above-ground treatment or disposal, tetrachloroethylene contamination has been successfully remediated by chemical treatment or bioremediation. Bioremediation has been successful under anaerobic conditions by reductive dechlorination by Dehalococcoides sp. and under aerobic conditions by cometabolism by Pseudomonas sp. Partial degradation daughter products include trichloroethylene, cis-1,2-dichloroethene and vinyl chloride; full degradation converts tetrachloroethylene to ethene and hydrogen chloride dissolved in water. Tetrachloroethylene is an excellent solvent for organic materials. Otherwise it is volatile, highly stable, and nonflammable. For these reasons, it is widely used in dry cleaning. Usually as a mixture with other chlorocarbons, it is also used to degrease metal parts in the automotive and other metalworking industries. It appears in a few consumer products including paint strippers and spot removers. Tetrachloroethylene, also known under the systematic name tetrachloroethene, or perchloroethylene (perc), and many other names, is a chlorocarbon with the formula Cl2C=CCl2. It is a colorless liquid widely used for dry cleaning of fabrics, hence it is sometimes called dry-cleaning fluid. It has a sweet odor detectable by most people at a concentration of 1 part per million (1 ppm). Worldwide production was about one million metric tons in 1985. The International Agency for Research on Cancer has classified tetrachloroethene as a Group 2A carcinogen, which means that it is probably carcinogenic to humans. Like many chlorinated hydrocarbons, tetrachloroethene is a central nervous system depressant and can enter the body through respiratory or dermal exposure. Tetrachloroethene dissolves fats from the skin, potentially resulting in skin irritation. This reaction can be catalyzed by a mixture of potassium chloride and aluminium chloride or by activated carbon. Trichloroethylene is a major byproduct, which is separated by distillation. D009676 - Noxae > D002273 - Carcinogens D004785 - Environmental Pollutants D012997 - Solvents

   

Cefprozil

(6R,7R)-7-[(2R)-2-amino-2-(4-hydroxyphenyl)acetamido]-8-oxo-3-(prop-1-en-1-yl)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C18H19N3O5S (389.1045)


Cefprozil is only found in individuals that have used or taken this drug. It is a cephalosporin antibiotic. It can be used to treat bronchitis, ear infections, skin infections, and other bacterial infections.Cefprozil, like the penicillins, is a beta-lactam antibiotic. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, it inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefprozil interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Ceftizoxime

(6R,7R)-7-[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetamido]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C13H13N5O5S2 (383.0358)


A semisynthetic cephalosporin antibiotic which can be administered intravenously or by suppository. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative organisms. It has few side effects and is reported to be safe and effective in aged patients and in patients with hematologic disorders. [PubChem] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Delavirdine

1-(3-((1-Methylethyl)amino)-2-pyridinyl)-4-((5-((methylsulphonyl)amino)-1H-indol-2-yl)carbonyl)piperazine

C22H28N6O3S (456.1943)


Delavirdine is only found in individuals that have used or taken this drug. It is a potent, non-nucleoside reverse transcriptase inhibitor with activity specific for HIV-1. [PubChem]Delavirdine binds directly to viral reverse transcriptase (RT) and blocks the RNA-dependent and DNA-dependent DNA polymerase activities by disrupting the enzymes catalytic site. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AG - Non-nucleoside reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

Dihydrotachysterol

(1S,3E,4S)-3-{2-[(1R,3aS,4E,7aR)-1-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-7a-methyl-octahydro-1H-inden-4-ylidene]ethylidene}-4-methylcyclohexan-1-ol

C28H46O (398.3548)


Dihydrotachysterol is only found in individuals that have used or taken this drug. It is a vitamin D that can be regarded as a reduction product of vitamin D2. [PubChem]Once hydroxylated to 25-hydroxydihydrotachysterol, the modified drug binds to the vitamin D receptor. The bound form of the vitamin D receptor serves as a transcriptional regulator of bone matrix proteins, inducing the expression of osteocalcin and suppressing synthesis of type I collagen. Vitamin D (when bound to the vitamin D receptor)stimulates the expression of a number of proteins involved in transporting calcium from the lumen of the intestine, across the epithelial cells and into blood. This stimulates intestinal calcium absorption and increases renal phosphate excretion. These are functions that are normally carried out by the parathyroid hormone. A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CC - Vitamin d and analogues D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents

   

Ethylbenzene

alpha-Methyltoluene

C8H10 (106.0782)


Ethyl benzene, also known as ethylbenzol or alpha-methyltoluene, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Ethyl benzene can be found in black walnut and safflower, which makes ethyl benzene a potential biomarker for the consumption of these food products. Ethyl benzene can be found primarily in blood and feces. Ethyl benzene exists in all eukaryotes, ranging from yeast to humans. Ethyl benzene is formally rated as possibly a carcinogenic (IARC 2B) potentially toxic compound. Ethyl benzene is an organic compound with the formula C6H5CH2CH3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline. This monocyclic aromatic hydrocarbon is important in the petrochemical industry as an intermediate in the production of styrene, the precursor to polystyrene, a common plastic material. In 2012, more than 99\\% of ethylbenzene produced was consumed in the production of styrene. Ethyl benzene is also used to make other chemicals, in fuel, and as a solvent in inks, rubber adhesives, varnishes, and paints. Ethyl benzene exposure can be determined by testing for the breakdown products in urine . Following oral exposure, a gastric lavage is recommended. Protect airway by placement in Trendelenburg and left lateral decubitus position or by endotracheal intubation. Control any seizures first. Following inhalation, move patient to fresh air. Monitor for respiratory distress. If cough or difficulty breathing develops, evaluate for respiratory tract irritation, bronchitis, or pneumonitis. Administer oxygen and assist ventilation as required. Following eye exposure, irrigate exposed eyes with copious amounts of room temperature water for at least 15 minutes. In case of dermal exposure, remove contaminated clothing and wash exposed area thoroughly with soap and water. Treat dermal irritation or burns with standard topical therapy. Patients developing dermal hypersensitivity reactions may require treatment with systemic or topical corticosteroids or antihistamines. Some chemicals can produce systemic poisoning by absorption through intact skin. Carefully observe patients with dermal exposure for the development of any systemic signs or symptoms and administer symptomatic treatment as necessary (T36) (T3DB). Ethylbenzene belongs to the family of Substituted Benzenes. These are aromatic compounds containing a benzene substituted at one or more positions.

   

m-Xylene

1,3-Dimethylbenzene

C8H10 (106.0782)


M-xylene, also known as 1,3-dimethylbenzene or M-xylol, is a member of the class of compounds known as M-xylenes. M-xylenes are aromatic compounds that contain a m-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 3-positions. M-xylene is a plastic tasting compound found in black walnut, parsley, and safflower, which makes M-xylene a potential biomarker for the consumption of these food products. M-xylene can be found primarily in blood and feces. M-xylene exists in all eukaryotes, ranging from yeast to humans. M-xylene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. m-Xylene (meta-xylene) is an aromatic hydrocarbon. It is one of the three isomers of dimethylbenzene known collectively as xylenes. The m- stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. It is in the positions of the two methyl groups, their arene substitution pattern, that it differs from the other isomers, o-xylene and p-xylene. All have the same chemical formula C6H4(CH3)2. All xylene isomers are colorless and highly flammable . If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). m-Xylene, also known as 1,3-xylene or m-dimethylbenzene, belongs to the class of organic compounds known as m-xylenes. These are aromatic compounds that contain a m-xylene moiety, which is a monocyclic benzene carrying exactly two methyl groups at the 1- and 3-positions. The conversion m-xylene to isophthalic acid entails catalytic oxidation. m-Xylene (meta-xylene) is an aromatic hydrocarbon. m-Xylene is possibly neutral. m-Xylene is a plastic tasting compound. m-xylene is found, on average, in the highest concentration in safflowers. m-xylene has also been detected, but not quantified, in black walnuts and parsley. This could make m-xylene a potential biomarker for the consumption of these foods. Xylenes are not acutely toxic, for example the LD50 (rat, oral) is 4300 mg/kg. m-Xylene is a potentially toxic compound. Concerns with xylenes focus on narcotic effects. The m- stands for meta-, indicating that the two methyl groups in m-xylene occupy positions 1 and 3 on a benzene ring. All xylene isomers are colorless and highly flammable. Petroleum contains about 1 weight percent xylenes.

   

Latamoxef

(6R,7R)-7-[2-carboxy-2-(4-hydroxyphenyl)acetamido]-7-methoxy-3-{[(1-methyl-1H-1,2,3,4-tetrazol-5-yl)sulfanyl]methyl}-8-oxo-5-oxa-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C20H20N6O9S (520.1012)


Broad- spectrum beta-lactam antibiotic similar in structure to the cephalosporins except for the substitution of an oxaazabicyclo moiety for the thiaazabicyclo moiety of certain cephalosporins. It has been proposed especially for the meningitides because it passes the blood-brain barrier and for anaerobic infections. [PubChem] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

3-Pyridinecarboxaldehyde

pyridine-3-carbaldehyde

C6H5NO (107.0371)


   

Pyrvinium

2-[(E)-2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-6-(dimethylamino)-1-methylquinolin-1-ium

C26H28N3+ (382.2283)


Pyrvinium, also known as molevac or pyrcon, belongs to the class of organic compounds known as phenylpyrroles. These are polycyclic aromatic compounds containing a benzene ring linked to a pyrrole ring through a CC or CN bond. Pyrvinium is considered to be a practically insoluble (in water) and relatively neutral molecule. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent

   

Enflurane

2-Chloro-1,1,2-trifluoroethyl difluoromethyl ether

C3H2ClF5O (183.9714)


Enflurane is only found in individuals that have used or taken this drug. It is an extremely stable inhalation anesthetic that allows rapid adjustments of anesthesia depth with little change in pulse or respiratory rate. [PubChem]Enflurane induces a reduction in junctional conductance by decreasing gap junction channel opening times and increasing gap junction channel closing times. Enflurane also activates calcium dependent ATPase in the sarcoplasmic reticulum by increasing the fluidity of the lipid membrane. It also appears to bind the D subunit of ATP synthase and NADH dehydogenase. Enflurane also binds to and angonizes the GABA receptor, the large conductance Ca2+ activated potassium channel, the glycine receptor, and antagonizes the glutamate receptor receptor. These yield a decreased depolarization and therefore, tissue excitability which results in anesthesia. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Sertindole

1-(2-(4-(5-Chloro-1-(4-fluorophenyl)-1H-indol-3-yl)-1-piperidinyl)ethyl)-2-imidazolidinone

C24H26ClFN4O (440.1779)


Sertindole, a neuroleptic, is one of the newer antipsychotic medications available. Serdolect is developed by the Danish pharmaceutical company H. Lundbeck. Like the other atypical antipsychotics, it has activity at dopamine and serotonin receptors in the brain. It is used in the treatment of schizophrenia. It is classified chemically as a phenylindole derivative. It was first marketed in 1996 in several European countries before being withdrawn two years later because of numerous cardiac adverse effects. It has once again been approved and should soon be available on the French and Australian market. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].

   

Halofantrine

3-(dibutylamino)-1-[1,3-dichloro-6-(trifluoromethyl)phenanthren-9-yl]propan-1-ol

C26H30Cl2F3NO (499.1656)


Halofantrine is a drug used to treat malaria. It belongs to the phenanthrene class of compounds that includes quinine and lumefantrine. It appears to inhibit polymerisation of heme molecules (by the parasite enzyme heme polymerase), resulting in the parasite being poisoned by its own waste. Halofantrine has been shown to preferentially block open and inactivated HERG channels leading to some degree of cardiotoxicity. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

DOCUSATE

1,4-bis(2-ethylhexyl) 2-sulphosuccinate

C20H38O7S (422.2338)


C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative > C29699 - Stool Softener D013501 - Surface-Active Agents

   

grams iodine

Potassium triiodide

I3K (419.6771)


D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D009676 - Noxae > D007509 - Irritants D004396 - Coloring Agents

   

Butenafine

N-4-Tert-butylbenzyl-N-methyl-1-naphthalene methylamine hydrochloride

C23H27N (317.2143)


Butenafine is only found in individuals that have used or taken this drug. It is a synthetic benzylamine antifungal agent.Although the mechanism of action has not been fully established, it has been suggested that butenafine, like allylamines, interferes with sterol biosynthesis (especially ergosterol) by inhibiting squalene monooxygenase, an enzyme responsible for converting squalene to 2,3-oxydo squalene. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Blockage of squalene monooxygenase also leads to a subsequent accumulation of squalene. When a high concentration of squalene is reached, it is thought to have an effect of directly kill fungal cells. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Cefmetazole

(6R,7S)-7-{2-[(cyanomethyl)sulfanyl]acetamido}-7-methoxy-3-{[(1-methyl-1H-1,2,3,4-tetrazol-5-yl)sulfanyl]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C15H17N7O5S3 (471.0453)


Cefmetazole is only found in individuals that have used or taken this drug. It is a semisynthetic cephamycin antibiotic with a broad spectrum of activity against both gram-positive and gram-negative microorganisms. It has a high rate of efficacy in many types of infection and to date no severe side effects have been noted. [PubChem]The bactericidal activity of cefmetazole results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   
   

alpha-Antiarin

Antiarigenin 3-O-beta-D-antiaroside

C29H42O11 (566.2727)


   

Ptaerochromenol

Ptaerochromenol

C15H14O5 (274.0841)


   

Ophiobolin A

(+)-Ophiobolin A

C25H36O4 (400.2613)


   

Inulicin

2H-Cyclohepta(b)furan-2-one, 3,3a,4,5,8,8a-hexahydro-4-hydroxy-6-(3-hydroxypropyl)-5,7-dimethyl-3-methylene-, 6-acetate, (+)-

C17H24O5 (308.1624)


Britannilactone 1-O-acetate is a natural product found in Pentanema britannicum and Inula japonica with data available. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation.

   

Matricin

9-Hydroxy-3,6,9-trimethyl-2-oxo-2H,3H,3ah,4H,5H,9H,9ah,9BH-azuleno[4,5-b]furan-4-yl acetic acid

C17H22O5 (306.1467)


Constituent of Matricaria chamomilla (German chamomile). Matricin is found in many foods, some of which are german camomile, fats and oils, tea, and herbs and spices. Matricin is found in fats and oils. Matricin is a constituent of Matricaria chamomilla (German chamomile).

   

Multistatin

Multistatin

C20H22O6 (358.1416)


   

chlorophorin

2,4,3,5-tetrahydroxy-4(3,7-di-methyl-2,6-octadienyl)-stilbene

C24H28O4 (380.1987)


   

Pseudohypericin

9,11,13,16,18,20-hexahydroxy-5-(hydroxymethyl)-24-methyloctacyclo[13.11.1.12,10.03,8.04,25.019,27.021,26.014,28]octacosa-1(26),2,4(25),5,8,10,12,14(28),15(27),16,18,20,23-tridecaene-7,22-dione

C30H16O9 (520.0794)


Pseudohypericin is an ortho- and peri-fused polycyclic arene. Pseudohypericin is a natural product found in Hypericum bithynicum, Hypericum linarioides, and other organisms with data available. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Robustine

Furo(2,3-b)quinolin-8-ol, 4-methoxy-

C12H9NO3 (215.0582)


A quinoline alkaloid that is furo[2,3-b]quinoline substituted by a methoxy and a hydroxy group at positions 4 and 8 respectively. Robustine, a furoquinoline alkaloid, from Dictamnus albus, exhibits inhibitory potency against human phosphodiesterase 5 (hPDE5A) in vitro[1]. Robustine, a furoquinoline alkaloid, from Dictamnus albus, exhibits inhibitory potency against human phosphodiesterase 5 (hPDE5A) in vitro[1].

   

Solamargine

(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-piperidine]-16-yl]oxy-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H73NO15 (867.498)


Solamargine is an azaspiro compound, a steroid and an oxaspiro compound. Solamargine has been used in trials studying the treatment of Actinic Keratosis. Solamargine is a natural product found in Solanum pittosporifolium, Solanum americanum, and other organisms with data available. Solamargine, a derivative from the steroidal solasodine in Solanum species, exhibits anticancer activities in numerous types of cancer. Solamargine induces non-selective cytotoxicity and P-glycoprotein inhibition. Solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity[1][2]. Solamargine, a derivative from the steroidal solasodine in Solanum species, exhibits anticancer activities in numerous types of cancer. Solamargine induces non-selective cytotoxicity and P-glycoprotein inhibition. Solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity[1][2].

   

BIFENTHRIN

BIFENTHRIN

C23H22ClF3O2 (422.126)


D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins

   

Isofenphos

2-[[Ethoxy[(1-methylethyl)amino]phosphinothioyl]oxy]benzoic acid 1-methylethyl ester

C15H24NO4PS (345.1164)


Isofenphos is an Agricultural insecticide with contact and stomach actio C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Benfuracarb

ethyl 3-{[({[(2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl)oxy]carbonyl}(methyl)amino)sulfanyl](propan-2-yl)amino}propanoate

C20H30N2O5S (410.1875)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Sulbenicillin

alpha-Sulfobenzylpenicillin

C16H18N2O7S2 (414.0555)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams A penicillin antibiotic having a 6beta-[phenyl(sulfo)acetamido] side-chain. Same as: D08534 C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Biapenem

CLI 86815;L 627;LJC 10627

C15H18N4O4S (350.1049)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DH - Carbapenems D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D013845 - Thienamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Same as: D01057

   

TTFB

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

C8HCl4F3N2 (321.8846)


   

Pifithrin-Beta

2-p-Tolyl-5,6,7,8-tetrahydrobenzo[d]imidazo[2,1-b]thiazole

C16H16N2S (268.1034)


   

Etorphine

6,14-Ethenomorphinan-7-methanol, 4,5-epoxy-3-hydroxy-6-methoxy-alpha,17-dimethyl-alpha-propyl-, (5alpha,7alpha(R))-

C25H33NO4 (411.2409)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D07937

   

oritavancin

Chlorobiphenyl-chloroeremomycin; LY333328; Oritavancin

C86H97Cl3N10O26 (1790.5641)


A semisynthetic glycopeptide used (as its bisphosphate salt) for the treatment of acute bacterial skin and skin structure infections caused or suspected to be caused by susceptible isolates of designated Gram-positive microorganisms including MRSA. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01X - Other antibacterials > J01XA - Glycopeptide antibacterials C254 - Anti-Infective Agent > C258 - Antibiotic > C61101 - Glycopeptide Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Nedaplatin

Nedaplatin

C2H8N2O3Pt (303.0183)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent > C1450 - Platinum Compound D000970 - Antineoplastic Agents Same as: D01416

   

Lagosin

Fungichromin

C35H58O12 (670.3928)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics Same as: D01829

   

Iodoform

Carbon triiodide

CHI3 (393.7213)


D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Same as: D01910

   

Tenofovir disoproxil

Tenofovir disoproxil

C19H30N5O10P (519.173)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Methyl-5-hydroxytryptamine

3-(2-aminoethyl)-2-methyl-1H-indol-5-ol

C11H14N2O (190.1106)


2-Methyl-5-HT (2-Methyl-5-hydroxytryptamine) is a potent and selective 5-HT3 receptor agonist. 2-Methyl-5-HT is shown to display anti-depressive-like effects[1].

   

Naspm

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

2-(4-Chlorophenoxy)propionic acid

2-(4-Chlorophenoxy)propionic acid, potassium salt

C9H9ClO3 (200.024)


   

IAA-94

(S)-2-((6,7-Dichloro-2-cyclopentyl-2-methyl-1-oxo-2,3-dihydro-1H-inden-5-yl)oxy)acetic acid

C17H18Cl2O4 (356.0582)


D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics

   

Flindokalner

3-(5-chloro-2-methoxyphenyl)-3-fluoro-6-(trifluoromethyl)indolin-2-one

C16H10ClF4NO2 (359.0336)


Same as: D04192 C26170 - Protective Agent > C1509 - Neuroprotective Agent

   

1-EBIO

1-Ethyl-1,3-dihydro-2H-benzimidazol-2-one

C9H10N2O (162.0793)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Mirex

1,2,3,4,5,5,6,7,8,9,10,10-Dodecachloropentacyclo[5.3.0.0(2,6).0(3,9).0(4,8)]decane

C10Cl12 (539.6262)


Mirex is a chlorinated hydrocarbon that was commercialized as an insecticide and later banned because of its impact on the environment. This white crystalline odorless solid is a derivative of cyclopentadiene. It was popularized to control fire ants but by virtue of its chemical robustness and lipophilicity it was recognized as a bioaccumulative pollutant. Ironically, the spread of the red imported fire ant was actually encouraged by the use of Mirex, which also kills native ants that are highly competitive with the fire ants. The United States Environmental Protection Agency prohibited its use in 1976.

   

Metribolone

17-HYDROXY-13,17-DIMETHYL-1,2,6,7,8,13,14,15,16,17-DECAHYDROCYCLOPENTA[A]PHENANTHREN-3-ONE

C19H24O2 (284.1776)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

Heptachlor exo-epoxide

1,6,8,9,10,11,11-heptachloro-4-oxatetracyclo[6.2.1.0²,⁷.0³,⁵]undec-9-ene

C10H5Cl7O (385.816)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

1,2-Dichlorobenzene

Ortho-dichlorobenzene

C6H4Cl2 (145.969)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

2,2',3,3',6,6'-Hexachlorobiphenyl

1,2,4-trichloro-3-(2,3,6-trichlorophenyl)benzene

C12H4Cl6 (357.8444)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

4-Butylphenol

p-Hydroxybutylbenzene

C10H14O (150.1045)


   

Ethyl-4,4-dichlorobenzilate

Ethyl 2-hydroxy-2,2-bis(4-chlorophenyl)acetate

C16H14Cl2O3 (324.032)


   

3-Methoxy-17-epiestriol

3-Methoxyestra-1,3,5(10)-triene-16alpha,17alpha-diol

C19H26O3 (302.1882)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03G - Gonadotropins and other ovulation stimulants > G03GB - Ovulation stimulants, synthetic D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Same as: D04021

   

Estradiol Cypionate

Estra-1,3,5(10)-triene-3,17-diol (17.beta.)-, 17-cyclopentanepropanoate

C26H36O3 (396.2664)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D04063 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Ethoxyethanol

Ether monoethylique de lethylene-glycol

C4H10O2 (90.0681)


2-Ethoxyethanol is a diluent in colour additive mixtures for marking food. 2-Ethoxyethanol, also known by the trademark Cellosolve or ethyl cellosolve, is a solvent used widely in commercial and industrial applications. It is a clear, colorless, nearly odorless liquid that is miscible with water, ethanol, diethyl ether, acetone, and ethyl acetate. As with other glycol ethers, 2-ethoxyethanol has the useful property of being able to dissolve chemically diverse compounds. It will dissolve oils, resins, grease, waxes, nitrocellulose, and lacquers. This is an ideal property as a multi-purpose cleaner and therefore 2-ethoxyethanol is used in products such as varnish removers and degreasing solutions

   

2,2'-Methylenediphenol

2-[(2-hydroxyphenyl)methyl]phenol

C13H12O2 (200.0837)


CONFIDENCE standard compound; INTERNAL_ID 860; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4380; ORIGINAL_PRECURSOR_SCAN_NO 4378 CONFIDENCE standard compound; INTERNAL_ID 860; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4391; ORIGINAL_PRECURSOR_SCAN_NO 4390 CONFIDENCE standard compound; INTERNAL_ID 860; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4432; ORIGINAL_PRECURSOR_SCAN_NO 4427 CONFIDENCE standard compound; INTERNAL_ID 860; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4033; ORIGINAL_PRECURSOR_SCAN_NO 4030 CONFIDENCE standard compound; INTERNAL_ID 860; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4411; ORIGINAL_PRECURSOR_SCAN_NO 4406 CONFIDENCE standard compound; INTERNAL_ID 860; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4412; ORIGINAL_PRECURSOR_SCAN_NO 4408

   

5,6-DHET

(8Z,11Z,14Z)-5,6-Dihydroxyeicosa-8,11,14-trienoic acid

C20H34O4 (338.2457)


5,6-DHET is an epoxide intermediate in the oxygenation of arachidonic acid by hepatic monooxygenases pathway. 5,6-DHET is the hydrolysis metabolite of cis-5(6)Epoxy-cis-8,11,14-eicosatrienoic acid by epoxide hydrolases. Many drugs, chemicals, and endogenous compounds are oxygenated in mammalian tissues and in some instances reactive and potentially toxic or carcinogenic epoxides are formed. Naturally occurring olefins may also be oxygenated by mammalian enzymes. The most well known are lipoxygenases and microsomal cytochrome P-450-linked monooxygenases. The epoxides may be chemically labile or may be enzymatically hydrolyzed. When arene or olefinic epoxides are formed by microsomal P-450-linked monooxygenases, they are often rapidly converted to less reactive trans-diols through the action of microsomal epoxide hydrolases. (PMID: 6801052, 6548162) [HMDB] 5,6-DHET is an epoxide intermediate in the oxygenation of arachidonic acid by hepatic monooxygenases pathway. 5,6-DHET is the hydrolysis metabolite of cis-5(6)Epoxy-cis-8,11,14-eicosatrienoic acid by epoxide hydrolases. Many drugs, chemicals, and endogenous compounds are oxygenated in mammalian tissues and in some instances reactive and potentially toxic or carcinogenic epoxides are formed. Naturally occurring olefins may also be oxygenated by mammalian enzymes. The most well known are lipoxygenases and microsomal cytochrome P-450-linked monooxygenases. The epoxides may be chemically labile or may be enzymatically hydrolyzed. When arene or olefinic epoxides are formed by microsomal P-450-linked monooxygenases, they are often rapidly converted to less reactive trans-diols through the action of microsomal epoxide hydrolases. (PMID: 6801052, 6548162).

   

Chloroacetyl chloride

Monochloroacetyl chloride

C2H2Cl2O (111.9483)


Chloroacetyl chloride is a chlorinated acyl chloride. It is a bifunctional compound, making it a useful building block chemical. (Wikipedia)

   

1-[(4-Amino-3-methylphenyl)methyl]-5-(2,2-diphenylacetyl)-6,7-dihydro-4H-imidazo[4,5-c]pyridine-6-carboxylic acid

1-((4-Amino-3-methylphenyl)methyl)-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo(4,5C)pyridine-6-carboxylic acid

C29H28N4O3 (480.2161)


   

CITCO

6-(4-Chlorophenyl)imidazo[2,1-B][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime

C19H12Cl3N3OS (434.9767)


   

Endoxifen

4-[(1Z)-1-{4-[2-(methylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl]phenol

C25H27NO2 (373.2042)


Endoxifen (EDX) is a key active metabolite of tamoxifen (TAM) with higher affinity and specificity to estrogen receptors that also inhibits aromatase activity. (PMID: 23274567) Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia) The pharmacological activity of Tamoxifen is dependent on its conversion to its active metabolite, endoxifen, by CYP2D6. (PMID: 23711794) Tamoxifen is a largely inactive pro-drug, requiring metabolism into its most important metabolite endoxifen. Since the cytochrome P450 (CYP) 2D6 enzyme is primarily involved in this metabolism, genetic polymorphisms of this enzyme, but also drug-induced CYP2D6 inhibition can result in considerably reduced endoxifen formation and as a consequence may affect the efficacy of tamoxifen treatment. (PMID: 23760858)

   

Aminopropylcadaverine

N-(3-Aminopropyl)-1,5-pentanediamine

C8H21N3 (159.1735)


Aminopropylcadaverine,a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are important for cell growth and are believed to be involved in many processes including DNA, RNA, and protein synthesis, as well as membrane integrity and resistance to stress, to name a few. Cadaverine and aminopropylcadaverine are alternative polyamines that can at least partially substitute for purtrescine and spermidine, the primary polyamines found in E. coli. Lysine is decarboxylated to form cadaverine which is then converted to aminopropylcadaverine by the aminopropyltransferase, SpeE. [HMDB] Aminopropylcadaverine,a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are important for cell growth and are believed to be involved in many processes including DNA, RNA, and protein synthesis, as well as membrane integrity and resistance to stress, to name a few. Cadaverine and aminopropylcadaverine are alternative polyamines that can at least partially substitute for purtrescine and spermidine, the primary polyamines found in E. coli. Lysine is decarboxylated to form cadaverine which is then converted to aminopropylcadaverine by the aminopropyltransferase, SpeE.

   

alpha-Fluoro-beta-alanine

3-amino-2-fluoropropanoic acid

C3H6FNO2 (107.0383)


   

N-Deacetylcolchicine

(7S)-7-amino-1,2,3,10-tetramethoxy-6,7-dihydro-5H-benzo[a]heptalen-9-one

C20H23NO5 (357.1576)


Deacetylcolchicine is a carbotricyclic compound, an alkaloid and a member of acetamides.N-Deacetylcolchicine has been reported in Apis cerana

   

Toxoflavin

Toxoflavine

C7H7N5O2 (193.06)


A pyrimidotriazine that is 1,6-dimethyl-1,5,6,7-tetrahydropyrimido[5,4-e][1,2,4]triazine with oxo groups at positions 5 and 7.

   

Chavicol

laquo gammaraquo -(P-Hydroxyphenyl)-alpha -propylene

C9H10O (134.0732)


Chavicol is found in allspice. Chavicol is found in many essential oils, e.g. anise and Gardenia. Chavicol is used in perfumery and flavours. Found in many essential oils, e.g. anise and Gardenia. It is used in perfumery and flavours.

   

Schidigerasaponin D5

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-(5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16-yl)oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4347)


Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Methylnissolin

14,15-dimethoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2(7),3,5,11(16),12,14-hexaen-5-ol

C17H16O5 (300.0998)


Methylnissolin is a member of pterocarpans. Methylnissolin is a natural product found in Lathyrus nissolia and Dalbergia odorifera with data available. Methylnissolin is found in alfalfa. Methylnissolin is isolated from Medicago sativa (alfalfa). Isolated from Medicago sativa (alfalfa). Methylnissolin is found in alfalfa and pulses. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1]. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1]. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1].

   

Ignavine

[(1R,3R,4R,5R,9S,11S,13R,16S,17R,18R)-4,13,18-trihydroxy-5-methyl-12-methylidene-7-azaheptacyclo[9.6.2.01,8.05,17.07,16.09,14.014,18]nonadecan-3-yl] benzoate

C27H31NO5 (449.2202)


   

Furanone A

4-Hydroxy-3-butenoic acid gamma-lactone

C4H4O2 (84.0211)


Furanone a, also known as alpha-Crotonolactone or 2-Furanone, is classified as a member of the butenolides. Butenolides are dihydrofurans with a carbonyl group at the C2 carbon atom. Furanone a is considered to be a soluble (in water) and an extremely weak acidic compound. Furanone a can be found in feces. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants

   

4-Methylhistamine

2-(5-methyl-1H-imidazol-4-yl)ethan-1-amine

C6H11N3 (125.0953)


   

Pyropheophorbide a

3-{16-ethenyl-11-ethyl-12,17,21,26-tetramethyl-4-oxo-7,23,24,25-tetraazahexacyclo[18.2.1.1^{5,8}.1^{10,13}.1^{15,18}.0^{2,6}]hexacosa-1,5,8(26),9,11,13(25),14,16,18,20(23)-decaen-22-yl}propanoic acid

C33H34N4O3 (534.2631)


Pyropheophorbide-a (Ppa) is a promising photosensitizer for tumor photodynamic therapy (PDT)[1].

   

inositol 1,3,4,5,6-pentakisphosphate

{[3-hydroxy-2,4,5,6-tetrakis(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H17O21P5 (579.895)


   

endrin

2,7:3,6-Dimethanonaphth[2,3-b]oxirene, 3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-, (1aalpha,2beta,2abeta,3alpha,6alpha,6abeta,7beta,7aalpha)-

C12H8Cl6O (377.8706)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

AI3-15121

InChI=1/C8H8O2/c9-6-8(10)7-4-2-1-3-5-7/h1-5,9H,6H

C8H8O2 (136.0524)


2-hydroxyacetophenone is a monohydroxyacetophenone that is acetophenone in which one of the methyl hydrogens has been replaced by a hydroxy group. It is a primary alcohol, a primary alpha-hydroxy ketone and a monohydroxyacetophenone. 2-Hydroxyacetophenone is a natural product found in Carissa spinarum, Scutellaria baicalensis, and Carissa edulis with data available. 2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2]. 2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2].

   

Erythronic acid

(R*,r*)-2,3,4-trihydroxy-butanoic acid

C4H8O5 (136.0372)


Erythronic acid is a sugar component of aqueous humour (eye). It may be derived from glycated proteins or from degradation of ascorbic acid. Erythronic acid is a normal organic acid present in a healthy adult and pediatric population. It has been found in urine, plasma, CSF, and synovial fluid (PMID: 14708889, 8087979, 8376520, 10420182). Erythronic acid is formed when N-acetyl-D-glucosamine (GlcNAc) is oxidized. GlcNAc is a constituent of hyaluronic acid (HA), a polysaccharide consisting of alternating units of glucuronic acid and GlcNAc, present as an aqueous solution in synovial fluid. In the synovial fluid of patients suffering from rheumatoid arthritis, HA is thought to be degraded either by radicals generated by Fenton chemistry (Fe2+/H2O2) or by NaOCl generated by myeloperoxidase (PMID: 10614067). Erythronic acid is a sugar component of aqueous humour (eye). It may be derived from glycated proteins or from degradation of ascorbic acid. Erythronic acid is a normal organic acid present in a healthy adult and pediatric population. It has been found in urine, plasma, CSF and synovial fluid. (PMID: 14708889, 8087979, 8376520, 10420182) Erythronic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13752-84-6 (retrieved 2024-07-10) (CAS RN: 13752-84-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Solasodine

5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2-piperidin]-18-en-16-ol

C27H43NO2 (413.3294)


Solasodine is a poisonous glycoalkaloid chemical compound that occurs in plants of the Solanaceae family. Solasodine is found in many foods, some of which are peppermint, chinese cinnamon, alaska blueberry, and sweet rowanberry. Solasodine is found in eggplant. Solasodine is a poisonous glycoalkaloid chemical compound that occurs in plants of the Solanaceae family Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2].

   

Galactinol

(1S,2R,3R,4S,5S,6R)-6-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexane-1,2,3,4,5-pentol

C12H22O11 (342.1162)


Galactinol belongs to the class of organic compounds known as O-glycosyl compounds. These are glycoside in which a sugar group is bonded through one carbon to another group via an O-glycosidic bond. Galactinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Galactinol is an intermediate in galactose metabolism. Galactinol is the fourth-to-last step in the synthesis of D-galactose and the third-to-last step in the synthesis of D-glucose and D-fructose. Galactinol is converted from UDP-galactose via the enzyme inositol 3-alpha-galactosyltransferase (EC 2.4.1.123). It is then converted into raffinose via the enzyme raffinose synthase (EC 2.4.1.82). Constituent of sugar-beet juice, castor-oil seed meal and potatoes after cold storage

   

(S)-2-Methylbutanal

(S)-alpha-Methylbutyric aldehyde

C5H10O (86.0732)


(S)-2-Methylbutanal is found in coffee and coffee products. (S)-2-Methylbutanal is found in tea, coffee, peppermint oil (Mentha piperita

   

Pyrophaeophorbide a

3-{16-ethenyl-11-ethyl-12,17,21,26-tetramethyl-4-oxo-7,23,24,25-tetraazahexacyclo[18.2.1.1^{5,8}.1^{10,13}.1^{15,18}.0^{2,6}]hexacosa-1,5,8(26),9,11,13(25),14,16,18,20(23)-decaen-22-yl}propanoic acid

C33H34N4O3 (534.2631)


Pyrophaeophorbide a is found in tea. Pyrophaeophorbide a is isolated from te Pyropheophorbide-a (Ppa) is a promising photosensitizer for tumor photodynamic therapy (PDT)[1].

   

L-Pipecolic acid

Pipecolic acid, 14C-labeled CPD, (+,-)-isomer

C6H11NO2 (129.079)


L-pipecolic acid is a normal human metabolite present in human blood, where is present as the primary enantiomer of pipecolic acid. L-pipecolic acid is a cyclic imino acid (contains both imino (>C=NH) and carboxyl (-C(=O)-OH) functional groups) produced during the degradation of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, including Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), and infantile Refsum disease (OMIM 266510). L-pipecolic acid levels are also elevated in patients with chronic liver diseases. L-pipecolic acid is the substrate of delta1-piperideine-2-carboxylate reductase (EC 1.5.1.21) in the pathway of lysine degradation (PMID: 2717271, 8305590, 1050990). Present in beans and other legumes, and in lesser quantities in other plants including barley, hops, malt and mushrooms. L-Pipecolic acid is found in many foods, some of which are macadamia nut (m. tetraphylla), linden, tinda, and cumin. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

Etorphine

19-(2-hydroxypentan-2-yl)-15-methoxy-3-methyl-13-oxa-3-azahexacyclo[13.2.2.1^{2,8}.0^{1,6}.0^{6,14}.0^{7,12}]icosa-7,9,11,16-tetraen-11-ol

C25H33NO4 (411.2409)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

(1S,2S)-(+)-1,2-Diaminocyclohexane

1,2-Cyclohexanediamine, (trans)-(S)-isomer

C6H14N2 (114.1157)


   

Keto-3-deoxy-D-manno-octulosonic acid

Ion(1-),(D)-isomer OF 2-keto-3-deoxyoctonate

C8H14O8 (238.0689)


   

2,3,4-Trihydroxybutanoic acid

2,3,4-trihydroxybutanoic acid

C4H8O5 (136.0372)


   

Ritodrina

4-(1-hydroxy-2-{[2-(4-hydroxyphenyl)ethyl]amino}propyl)phenol

C17H21NO3 (287.1521)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CA - Sympathomimetics, labour repressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

3,17-Dihydroxypregn-5-en-20-one

1-{5,14-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl}ethan-1-one

C21H32O3 (332.2351)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA).

   

ARGININOSUCCINATE

2-[N-(4-amino-4-carboxybutyl)carbamimidamido]butanedioic acid

C10H18N4O6 (290.1226)


   

Moxisylyte

4-[2-(Dimethylamino)ethoxy]-2-methyl-5-(propan-2-yl)phenyl acetic acid

C16H25NO3 (279.1834)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Pseudohypericin

9,11,13,16,18,20-hexahydroxy-5-(hydroxymethyl)-24-methyloctacyclo[13.11.1.1^{2,10}.0^{3,8}.0^{4,25}.0^{19,27}.0^{21,26}.0^{14,28}]octacosa-1,3,5,8,10,12,14(28),15(27),16,18,20,23,25-tridecaene-7,22-dione

C30H16O9 (520.0794)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Solasonine

2-{[3-hydroxy-2-(hydroxymethyl)-6-{5,7,9,13-tetramethyl-5-oxaspiro[pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane-6,2-piperidin]-18-eneoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C45H73NO16 (883.4929)


Solasonine, also known as alpha-solamargine or alpha-solamarine, (3beta,22alpha,25r)-isomer, is a member of the class of compounds known as steroidal saponins. Steroidal saponins are saponins in which the aglycone moiety is a steroid. The steroidal aglycone is usually a spirostane, furostane, spirosolane, solanidane, or curcubitacin derivative. Solasonine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Solasonine can be found in eggplant, which makes solasonine a potential biomarker for the consumption of this food product. Solasonine is a poisonous chemical compound. It is a glycoside of solasodine. Solasonine occurs in plants of the Solanaceae family. Solasonine was one component of the unsuccessful experimental cancer drug candidate Coramsine . Solasonine is a steroidal glycoalkaloid isolated from Solanum nigrum L.. Solasonine has cytotoxicity to human gastric cancer cells[1]. Solasonine is a steroidal glycoalkaloid isolated from Solanum nigrum L.. Solasonine has cytotoxicity to human gastric cancer cells[1].

   

Sudan III

1-{2-[4-(2-phenyldiazen-1-yl)phenyl]diazen-1-yl}naphthalen-2-ol

C22H16N4O (352.1324)


D004396 - Coloring Agents

   

Proazulene

(3S,3aR,4S,9R,9aS,9bS)-9-hydroxy-3,6,9-trimethyl-2-oxo-2H,3H,3aH,4H,5H,9H,9aH,9bH-azuleno[4,5-b]furan-4-yl acetate

C17H22O5 (306.1467)


Proazulene, also known as matricine, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Thus, proazulene is considered to be an isoprenoid lipid molecule. Proazulene is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Proazulene can be found in anise, which makes proazulene a potential biomarker for the consumption of this food product. Chamazulene, a blue-violet derivative of azulene, found in a variety of plants including in chamomile (Matricaria chamomilla), wormwood (Artemisia absinthium) and yarrow (Achillea millefolium) is biosynthesized from matricin .

   

Procyanidin A1

5,13-bis(3,4-dihydroxyphenyl)-4,12,14-trioxapentacyclo[11.7.1.0²,¹¹.0³,⁸.0¹⁵,²⁰]henicosa-2,8,10,15,17,19-hexaene-6,9,17,19,21-pentol

C30H24O12 (576.1268)


Procyanidin a1 is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Procyanidin a1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Procyanidin a1 can be found in bilberry, which makes procyanidin a1 a potential biomarker for the consumption of this food product. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1].

   

Pipecolic acid

L(-)-Pipecolinic acid

C6H11NO2 (129.079)


L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.

   

Salicyluric acid

Glycine,N-(2-hydroxybenzoyl)-

C9H9NO4 (195.0532)


Salicyluric acid is an endogenous metabolite.

   

(+)-Gallocatechin

4-{1-Butyl-9-[1-(4,6-dimethyl-pyrimidine-5-carbonyl)-4-methyl-piperidin-4-yl]-2-oxo-3,0-diaza-spiro[5.5]undec-3-ylmethyl}-piperidine-1-carboxylic acid methyl ester

C15H14O7 (306.0739)


Gallocatechin is a catechin that is a flavan substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7 (the trans isomer). It is isolated from Acacia mearnsii. It has a role as a metabolite. It is a catechin and a flavan-3,3,4,5,5,7-hexol. (+)-Gallocatechin is a natural product found in Saxifraga cuneifolia, Quercus dentata, and other organisms with data available. See also: Cianidanol (related); Crofelemer (monomer of); Green tea leaf (part of). Widespread in plants; found especies in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. Gallocatechin is found in many foods, some of which are broad bean, broccoli, quince, and common grape. (+)-Gallocatechin is found in adzuki bean. (+)-Gallocatechin is widespread in plants; found especially in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. A gallocatechin that has (2R,3S)-configuration. It is found in green tea and bananas. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Solasodine

(4S,5R,6aR,6bS,8aS,8bR,9S,10R,11aS,12aS,12bS)-5,6a,8a,9-Tetramethyl-1,3,4,5,6,6a,6b,7,8,8a,8b,9,11a,12,12a,12b-hexadecahydrospiro[naphtho[2,1:4,5]indeno[2,1-b]furan-10,2-piperidin]-4-ol

C27H43NO2 (413.3294)


Solasodine is an oxaspiro compound and steroid alkaloid sapogenin with formula C27H43NO2 found in the Solanum (nightshade) family. It is used as a precursor in the synthesis of complex steroidal compounds such as contraceptive pills. It has a role as a plant metabolite, a teratogenic agent, a diuretic, an antifungal agent, a cardiotonic drug, an immunomodulator, an antipyretic, an apoptosis inducer, an antioxidant, an antiinfective agent, an anticonvulsant, a central nervous system depressant and an antispermatogenic agent. It is an azaspiro compound, an oxaspiro compound, an alkaloid antibiotic, a hemiaminal ether, a sapogenin and a steroid alkaloid. It is a conjugate base of a solasodine(1+). Purapuridine is a natural product found in Solanum hazenii, Solanum americanum, and other organisms with data available. An oxaspiro compound and steroid alkaloid sapogenin with formula C27H43NO2 found in the Solanum (nightshade) family. It is used as a precursor in the synthesis of complex steroidal compounds such as contraceptive pills. Alkaloid from Solanum melanocerasum (garden huckleberry). alpha-Solanigrine is found in fruits. Origin: Plant; SubCategory_DNP: Steroidal alkaloids, Solanaceous alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.206 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.202 Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2]. Solasodine (Purapuridine) is a steroidal alkaloid that occurs in plants of the Solanaceae family. Solasodine has neuroprotective, antifungal, hypotensive, anticancer, antiatherosclerotic, antiandrogenic and anti-inflammatory activities[1][2].

   

Schidigerasaponin D5

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-(5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2-oxane]-16-yl)oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4347)


Schidigerasaponin D5 is a natural product found in Yucca gloriosa and Asparagus gobicus with data available. Melongoside E is found in fruits. Melongoside E is a constituent of aubergine (Solanum melongena). Constituent of aubergine (Solanum melongena). Melongoside E is found in fruits and eggplant. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Punicic acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


   

3-Hydroxybenzoicacid

3-Hydroxybenzoic acid

C7H6O3 (138.0317)


A monohydroxybenzoic acid that is benzoic acid substituted by a hydroxy group at position 3. It has been isolated from Taxus baccata. It is used as an intermediate in the synthesis of plasticisers, resins, pharmaceuticals, etc. 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.

   

ether

InChI=1\C8H10\c1-2-8-6-4-3-5-7-8\h3-7H,2H2,1H

C8H10 (106.0782)


   

Methylnissolin

3-Hydroxy-9,10-Dimethoxypterocarpan

C17H16O5 (300.0998)


Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1]. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1]. Methylnissolin (Astrapterocarpan), isolated from Astragalus membranaceus, inhibits platelet-derived growth factor (PDGF)-BB-induced cell proliferation with an IC50 of 10 μM. Methylnissolin inhibits PDGF-BB-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERIC1/2) mitogen-activated protein (MAP) kinase. Methylnissolin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation by inhibition of the ERK1/2 MAP kinase cascade[1].

   

Liquiritin

(2S)-7-hydroxy-2-(4-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O9 (418.1264)


Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). A flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.697 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.694 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.693 Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Schleimsaure

Saccharic acid

C6H10O8 (210.0376)


   

gallocatechol

2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R,3S)-rel-

C15H14O7 (306.0739)


(-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Hepoxilin a

8-Hydroxy-11,12-epoxyeicosa-5,9,14-trienoic acid

C20H32O4 (336.23)


   

Brucin

InChI=1\C23H26N2O4\c1-27-16-8-14-15(9-17(16)28-2)25-20(26)10-18-21-13-7-19-23(14,22(21)25)4-5-24(19)11-12(13)3-6-29-18\h3,8-9,13,18-19,21-22H,4-7,10-11H2,1-2H

C23H26N2O4 (394.1892)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D007155 - Immunologic Factors

   

Phycoerythrobilin

Phycoerythrobilin

C33H38N4O6 (586.2791)


   

3,4-Dihydroxyhydrocinnamic acid

InChI=1/C9H10O4/c10-7-3-1-6(5-8(7)11)2-4-9(12)13/h1,3,5,10-11H,2,4H2,(H,12,13

C9H10O4 (182.0579)


3,4-Dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid (DHCA), is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID: 15607645) and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract (PMID: 15693705). Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans (PMID: 16038718). Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure conveys the antioxidant effect in plasma and in erythrocytes (PMID: 11768243). 3,4-Dihydroxyhydrocinnamic acid is a microbial metabolite found in Bifidobacterium, Escherichia, Lactobacillus, and Clostridium (PMID: 28393285). 3,4-Dihydroxyhydrocinnamic acid (or Dihydrocaffeic acid, DHCA) is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID 15607645), and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract. (PMID 15693705) Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans. (PMID 16038718) Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure convey the antioxidant effect in plasma and in erythrocytes. (PMID 11768243) [HMDB]. 3-(3,4-Dihydroxyphenyl)propanoic acid is found in red beetroot, common beet, and olive. 3-(3,4-dihydroxyphenyl)propanoic acid is a monocarboxylic acid that is 3-phenylpropionic acid substituted by hydroxy groups at positions 3 and 4. Also known as dihydrocaffeic acid, it is a metabolite of caffeic acid and exhibits antioxidant activity. It has a role as an antioxidant and a human xenobiotic metabolite. It is functionally related to a 3-phenylpropionic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)propanoate. 3-(3,4-Dihydroxyphenyl)propionic acid is a natural product found in Liatris elegans, Polyscias murrayi, and other organisms with data available. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].

   

1ST40320

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-6-(hydroxymethyl)-5-methyl-, (3Z,5R,6S,14aR,14bR)-

C18H25NO6 (351.1682)


Retrorsine is a macrolide. Retrorsine is a natural product found in Crotalaria spartioides, Senecio malacitanus, and other organisms with data available. D000970 - Antineoplastic Agents Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2]. Retrorsine is a naturally occurring toxic pyrrolizidine alkaloid. Retrorsine can bind with DNA and inhibits the proliferative capacity of hepatocytes. Retrorsine can be used for the research of hepatocellular injury[1][2].

   

Benzyl acetate

benzyl acetate

C9H10O2 (150.0681)


The acetate ester of benzyl alcohol. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].

   

fenthion

dimethoxy-(3-methyl-4-methylsulfanylphenoxy)-sulfanylidene-λ5-phosphane

C10H15O3PS2 (278.02)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3155 CONFIDENCE standard compound; INTERNAL_ID 8480

   

prometryn

Pesticide5_Prometryne_C10H19N5S_1,3,5-Triazine-2,4-diamine, N,N-bis(1-methylethyl)-6-(methylthio)-

C10H19N5S (241.1361)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 133

   

Fenpropimorph

Pesticide7_Fenpropimorph_C20H33NO_Morpholine, 4-[3-[4-(1,1-dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethyl-, (2R,6S)-

C20H33NO (303.2562)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 4023 CONFIDENCE standard compound; EAWAG_UCHEM_ID 146

   

Fenpropidin

1-[3-(4-tert-butylphenyl)-2-methylpropyl]piperidine

C19H31N (273.2456)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 2958

   

Phosmet

2-(dimethoxyphosphinothioylsulfanylmethyl)isoindole-1,3-dione

C11H12NO4PS2 (316.9945)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3101

   

Camalexin

3-(1,3-thiazol-2-yl)-1H-indole

C11H8N2S (200.0408)


D000890 - Anti-Infective Agents IPB_RECORD: 278; CONFIDENCE confident structure Camalexin is a phytoalexin isolated from Camelina sativa (Cruciferae) with antibacterial, antifungal, antiproliferative and anticancer activities. Camalexin can induce reactive oxygen species (ROS) production[1][2][3].

   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

betaxolol

1-[4-[2-(cyclopropylmethoxy)ethyl]phenoxy]-3-(propan-2-ylamino)propan-2-ol

C18H29NO3 (307.2147)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

Atropine

BENZENEACETIC ACID, .ALPHA.-(HYDROXYMETHYL)-8-METHYL-8-AZABICYCLO(3.2.1)OCT-3-YL ESTER, ENDO-(+/-)-

C17H23NO3 (289.1678)


Atropine is a racemate composed of equimolar concentrations of (S)- and (R)-atropine. It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. It has a role as a muscarinic antagonist, an anaesthesia adjuvant, an anti-arrhythmia drug, a mydriatic agent, a parasympatholytic, a bronchodilator agent, a plant metabolite, an antidote to sarin poisoning and a oneirogen. It contains a (S)-atropine and a (R)-atropine. Atropine is an alkaloid originally synthesized from Atropa belladonna. It is a racemic mixture of d-and l-hyoscyamine, of which only l-hyoscyamine is pharmacologically active. Atropine is generally available as a sulfate salt and can be administered by intravenous, subcutaneous, intramuscular, intraosseous, endotracheal and ophthalmic methods. Oral atropine is only available in combination products. Atropine is a competitive, reversible antagonist of muscarinic receptors that blocks the effects of acetylcholine and other choline esters. It has a variety of therapeutic applications, including pupil dilation and the treatment of anticholinergic poisoning and symptomatic bradycardia in the absence of reversible causes. Atropine is a relatively inexpensive drug and is included in the World Health Organization List of Essential Medicines. Atropine is an Anticholinergic and Cholinergic Muscarinic Antagonist. The mechanism of action of atropine is as a Cholinergic Antagonist and Cholinergic Muscarinic Antagonist. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. Atropine is a natural product found in Cyphanthera tasmanica, Anthocercis ilicifolia, and other organisms with data available. Atropine Sulfate is the sulfate salt of atropine, a naturally-occurring alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Atropine is a synthetically-derived form of the endogenous alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines A racemate composed of equimolar concentrations of (S)- and (R)-atropine . It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.421 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.416 Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].

   

Sclareol

1-Naphthalenepropanol, alpha-ethenyldecahydro-2-hydroxy-alpha,2,5,5,8a-pentamethyl-, (alphaR,1R,2R,4aS,8aS)-: (1R,2R,4aS,8aS)-1-[(3R)-3-hydroxy-3-methylpent-4-en-1-yl]-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol

C20H36O2 (308.2715)


Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). A labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.468 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.471 Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].

   

Picrotoxinin

picrotoxinine

C15H16O6 (292.0947)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.577 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.570 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.573 Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1]. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1].

   

Dehydrocholic acid

(4R)-4-[(5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3,7,12-trioxo-1,2,4,5,6,8,9,11,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl]pentanoic acid

C24H34O5 (402.2406)


Dehydrocholic acid is a synthetic bile acid, manufactured by the oxidation of cholic acid. It acts as a hydrocholeretic, increasing bile output to clear increased bile acid load. 3,7,12-trioxo-5beta-cholanic acid is an oxo-5beta-cholanic acid in which three oxo substituents are located at positions 3, 7 and 12 on the cholanic acid skeleton. It has a role as a gastrointestinal drug. It is an oxo-5beta-cholanic acid, a 7-oxo steroid, a 12-oxo steroid and a 3-oxo-5beta-steroid. It is a conjugate acid of a 3,7,12-trioxo-5beta-cholan-24-oate. Dehydrocholic acid is a synthetic bile acid that was prepared from the oxidation of cholic acid with chromic acid. It has been used for stimulation of biliary lipid secretion. The use of dehydrocholic acid in over-the-counter products has been discontinued by Health Canada.

   

Deoxyadenosine monophosphate

2-DEOXYADENOSINE-5-monophosphoric acid

C10H14N5O6P (331.0682)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1]. 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1].

   

Ergonovine

Ergometrine

C19H23N3O2 (325.179)


A monocarboxylic acid amide that is lysergamide in which one of the hydrogens attached to the amide nitrogen is substituted by a 1-hydroxypropan-2-yl group (S-configuration). An ergot alkaloid that has a particularly powerful action on the uterus, its maleate (and formerly tartrate) salt is used in the active management of the third stage of labour, and to prevent or treat postpartum of postabortal haemorrhage caused by uterine atony: by maintaining uterine contraction and tone, blood vessels in the uterine wall are compressed and blood flow reduced. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AB - Ergot alkaloids C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia relative retention time with respect to 9-anthracene Carboxylic Acid is 0.382 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.380 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.373 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.375

   

cefaclor

Cefaclor Impurity C

C15H14ClN3O4S (367.0394)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins A cephalosporin bearing chloro and (R)-2-amino-2-phenylacetamido groups at positions 3 and 7, respectively, of the cephem skeleton. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Cefaclor is a well-absorbed orally active cephalosporin antibiotic. Cefaclor can specifically bind to specific for penicillin-binding protein 3 (PBP3). Cefaclor can be used for the research of depression and kinds of infections caused by bacteria, such as respiratory tract infections, bacterial bronchitis, pharyngitis and skin infections[1][2][3][4].

   

paraxanthine

1,7-Dimethylxanthine

C7H8N4O2 (180.0647)


A dimethylxanthine having the two methyl groups located at positions 1 and 7. It is a metabolite of caffeine and theobromine in animals. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QUNWUDVFRNGTCO-UHFFFAOYSA-N_STSL_0243_Paraxanthine_1000fmol_190413_S2_LC02MS02_060; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.

   

Galactitol

(2R,3S,4R,5S)-hexane-1,2,3,4,5,6-hexol

C6H14O6 (182.079)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose.

   

L-Pipecolic acid

L(-)-Pipecolinic acid

C6H11NO2 (129.079)


The L-enantiomer of pipecolic acid. It is a metabolite of lysine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; HXEACLLIILLPRG-YFKPBYRVSA-N_STSL_0204_L-pipecolic Acid_0500fmol_180831_S2_L02M02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.

   

Ureidopropionic acid

N-Carbamoyl-beta-alanine

C4H8N2O3 (132.0535)


A beta-alanine derivative that is propionic acid bearing a ureido group at position 3. Ureidopropionic acid, also known as 3-ureidopropionate or N-carbamoyl-beta-alanine, is a member of the class of compounds known as ureas. Ureas are compounds containing two amine groups joined by a carbonyl (C=O) functional group. Ureidopropionic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Ureidopropionic acid can be found in a number of food items such as brussel sprouts, cascade huckleberry, common sage, and atlantic herring, which makes ureidopropionic acid a potential biomarker for the consumption of these food products. Ureidopropionic acid can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine. In humans, ureidopropionic acid is involved in a couple of metabolic pathways, which include beta-alanine metabolism and pyrimidine metabolism. Ureidopropionic acid is also involved in several metabolic disorders, some of which include MNGIE (mitochondrial neurogastrointestinal encephalopathy), dihydropyrimidinase deficiency, UMP synthase deficiency (orotic aciduria), and gaba-transaminase deficiency. Ureidopropionic acid (3-Ureidopropionic acid) is an intermediate in the metabolism of uracil.

   

Tryptophol

5-21-03-00061 (Beilstein Handbook Reference)

C10H11NO (161.0841)


An indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

   

TRIETHANOLAMINE

Triethanolamine Condensate Polymer

C6H15NO3 (149.1052)


D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants

   

Lignoceric acid

Tetracosanoic acid

C24H48O2 (368.3654)


A C24 straight-chain saturated fatty acid. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

methamidophos

Pesticide1_Methamidophos_C2H8NO2PS_O,S-Dimethyl phosphoramidothioate

C2H8NO2PS (141.0013)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

3,4-Dihydroxyphenylglycol

3,4-Dihydroxyphenylethyleneglycol

C8H10O4 (170.0579)


A tetrol composed of ethyleneglycol having a 3,4-dihydroxyphenyl group at the 1-position. 4-(1,2-Dihydroxyethyl)benzene-1,2-diol, a normal norepinephrine metabolite, is found to be associated with Menkes syndrome.

   

Glucaric acid

2S,3S,4S,5R-tetrahydroxy-hexanedioic acid

C6H10O8 (210.0376)


   

Salicyluric acid

Glycine,N-(2-hydroxybenzoyl)-

C9H9NO4 (195.0532)


An N-acylglycine in which the acyl group is specified as 2-hydroxybenzoyl. Salicyluric acid is an endogenous metabolite.

   

3-mercaptopyruvic acid

2-oxo-3-sulfanylpropanoic acid

C3H4O3S (119.9881)


A 2-oxo monocarboxylic acid that is pyruvic acid substituted by a sulfanyl group at position 3.

   

octane

n-Octane

C8H18 (114.1408)


   

indoxyl

1H-Indol-3-ol

C8H7NO (133.0528)


   

nerol

(2Z)-3,7-Dimethyl-2,6-octadien-1-ol

C10H18O (154.1358)


Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

Hyoscyamine

BENZENEACETIC ACID, .ALPHA.-(HYDROXYMETHYL)-, (3-ENDO)-8-METHYL-8-AZABICYCLO(3.2.1)OCT-3-YL ESTER, (.ALPHA.S)-

C17H23NO3 (289.1678)


(S)-atropine is an atropine with a 2S-configuration. It is functionally related to a (S)-tropic acid. It is a conjugate base of a (S)-atropinium. Hyoscyamine is a tropane alkaloid and the levo-isomer of [atropine]. It is commonly extracted from plants in the Solanaceae or nightshade family. Research into the action of hyoscyamine in published literature dates back to 1826. Hyoscyamine is used for a wide variety of treatments and therapeutics due to its antimuscarinic properties. Although hyoscyamine is marketed in the United States, it is not FDA approved. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. L-Hyoscyamine is a natural product found in Datura ferox, Crenidium spinescens, and other organisms with data available. Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. The 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents An atropine with a 2S-configuration. Annotation level-1 L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].

   

Enterodiol

(2R,3R)-2,3-bis[(3-hydroxyphenyl)methyl]butane-1,4-diol

C18H22O4 (302.1518)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Annotation level-1

   

Thiamethoxam

Pesticide5_Thiamethoxam_C8H10ClN5O3S_4H-1,3,5-Oxadiazin-4-imine, 3-[(2-chloro-5-thiazolyl)methyl]tetrahydro-5-methyl-N-nitro-, (4E)-

C8H10ClN5O3S (291.0193)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals

   

4-CPA

4-CHLOROPHENOXYACETIC ACID

C8H7ClO3 (186.0084)


   

TRICLOPYR

2-(3,5,6-trichloropyridin-2-yl)oxyacetic acid

C7H4Cl3NO3 (254.9257)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Didanosine

2,3-Dideoxyinosine

C10H12N4O3 (236.0909)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Didanosine (2',3'-Dideoxyinosine; ddI) is a a potent and orally active dideoxynucleoside analogue, and also is a potent nucleoside reverse transcriptase inhibitor. Didanosine shows antiretroviral activity for HIV[1][2][3].

   

fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

BENDROFLUMETHIAZIDE

3-benzyl-1,1-dioxo-6-(trifluoromethyl)-3,4-dihydro-2H-1λ6,2,4-benzothiadiazine-7-sulfonamide

C15H14F3N3O4S2 (421.0378)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

biperiden

1-(2-bicyclo[2.2.1]hept-5-enyl)-1-phenyl-3-piperidin-1-ylpropan-1-ol

C21H29NO (311.2249)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

Isoreserpin

methyl 6,18-dimethoxy-17-(3,4,5-trimethoxybenzoyl)oxy-1,3,11,12,14,15,16,17,18,19,20,21-dodecahydroyohimban-19-carboxylate

C33H40N2O9 (608.2734)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Annotation level-1

   

3-Hydroxycinnamic acid

(E)-3-(3-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473)


Annotation level-1 (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.

   

Azulene

Azulene

C10H8 (128.0626)


One micro litter of the liquid sample was dropped in a 10 mL glass vial. The vial was placed under the DART ion source.; Direct analysis in real time (DART) is a method of atmospheric pressure chemical ionization (APCI). Protons, H+, generated by glow discharge ionization of the He gas in the ionization chamber, DART-SVP (IonSense Inc., MA, USA), were major reactant ions for the chemical ionization of samples.; The interface introducing the product ions to the mass spectrometer was Vapur Interface (AMR. Inc., Tokyo, Japan). The pressure in the interface was 710 Torr (96.3 kPa).; 1 mg of azulene was placed on glass capillary. The capillary was placed in the gas flow that ran from the ion source.; Azulene was purchased from TCI A0634.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].

   

N-Acetyl-D-tryptophan

(R)-2-Acetamido-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

THIOACETIC ACID

ethanethioic S-acid

C2H4OS (75.9983)


   

7α-hydroxycholesterol

7-alpha-hydroxy cholesterol

C27H46O2 (402.3498)


The 7alpha-hydroxy derivative of cholesterol. 7α-Hydroxycholesterol is a cholesterol oxide and is formed by both enzymatic and non-enzymatic oxidation. 7α-Hydroxycholesterol can be used as a biomarker for lipid peroxidation[1][2].

   

Cyprodinil

Pesticide4_Cyprodinil_C14H15N3_2-Pyrimidinamine, 4-cyclopropyl-6-methyl-N-phenyl-

C14H15N3 (225.1266)


   

Clofentezine

Pesticide4_Clofentezine_C14H8Cl2N4_1,2,4,5-Tetrazine, 3,6-bis(2-chlorophenyl)-

C14H8Cl2N4 (302.0126)


   

safrole

safrole

C10H10O2 (162.0681)


A member of the class of benzodioxoles that is 1,3-benzodioxole which is substituted by an allyl group at position 5. It is found in several plants, including black pepper, cinnamon and nutmeg, and is present in several essential oils, notably that of sassafras. It has insecticidal properties and has been used as a topical antiseptic. Although not thought to pose a significant carcinogenic risk to humans, findings of weak carcinogenicity in rats have resulted in the banning of its (previously widespread) use in perfumes and soaps, and as a food additive.

   

N-Acetyl-DL-tryptophan

2-acetamido-3-(1H-indol-3-yl)propanoic acid

C13H14N2O3 (246.1004)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite.

   

1-OCTEN-3-OL

(3R)-oct-1-en-3-ol

C8H16O (128.1201)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

oleoyl-CoA

9Z-octadecenoyl-CoA

C39H68N7O17P3S (1031.3605)


An octadecenoyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of oleic acid.

   

Carbomethoxyaniline

Methyl ester OF O-aminobenzoic acid

C8H9NO2 (151.0633)


   

Schidigerasaponin D5

2-{[4,5-dihydroxy-6-(hydroxymethyl)-2-{5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C39H64O13 (740.4347)


Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Catechin C

(2S-cis)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-Benzopyran-3,5,7-triol

C15H14O6 (290.079)


C26170 - Protective Agent > C275 - Antioxidant

   

5,6-DHET

(8Z,11Z,14Z)-5,6-Dihydroxyeicosa-8,11,14-trienoic acid

C20H34O4 (338.2457)


A DHET obtained by formal dihydroxylation across the 5,6-double bond of arachidonic acid.

   

FOH 8:1

4S-(E)-6-Methyl-2-hepten-4-ol

C8H16O (128.1201)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

Heptanal

InChI=1\C7H14O\c1-2-3-4-5-6-7-8\h7H,2-6H2,1H

C7H14O (114.1045)


   

CoA 18:1

(9Z)-octadec-9-enoyl-CoA;(9Z)-octadec-9-enoyl-coenzyme A;Oleoyl-coenzyme A;S-Oleoylcoenzyme A;S-[(9Z)-octadec-9-enoyl]-CoA;S-[(9Z)-octadec-9-enoyl]-coenzyme A;S-oleoyl-CoA;cis-9-octadecenoyl-CoA;cis-9-octadecenoyl-coenzyme A;cis-Delta(9)-octadecenoyl-CoA;cis-Delta(9)-octadecenoyl-coenzyme A

C39H68N7O17P3S (1031.3605)


   

3-Octanone

Octan-3-one

C8H16O (128.1201)


A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group.

   

Zymostenol

5alpha-cholest-8(9)-en-3beta-ol

C27H46O (386.3548)


   
   

Ridaforolimus

Ridaforolimus (Deforolimus, MK-8669)

C53H84NO14P (989.5629)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01E - Protein kinase inhibitors > L01EG - Mammalian target of rapamycin (mtor) kinase inhibitors C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor

   

Methyltrienolone

Methyltrienolone

C19H24O2 (284.1776)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

IODOFORM

IODOFORM

CHI3 (393.7213)


D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent

   

PENDIMETHALIN

3,4-dimethyl-2,6-dinitro-N-pentan-3-ylaniline

C13H19N3O4 (281.1375)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Benzo[b]fluoranthene

pentacyclo[10.7.1.02,7.08,20.013,18]icosa-1(19),2(7),3,5,8(20),9,11,13,15,17-decaene

C20H12 (252.0939)


   

Clomifene

Zuclomiphene

C26H28ClNO (405.1859)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03G - Gonadotropins and other ovulation stimulants > G03GB - Ovulation stimulants, synthetic D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D012102 - Reproductive Control Agents > D005299 - Fertility Agents C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist C1892 - Chemopreventive Agent C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor

   

dihydrotachysterol

dihydrotachysterol

C28H46O (398.3548)


A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CC - Vitamin d and analogues D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents

   

Masoprocol

4-[(2S,3R)-4-(3,4-dihydroxyphenyl)-2,3-dimethylbutyl]benzene-1,2-diol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

Difloxacin

6-fluoro-1-(4-fluorophenyl)-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic acid

C21H19F2N3O3 (399.1394)


A quinolone that is pefloxacin in which the ethyl group at position 1 of the quinolone has been replaced by a p-fluorophenyl group. A broad-spectrum antibiotic effective against both Gram-positive and Gram-negative bacteria, it is used (usually as the monohydrochloride salt) for the treatment of bacterial infections in dogs. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic

   

moxisylyte

moxisylyte

C16H25NO3 (279.1834)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

AIDS-026330

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2S-cis)-

C15H14O6 (290.079)


C26170 - Protective Agent > C275 - Antioxidant

   

Safrol

InChI=1\C10H10O2\c1-2-3-8-4-5-9-10(6-8)12-7-11-9\h2,4-6H,1,3,7H

C10H10O2 (162.0681)


   

AIDS-224739

2H-Pyran-2-one, 4-methoxy-6-(2-phenylethenyl)-, (E)- (9CI)

C14H12O3 (228.0786)


Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.

   

557-59-5

N-Tetracosanoic acid

C24H48O2 (368.3654)


Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

azulen

InChI=1\C10H8\c1-2-5-9-7-4-8-10(9)6-3-1\h1-8

C10H8 (128.0626)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3]. Azulene (Cyclopentacycloheptene) is as an isomer of naphthalene with high anti-HIV activity. Azulene, isolated from the distillation of chamomile oil, is a scaffold in medicinal chemistry[1][2][3].

   

Terpilene

InChI=1\C10H16\c1-8(2)10-6-4-9(3)5-7-10\h4,6,8H,5,7H2,1-3H

C10H16 (136.1252)


α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].

   

m-Xylol

Xylene mixture (60\\% m-xylene, 9\\% o-xylene, 14\\% p-xylene, 17\\% ethylbenzene)

C8H10 (106.0782)


   

CUPRESSUFLAVONE TRIHYDRATE

8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-8-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C30H18O10 (538.09)


   

Devoton

Methyl acetate [UN1231] [Flammable liquid]

C3H6O2 (74.0368)


   

Oktan

InChI=1\C8H18\c1-3-5-7-8-6-4-2\h3-8H2,1-2H

C8H18 (114.1408)


   

Zoba eg

InChI=1\C6H7NO\c7-5-2-1-3-6(8)4-5\h1-4,8H,7H

C6H7NO (109.0528)


   

Chavicol

.gamma.-(p-Hydroxyphenyl)-.alpha.-propylene

C9H10O (134.0732)


   

Amylol

4-01-00-01640 (Beilstein Handbook Reference)

C5H12O (88.0888)


   

HYKOP

InChI=1\C9H10O4\c10-7-3-1-6(5-8(7)11)2-4-9(12)13\h1,3,5,10-11H,2,4H2,(H,12,13

C9H10O4 (182.0579)


Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].

   

AI3-01996

InChI=1\C9H10O2\c1-8(10)11-7-9-5-3-2-4-6-9\h2-6H,7H2,1H

C9H10O2 (150.0681)


Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].

   

LS-775

InChI=1\C8H9NO2\c1-11-8(10)6-4-2-3-5-7(6)9\h2-5H,9H2,1H

C8H9NO2 (151.0633)


   

Orcin

InChI=1\C7H8O2\c1-5-2-6(8)4-7(9)3-5\h2-4,8-9H,1H

C7H8O2 (124.0524)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

474-67-9

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

AI3-32389

InChI=1\C9H8O3\c10-8-3-1-2-7(6-8)4-5-9(11)12\h1-6,10H,(H,11,12)\b5-4

C9H8O3 (164.0473)


(E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant. m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.

   

likviritin

(2S)-7-hydroxy-2-[4-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]phenyl]-4-chromanone

C21H22O9 (418.1264)


Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].

   

Bergaptol

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-hydroxy- (8CI)(9CI)

C11H6O4 (202.0266)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties. Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties.

   

LS-2036

5-17-03-00338 (Beilstein Handbook Reference)

C5H6O2 (98.0368)


   

AI3-26172

InChI=1\C2H6S3\c1-3-5-4-2\h1-2H

C2H6S3 (125.9632)


Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

   

Stilon

InChI=1\C6H11NO\c8-6-4-2-1-3-5-7-6\h1-5H2,(H,7,8

C6H11NO (113.0841)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

D-DCTA

Butanedioic acid, 2,3-bis(((2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-, (2S,3S)-

C22H18O12 (474.0798)


   

Actinex

4-[(2S,3R)-4-(3,4-dihydroxyphenyl)-2,3-dimethyl-butyl]benzene-1,2-diol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

c0276

Acetophenone, 2-hydroxy- (8CI)

C8H8O2 (136.0524)


2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2]. 2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2].

   

WLN: 5V2

Ethyl N-pentyl ketone

C8H16O (128.1201)


   

m-Hba

InChI=1\C7H6O3\c8-6-3-1-2-5(4-6)7(9)10\h1-4,8H,(H,9,10

C7H6O3 (138.0317)


3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.

   

CH3COSH

Thioacetic acid [UN2436] [Flammable liquid]

C2H4OS (75.9983)


   

N-Deacetylcolchicine

N-Deacetylcolchicine

C20H23NO5 (357.1576)


   

Brisoral

(Z)-Cefprozil

C18H19N3O5S (389.1045)


A semisynthetic, second-generation cephalosporin, with prop-1-enyl and (R)-2-amino-2-(4-hydroxyphenyl)acetamido groups at positions 3 and 7, respectively, of the cephem skeleton. It is used to treat bronchitis as well as ear, skin and other bacterial infections. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Timosaponin A-III

Smilagenin 3-O-beta-D-glucopyranosyl-(1->2)-beta-D-galactopyranoside

C39H64O13 (740.4347)


A natural product found in Anemarrhena asphodeloides. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM. Timosaponin AIII could inhibit acetylcholinesterase (AChE) activity, with an IC50 of 35.4 μM.

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). A monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

Paucine

2-Propenamide, N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)-, (2E)-

C13H18N2O3 (250.1317)


N-caffeoylputrescine is a N-substituted putrescine. It is a conjugate base of a N-caffeoylputrescinium(1+). N-Caffeoylputrescine is a natural product found in Iochroma cyaneum, Solanum tuberosum, and Selaginella moellendorffii with data available.

   

Picrotoxinin

3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-8b-methyl-9-(1-methylethenyl)-, (1aR-(1a-alpha,2a-beta,3-beta,6-beta,6a-beta,8as*,8b-beta,9R*))-

C15H16O6 (292.0947)


Picrotoxinin is a picrotoxane sesquiterpenoid that is 3a,4,5,6,7,7a-hexahydro-1H-indene-3,7-dicarboxylic acid which is substituted at positions 3a, 6, and 7a by methyl, isopropenyl, and hydroxy groups, respectively; in which the double bond at position 2-3 has been epoxidised; and in which the carboxy groups at positions 3 and 7 have undergone gamma-lactone formation by O-alkylation to positions 4 and 5, respectively. A component of picrotoxin. It has a role as a plant metabolite, a GABA antagonist and a serotonergic antagonist. It is an organic heteropentacyclic compound, an epoxide, a tertiary alcohol, a gamma-lactone and a picrotoxane sesquiterpenoid. Picrotoxinin is a natural product found in Picrodendron baccatum and Anamirta cocculus with data available. A picrotoxane sesquiterpenoid that is 3a,4,5,6,7,7a-hexahydro-1H-indene-3,7-dicarboxylic acid which is substituted at positions 3a, 6, and 7a by methyl, isopropenyl, and hydroxy groups, respectively; in which the double bond at position 2-3 has been epoxidised; and in which the carboxy groups at positions 3 and 7 have undergone gamma-lactone formation by O-alkylation to positions 4 and 5, respectively. A component of picrotoxin. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1]. Picrotoxinin, a potent convulsant, is a chloride channel blocker. Picrotoxinin is a noncompetitive GABAA receptor antagonist, which negatively modulates the action of GABA on GABAA receptors. Picrotoxinin inhibits α1β2γ2L GABAA receptor with an IC50 of 1.15 μM[1].

   

METHYL ANTHRANILATE

Methyl 2-aminobenzoate

C8H9NO2 (151.0633)


A benzoate ester that is the methyl ester of anthranilic acid.

   

Dexpanthenol

DL-Pantothenyl alcohol

C9H19NO4 (205.1314)


D - Dermatologicals > D03 - Preparations for treatment of wounds and ulcers > D03A - Cicatrizants A - Alimentary tract and metabolism > A11 - Vitamins S - Sensory organs > S01 - Ophthalmologicals D-Panthenol is the biologically-active alcohol of pantothenic acid, which leads to an elevation in the amount of coenzyme A in the cell.

   

TETRACHLOROETHYLENE

TETRACHLOROETHYLENE

C2Cl4 (163.8754)


D009676 - Noxae > D002273 - Carcinogens D004785 - Environmental Pollutants D012997 - Solvents

   

p,p-DDD

1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene

C14H10Cl4 (317.9537)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

3-Aminophenol

3-aminophenol

C6H7NO (109.0528)


   

M-XYLENE

M-XYLENE

C8H10 (106.0782)


   

METHYL ACETATE

methyl acetate

C3H6O2 (74.0368)


   

FURFURYL ALCOHOL

FURFURYL ALCOHOL

C5H6O2 (98.0368)


   

Caprolactam

Caprolactam

C6H11NO (113.0841)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

FENAMIPHOS

N-[ethoxy-(3-methyl-4-methylsulfanylphenoxy)phosphoryl]propan-2-amine

C13H22NO3PS (303.1058)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D016573 - Agrochemicals D010575 - Pesticides

   

tolmetin

1-Methyl-5-p-toluoylpyrrole-2-acetic acid

C15H15NO3 (257.1052)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

nafcillin

(2S,5R,6R)-6-[(2-ethoxynaphthalene-1-carbonyl)amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C21H22N2O5S (414.1249)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

enflurane

enflurane

C3H2ClF5O (183.9714)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

2-Methylbutanal

2-Methylbutyraldehyde

C5H10O (86.0732)


A methylbutanal in which the methyl substituent is at position 2.

   

meclizine

1-[(4-chlorophenyl)-phenylmethyl]-4-[(3-methylphenyl)methyl]piperazine

C25H27ClN2 (390.1863)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents D018926 - Anti-Allergic Agents

   

N-NITROSOMORPHOLINE

4-nitrosomorpholine

C4H8N2O2 (116.0586)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

trihexyphenidyl

Trihexylphenedyl

C20H31NO (301.2406)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

orphenadrine

N,N-dimethyl-2-[(2-methylphenyl)-phenylmethoxy]ethanamine

C18H23NO (269.178)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065686 - Cytochrome P-450 CYP2B6 Inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

Nicotinaldehyde

3-Pyridinecarboxaldehyde

C6H5NO (107.0371)


   

FLUNISOLIDE

(1S,2S,4R,8S,9S,11S,12S,13R,19S)-19-fluoro-11-hydroxy-8-(2-hydroxyacetyl)-6,6,9,13-tetramethyl-5,7-dioxapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one

C24H31FO6 (434.2105)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents

   

DIBUTYL SUCCINATE

DIBUTYL SUCCINATE

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

ceftizoxime

ceftizoxime

C13H13N5O5S2 (383.0358)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins A parenteral third-generation cephalosporin, bearing a 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino group at the 7beta-position. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

butenafine

butenafine

C23H27N (317.2143)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

SERTINDOLE

SERTINDOLE

C24H26ClFN4O (440.1779)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist Sertindole (Lu 23-174) is an orally active 5-HT2A, 5-HT2C, dopamine D2, and αl-adrenergic receptors antagonist. Sertindole shows antipsychotic activity and anti-proliferative activity to multiple cancer cells[1][2][3].

   

Cefmetazole

Cefmetazole

C15H17N7O5S3 (471.0453)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins A cephalosporin antibiotic containg an N(1)-methyltetrazol-5-ylthiomethyl side-chain at C-3 of the parent cephem bicyclic structure. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Octylamine

octan-1-amine

C8H19N (129.1517)


   

Halofantrine

Halofantrine

C26H30Cl2F3NO (499.1656)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

p-Allylphenol

p-Allylphenol

C9H10O (134.0732)


   

orciprenaline

metaproterenol

C11H17NO3 (211.1208)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CB - Non-selective beta-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AB - Non-selective beta-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Latamoxef

Latamoxef

C20H20N6O9S (520.1012)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

isoetarine

isoetharine

C13H21NO3 (239.1521)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CC - Selective beta-2-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AC - Selective beta-2-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

Delavirdine

Delavirdine

C22H28N6O3S (456.1943)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AG - Non-nucleoside reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

Arbaclofen

(R)-Baclofen

C10H12ClNO2 (213.0557)


C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1].

   

1-Benzyl-1,2,3,4-tetrahydroisoquinoline

Isoquinoline,1,2,3,4-tetrahydro-1-(phenylmethyl)-

C16H17N (223.1361)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists

   

L-Threonic acid

(2R,3S)-2,3,4-trihydroxybutanoic acid

C4H8O5 (136.0372)


The L-enantiomer of threonic acid.

   

Pyrvinium

Pyrvinium

C26H28N3+ (382.2283)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent

   

Triamcinolone hexacetonide

Triamcinolone hexacetonide

C30H41FO7 (532.2836)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

ritodrine

ritodrine

C17H21NO3 (287.1521)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CA - Sympathomimetics, labour repressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Taurolithocholic acid 3-sulfate

2-[[(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3-sulfooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid

C26H45NO8S2 (563.2586)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

2(3H)-Furanone

2(3H)-Furanone

C4H4O2 (84.0211)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants

   

Kyotorphin

Kyotorphin acetate salt

C15H23N5O4 (337.175)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004723 - Endorphins Kyotorphin is an endogenou neuroactive dipeptide with analgesic properties. Kyotorphin possesses anti-inflammatory and antimicrobial activity. Kyotorphin levels in cerebro-spinal fluid correlate negatively with the progression of neurodegeneration in Alzheimer's Disease patients[1].

   

L-Azetidine-2-carboxylic acid

2-Azetidinecarboxylic acid, (S)-

C4H7NO2 (101.0477)


The (S)-enantiomer of azetidine-2-carboxylic acid. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.

   

4-OXO-4-(PYRIDIN-3-YL)BUTANOIC ACID

4-OXO-4-(PYRIDIN-3-YL)BUTANOIC ACID

C9H9NO3 (179.0582)


   

2-Deoxyguanosine-5-diphosphate

[(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methyl phosphono hydrogen phosphate

C10H15N5O10P2 (427.0294)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N-Methyl-L-alanine

(2S)-2-(methylamino)propanoic acid

C4H9NO2 (103.0633)


A methyl-L-alanine in which one of the the amino hydrogen of L-alanine is replaced by a methyl group.

   

20-Hydroxycholesterol

20(S)-Hydroxycholesterol

C27H46O2 (402.3498)


An oxysterol that is cholesterol substituted by a hydroxy group at position 20. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].

   

Adenosine tetraphosphate

Adenosine tetraphosphate

C10H17N5O16P4 (586.9621)


   

4-Methylhistamine

4-Methylhistamine

C6H11N3 (125.0953)


An aralkylamino compound that is histamine bearing a methyl substituent at the 5 position on the ring.

   

(S)-1-Pyrroline-5-carboxylate

(2S)-3,4-dihydro-2H-pyrrole-2-carboxylic acid

C5H7NO2 (113.0477)


   

1D-myo-inositol 1,4-bisphosphate

1D-myo-inositol 1,4-bisphosphate

C6H14O12P2 (339.9961)


   

Bis(adenosine)-5-pentaphosphate

Bis(adenosine)-5-pentaphosphate

C20H29N10O22P5 (916.0146)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

4-aminoimidazole

4-aminoimidazole

C3H5N3 (83.0483)


   
   

Galbeta1,3GlcNAc

6-chloro-2-(n-(2-diethylaminoethyl)-n-methylamino)-ortho-acetotoluidide dihydrochloride

C14H25NO11 (383.1428)


An amino disaccharide consisting of beta-D-galactose linked via a (1->3)-glycosidic bond to N-acetyl-D-glucosamine.

   

Nomega-(ADP-D-ribosyl)-L-arginine

Nomega-(ADP-D-ribosyl)-L-arginine

C21H35N9O15P2 (715.1728)


   

2-Ethoxyethanol

2-ethoxyethanol

C4H10O2 (90.0681)


   

dichlorobenzene

1,2-DICHLOROBENZENE

C6H4Cl2 (145.969)


A dichlorobenzene carrying chloro substituents at positions 1 and 2. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

4-HEPTYLPHENOL

4-N-HEPTYLPHENOL

C13H20O (192.1514)


   

pentanol

Isoamyl alcohol

C5H12O (88.0888)


   

Acetyl-L-tryptophan

N-Acetyl-L-tryptophan

C13H14N2O3 (246.1004)


A N-acetyl-L-amino acid that is the N-acetyl derivative of L-tryptophan. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors N-Acetyl-L-tryptophan is an endogenous metabolite.

   

2,4-Quinolinediol

4-Hydroxyquinolin-2(1H)-one

C9H7NO2 (161.0477)


   

Icosatrienoic acid

(11Z,14Z,17Z)-Eicosa-11,14,17-trienoic acid

C20H34O2 (306.2559)


   

Aminopropylcadaverine

Aminopropylcadaverine

C8H21N3 (159.1735)


A polyazaalkane that is the 1,4,11-triaza derivative of undecane.

   

(N(omega)-L-arginino)succinic acid

2-[[N'-[(4S)-4-amino-4-carboxybutyl]carbamimidoyl]amino]butanedioic acid

C10H18N4O6 (290.1226)


   

Bentazon

Bentazone

C10H12N2O3S (240.0569)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Chlorpyrifos-methyl

dimethoxy-sulfanylidene-(3,5,6-trichloropyridin-2-yl)oxy-λ5-phosphane

C7H7Cl3NO3PS (320.895)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   
   

HEPTACHLOR EPOXIDE

Heptachlor epoxide [Isomer B]

C10H5Cl7O (385.816)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

trifluralin

2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)aniline

C13H16F3N3O4 (335.1093)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

4-Toluenesulfonamide

4-methylbenzenesulfonamide

C7H9NO2S (171.0354)


C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

4,4-Methylenedianiline

4,4′-methylenedianiline

C13H14N2 (198.1157)


D009676 - Noxae > D002273 - Carcinogens

   

CHLOROACETYL CHLORIDE

CHLOROACETYL CHLORIDE

C2H2Cl2O (111.9483)


   

PHENTHOATE

ethyl 2-dimethoxyphosphinothioylsulfanyl-2-phenylacetate

C12H17O4PS2 (320.0306)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

UNII:0514MAW53A

propan-2-yl 2-[ethoxy-(propan-2-ylamino)phosphinothioyl]oxybenzoate

C15H24NO4PS (345.1164)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

DINOSEB

2-butan-2-yl-4,6-dinitrophenol

C10H12N2O5 (240.0746)


D010575 - Pesticides > D005659 - Fungicides, Industrial > D004140 - Dinitrophenols D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

1,2-Diaminocyclohexane

1,2-Diaminocyclohexane

C6H14N2 (114.1157)


   

Benfuracarb

Aminofuracarb

C20H30N2O5S (410.1875)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Spiroxamine

UNII:OUT5YHB7BO

C18H35NO2 (297.2668)


D016573 - Agrochemicals D010575 - Pesticides

   

4-Butylphenol

p-Hydroxybutylbenzene

C10H14O (150.1045)


   

PCB 136

2,2,3,3,6,6-HEXACHLOROBIPHENYL

C12H4Cl6 (357.8444)


D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls

   

Endoxifen

4-Hydroxy-N-desmethyltamoxifen

C25H27NO2 (373.2042)


   

bisphenol F

Bis(2-hydroxyphenyl)methane

C13H12O2 (200.0837)


   

(9Z)-12-Hydroxyoctadec-9-enoic acid

(9Z)-12-Hydroxyoctadec-9-enoic acid

C18H34O3 (298.2508)


A hydroxy fatty acid that is (9Z)-octadec-9-enoic (oleic) acid carrying a hydroxy substituent at position 12.

   

Peonidin-3-glucoside

Peonidin 3-O-glucoside

C22H23O11+ (463.124)


   

Ritodrina

Ritodrine hydrochloride

C17H21NO3 (287.1521)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CA - Sympathomimetics, labour repressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Pyrophaeophorbide a

Pyropheophorbide-alpha

C33H34N4O3 (534.2631)


Pyropheophorbide-a (Ppa) is a promising photosensitizer for tumor photodynamic therapy (PDT)[1].

   

4-CPP

2-(4-Chlorophenoxy)propionic acid

C9H9ClO3 (200.024)


   

2-Me 5-HT

2-Methyl-5-hydroxytryptamine

C11H14N2O (190.1106)


2-Methyl-5-HT (2-Methyl-5-hydroxytryptamine) is a potent and selective 5-HT3 receptor agonist. 2-Methyl-5-HT is shown to display anti-depressive-like effects[1].

   
   

PD 123177

1-[(4-Amino-3-methylphenyl)methyl]-5-(2,2-diphenylacetyl)-6,7-dihydro-4H-imidazo[4,5-c]pyridine-6-carboxylic acid

C29H28N4O3 (480.2161)


   

alpha-Fluoro-beta-alanine

3-Amino-2-fluoropropionic acid

C3H6FNO2 (107.0383)


   

1-Naphthylacetylspermine

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

Dopachrome

Dopachrome

C9H7NO4 (193.0375)


   

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

4,5,6,7-Tetrachloro-2-trifluoromethylbenzimidazole

C8HCl4F3N2 (321.8846)


   

caffeoylputrescine

N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)prop-2-enamide

C13H18N2O3 (250.1317)