Gene Association: PPP1R9B
UniProt Search:
PPP1R9B (PROTEIN_CODING)
Function Description: protein phosphatase 1 regulatory subunit 9B
found 37 associated metabolites with current gene based on the text mining result from the pubmed database.
L-Leucine
Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Milrinone
Milrinone is a member of the class of bipyridines that is 2-pyridone which is substituted at positions 3, 5, and 6 by cyano, pyrid-4-yl, and methyl groups, respectively. It is used (particularly intravenously, as the lactate) for the short-term management of severe heart failure. It has a role as an EC 3.1.4.17 (3,5-cyclic-nucleotide phosphodiesterase) inhibitor, a platelet aggregation inhibitor, a vasodilator agent and a cardiotonic drug. It is a pyridone, a nitrile and a member of bipyridines. Heart failure is a multifactorial condition that affects roughly 1-2\\% of the adult population. Often the result of long-term myocardial ischemia, cardiomyopathy, or other cardiac insults, heart failure results from an inability of the heart to perfuse peripheral tissues with sufficient oxygen and metabolites, resulting in complex systemic pathologies. Heart failure is underpinned by numerous physiological changes, including alteration in β-adrenergic signalling and cyclic adenosine monophosphate (cAMP) production, which affects the hearts contractile function and cardiac output. Milrinone is a second-generation bipyridine phosphodiesterase (PDE) inhibitor created through chemical modification of [amrinone]. As a PDE-III inhibitor, milrinone results in increased cAMP levels and improves cardiac function and peripheral vasodilation in acute decongested heart failure. Milrinone was originally synthesized at the Sterling Winthrop Research Institute in the 1980s. It was approved by the FDA on December 31, 1987, and was marketed under the trademark PRIMACOR® by Sanofi-Aventis US before being discontinued. Milrinone is a Phosphodiesterase 3 Inhibitor. The mechanism of action of milrinone is as a Phosphodiesterase 3 Inhibitor. Milrinone is a cardiovascular bipyridine agent and phosphodiesterase (PDE) III inhibitor, with positive inotropic and vasodilator activities. Upon administration, milrinone selectively inhibits PDE-mediated degradation of cyclic adenosine monophosphate (cAMP) in the heart and vascular muscles, thereby increasing cAMP and activates protein kinase A (PKA). This leads to phosphorylation of calcium ion channels and improve myocardium contractile force. Milrinone also causes vasodilation in arteriolar and venous vascular smooth muscle. A positive inotropic cardiotonic agent with vasodilator properties. It inhibits cAMP phosphodiesterase type 3 activity in myocardium and vascular smooth muscle. Milrinone is a derivative of amrinone and has 20-30 times the inotropic potency of amrinone. See also: Milrinone Lactate (active moiety of). Milrinone is only found in individuals that have used or taken this drug. It is a positive inotropic cardiotonic agent with vasodilator properties. Milrinone inhibits erythrocyte phosphodiesterase, resulting in an increase in erythrocyte cAMP activity. Subsequently, the erythrocyte membrane becomes more resistant to deformity. Along with erythrocyte activity, Milrinone also decreases blood viscosity by reducing plasma fibrinogen concentrations and increasing fibrinolytic activity. It also inhibits cAMP phosphodiesterase activity in myocardium and vascular smooth muscle. Milrinone is a derivative of amrinone and has 20-30 times the ionotropic potency of amrinone. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CE - Phosphodiesterase inhibitors D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058987 - Phosphodiesterase 3 Inhibitors C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor D020011 - Protective Agents > D002316 - Cardiotonic Agents KEIO_ID M037; [MS2] KO009062 KEIO_ID M037
Letrozole
Letrozole is a member of triazoles and a nitrile. It has a role as an antineoplastic agent and an EC 1.14.14.14 (aromatase) inhibitor. Letrozole, or CGS 20267, is an oral non-steroidal type II aromatase inhibitor first described in the literature in 1990. It is a third generation aromatase inhibitor like [exemestane] and [anastrozole], meaning it does not significantly affect cortisol, aldosterone, and thyroxine. Letrozole was granted FDA approval on 25 July 1997. Letrozole is an Aromatase Inhibitor. The mechanism of action of letrozole is as an Aromatase Inhibitor. Letrozole is a nonsteroidal inhibitor of aromatase which effectively blocks estrogen synthesis in postmenopausal women and is used as therapy of estrogen receptor positive breast cancer, usually after resection and after failure of tamoxifen. Letrozole has been associated with a low rate of serum enzyme elevations during therapy and rare instances of clinically apparent liver injury. Letrozole is a nonsteroidal inhibitor of estrogen synthesis with antineoplastic activity. As a third-generation aromatase inhibitor, letrozole selectively and reversibly inhibits aromatase, which may result in growth inhibition of estrogen-dependent breast cancer cells. Aromatase, a cytochrome P-450 enzyme localized to the endoplasmic reticulum of the cell and found in many tissues including those of the premenopausal ovary, liver, and breast, catalyzes the aromatization of androstenedione and testosterone into estrone and estradiol, the final step in estrogen biosynthesis. Letrozole (INN, trade name Femara®) is an oral non-steroidal aromatase inhibitor that has been introduced for the adjuvant treatment of hormonally-responsive breast cancer. Estrogens are produced by the conversion of androgens through the activity of the aromatase enzyme. Letrozole blocks production of estrogens in this way by competitive, reversible binding to the heme of its cytochrome P450 unit. The action is specific, and letrozole does not reduce production of mineralo- or corticosteroids. In contrast, the antiestrogenic action of tamoxifen, the major medical therapy prior to the arrival of aromatase inhibitors, is due to its interfering with the estrogen receptor, rather than inhibiting estrogen production. Letrozole is approved by the United States Food and Drug Administration (FDA) for the treatment of local or metastatic breast cancer that is hormone receptor positive or has an unknown receptor status in postmenopausal women. Side effects include signs and symptoms of hypoestrogenism. There is concern that long term use may lead to osteoporosis, which is why prescriptions of Letrozole are often accompanied by prescriptions of osteoporosis-fighting medication such as Fosamax. Letrozole has shown to reduce estrogen levels by 98 percent while raising testosterone levels. The anti-estrogen action of letrozole is preferred by athletes and bodybuilders for use during a steroid cycle to reduce bloating due to excess water retention and prevent the formation of gynecomastia related breast tissue that is a side effect of some anabolic steroids. Usage above 2.5 mg/day is known to potentially temporarily kill sex drive. Above 5mg/day for extended periods may cause kidney problems. Letrozole has also been shown to delay the fusing of the growth plates in adolescents. This may boost the effectiveness of growth hormone, and thus Letrozole is used to treat adolescents and children with short stature. A triazole and benzonitrile derivative that is a selective non-steroidal aromatase inhibitor, similar to ANASTROZOLE. It is used in the treatment of metastatic or locally advanced breast cancer in postmenopausal women. See also: Letrozole; ribociclib succinate (component of). Letrozole (INN, trade name Femara) is an oral non-steroidal aromatase inhibitor that has been introduced for the adjuvant treatment of hormonally-responsive breast cancer L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BG - Aromatase inhibitors D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D047072 - Aromatase Inhibitors C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3585 Letrozole (CGS 20267) is a potent, selective, reversible and orally active non-steroidal inhibitor of aromatase, with an IC50 of 11.5 nM. Letrozole selective inhibits estrogen biosynthesis, and can be used for the research of breast cancer[1][2][3].
Acetamiprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 2327 CONFIDENCE standard compound; INTERNAL_ID 8448 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2986 Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].
N-Methyl-D-aspartic acid
N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. NMDA is a water-soluble endogenous metabolite that plays an important role in the neuroendocrine system of species across Animalia (PMID:18096065). It was first synthesized in the 1960s (PMID:14056452). NMDA is an excitotoxin; this trait has applications in behavioural neuroscience research. The body of work utilizing this technique falls under the term "lesion studies." Researchers apply NMDA to specific regions of an (animal) subjects brain or spinal cord and subsequently test for the behaviour of interest, such as operant behaviour. If the behaviour is compromised, it suggests that the destroyed tissue was part of a brain region that made an important contribution to the normal expression of that behaviour. Examples of antagonists of the NMDA receptor are ketamine, amantadine, dextromethorphan (DXM), riluzole, and memantine. They are commonly referred to as NMDA receptor antagonists (PMID:28877137). N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Angiotensin IV
Angiotensin IV is one of the N-terminal angiotensin degradation products of angiotensin II. Angiotensin IV (AngIV) mediates important physiologic functions in the central nervous system, including blood flow regulation, processes underlying to learning and memory, and presents anticonvulsant activity. The presence of AngIV-specific binding sites has been identified in various mammalian tissues, including blood vessels, heart, kidney, and brain. Besides the presence of AngIV binding sites in the cardiovascular system, the major AngIV synthesizing enzymes aminopeptidase N (APN) and aminopeptidase B (APB) are also expressed in different cell types of this system. AngIV activates several protein kinases, including phosphatidylinositol 3 kinase, PI-dependent kinase-1, extracellular signal-related kinases (ERK), protein kinase B-α/Akt, and p70 ribosomal S6 kinase. AngIV could contribute to vascular damage, increasing the production of monocyte chemoattractant protein-1, the main chemokine involved in monocyte recruitment, and up-regulates the expression of the adhesion molecule intercellular adhesion molecule-1 that is involved in the attachment and transmigration of circulating cells into the damaged tissue. (PMID: 17210474) [HMDB] Angiotensin IV is one of the N-terminal angiotensin degradation products of angiotensin II. Angiotensin IV (AngIV) mediates important physiologic functions in the central nervous system, including blood flow regulation, processes underlying to learning and memory, and presents anticonvulsant activity. The presence of AngIV-specific binding sites has been identified in various mammalian tissues, including blood vessels, heart, kidney, and brain. Besides the presence of AngIV binding sites in the cardiovascular system, the major AngIV synthesizing enzymes aminopeptidase N (APN) and aminopeptidase B (APB) are also expressed in different cell types of this system. AngIV activates several protein kinases, including phosphatidylinositol 3 kinase, PI-dependent kinase-1, extracellular signal-related kinases (ERK), protein kinase B-α/Akt, and p70 ribosomal S6 kinase. AngIV could contribute to vascular damage, increasing the production of monocyte chemoattractant protein-1, the main chemokine involved in monocyte recruitment, and up-regulates the expression of the adhesion molecule intercellular adhesion molecule-1 that is involved in the attachment and transmigration of circulating cells into the damaged tissue. (PMID: 17210474). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Guanfacine
A centrally acting antihypertensive agent. The drug lowers both systolic and diastolic blood pressure by activating the central nervous system alpha-2 adrenoreceptors, which results in reduced sympathetic outflow leading to reduced vascular tone. Its adverse reactions include dry mouth, sedation, and constipation. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Enoxacin
Enoxacin is only found in individuals that have used or taken this drug. It is a broad-spectrum 6-fluoronaphthyridinone antibacterial agent (fluoroquinolones) structurally related to nalidixic acid. [PubChem]Enoxacin exerts its bactericidal action via the inhibition of the essential bacterial enzyme DNA gyrase (DNA Topoisomerase II). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3078
Tizanidine
Tizanidine is a short-acting drug for the management of spasticity. Tizanidine is an agonist at a2-adrenergic receptor sites and presumably reduces spasticity by increasing presynaptic inhibition of motor neurons. In animal models, tizanidine has no direct effect on skeletal muscle fibers or the neuromuscular junction, and no major effect on monosynaptic spinal reflexes. The effects of tizanidine are greatest on polysynaptic pathways. The overall effect of these actions is thought to reduce facilitation of spinal motor neurons. Tizanidine has two major metabolites: (1) 5-chloro-4-(2-imidazolin-4-on-2-ylamino)-2,1,3-benzothiazdiazole and (2) 5-chloro-4-(2-imidazolin-4-on-2-ylamino)-2,1,3-benzothiadiazole (PMID: 9929503, 19961320). M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics Tizanidine is an α2-adrenergic receptor agonist and inhibits neurotransmitter release from CNS noradrenergic neurons. Target: α2-adrenergic receptor Tizanidine is a drug that is used as a muscle relaxant. It is a centrally acting α2 adrenergic agonist. It is used to treat the spasms, cramping, and tightness of muscles caused by medical problems such as multiple sclerosis, ALS, spastic diplegia, back pain, or certain other injuries to the spine or central nervous system. It is also prescribed off-label for migraine headaches, as a sleep aid, and as an anticonvulsant. It is also prescribed for some symptoms of fibromyalgia. Tizanidine has been found to be as effective as other antispasmodic drugs and has superior tolerability to that of baclofen and diazepam. Tizanidine can be very strong even at the 2 mg dose and may cause hypotension, so caution is advised when it is used in patients who have a history of orthostatic hypotension, or when switching from gel cap to tablet form and vice versa. Tizanidine can occasionally cause liver damage, generally the hepatocellular type. Clinical trials show that up to 5\% of patients treated with tizanidine had elevated liver function test values, though symptoms disappeared upon withdrawal of the drug. Care should be used when first beginning treatment with tizanidine with regular liver tests for the first 6 months of treatment.
Dermorphin
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1]. Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1]. Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1].
L-Homocysteic acid
L-homocysteic acid is a homocysteic acid with L-configuration. It has a role as a NMDA receptor agonist. It is an enantiomer of a D-homocysteic acid. L-Homocysteic acid is a sulfur-containing glutamic acid analog and a potent NMDA receptor agonist. It is related to homocysteine, a by-product of methionine metabolism. It belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Short-term incubation of lymphocytes with homocysteine or its oxidation product homocysteinic acid increased the formation of reactive oxygen species and cell necrosis [HMDB]
Tungsten
Tungsten is a transition metal found, along with chromium, molybdenum and seaborgium, in Group VI of the Periodic Table of elements. Since its discovery in the last quarter of 18th century, tungsten-based products have been in use in a wide range of applications stretching from daily household necessities to highly specialized components of modern science and technology. As new applications and uses are discovered continuously, interest on and demand for tungsten, already an essential commodity, are projected to increase steadily in the years to come. Unavoidably, as is the case with other natural materials and/or non-renewable resources, increased demand and use of tungsten will spawn (a) increased interactions with other materials and/or non-sustainable practices, (b) a greater number of possible entry points into the natural and human environment and (c) a higher probability of deliberate or accidental releases. Currently, the existing knowledge base does not provide clear information about the behavior of tungsten-based products in the environment. The toxicological profile of tungsten, including possible effects on living organisms and exposure pathways, remains rather sketchy, narrow and fragmentary. Regulation of tungsten, both in terms of environmental and occupational safety and health, is at present limited in comparison with other metals. This pattern of environmental obscurity has been unequivocally disrupted by the events of Fallon, Nevada and the possible implication of tungsten to an acute lymphocytic leukemia (ALL) cluster. Tungsten is now the focus of scrutiny as it currently occupies the top of to do lists of various regulatory, health and environmental agencies. The occurrence of a childhood leukemia cluster in Fallon, Nevada prompted a wide investigation that involved several local, state and federal agencies led by the Centers of Disease Control (CDC). In essence, the objective of this investigation was to assess whether environmental causes were responsible for the cluster. The 16 reported leukemia cases within the time frame of 1997-2001, were well above the average for Nevada (3.0 cases/100,000 children/5 years). Several possible causes were proposed, such as jet fuel (JP-8) from a nearby military base or from a JP-8 pipeline running through the city, high levels of arsenic and other metals in the drinking water supplies, industrial pollution from a local tungsten smelting facility, and agrochemical contamination resulting from agricultural pesticide/fungicide use. Although the exact causes of leukemia are not well known, genetic and/or environmental factors may trigger the disease including ionizing and electromagnetic radiation, infectious and chemical agents. Physiologically, it exists as an ion in the body.(PMID: 16343746). Tungsten is a chemical element with the chemical symbol W and atomic number 74. Tungsten is the only metal from the third transition series that is known to occur in biomolecules, where it is used in a few species of bacteria. It is the heaviest element known to be used by any living organism. Tungsten interferes with molybdenum and copper metabolism, and is somewhat toxic to animal life. [Wikipedia]. Tungsten is found in many foods, some of which are orange bell pepper, black walnut, parsnip, and eggplant.
Trimethaphan
Trimethaphan is only found in individuals that have used or taken this drug. It is a nicotinic antagonist that has been used as a ganglionic blocker in hypertension, as an adjunct to anesthesia, and to induce hypotension during surgery. [PubChem]Trimethaphan is a ganglionic blocking agent prevents stimulation of postsynaptic receptors by competing with acetylcholine for these receptor sites. Additional effects may include direct peripheral vasodilation and release of histamine. Trimethaphans hypotensive effect is due to reduction in sympathetic tone and vasodilation, and is primarily postural. C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents
Brimonidine
Brimonidine is only found in individuals that have used or taken this drug. It is a drug used to treat glaucoma. It acts via decreasing aqueous humor synthesis. [Wikipedia]Brimonidine is an alpha adrenergic receptor agonist (primarily alpha-2). It has a peak ocular hypotensive effect occurring at two hours post-dosing. Fluorophotometric studies in animals and humans suggest that Brimonidine has a dual mechanism of action by reducing aqueous humor production and increasing uveoscleral outflow. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EA - Sympathomimetics in glaucoma therapy S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics > S01GA - Sympathomimetics used as decongestants C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D - Dermatologicals Brimonidine (UK 14304) is a full α2-adrenergic receptor (α2-AR) agonist.
2-Methyl-5-hydroxytryptamine
2-Methyl-5-HT (2-Methyl-5-hydroxytryptamine) is a potent and selective 5-HT3 receptor agonist. 2-Methyl-5-HT is shown to display anti-depressive-like effects[1].
2,3-Dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants NBQX (FG9202) is a highly selective and competitive AMPA receptor antagonist. NBQX has neuroprotective and anticonvulsant activity[1].
2,2',3,3',6,6'-Hexachlorobiphenyl
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
Estradiol Cypionate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D04063 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
UNII:EU52DFC4WJ
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Acetamiprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].
N-Methyl-DL-aspartic acid
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
aminophylline
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents Aminophylline is a competitive and non-selective phosphodiesterase (PDE) inhibitor. Aminophylline is a competitive adenosine receptor antagonist. Aminophylline has apulmonary vasodilator action as well as a bronchodilator action and has the potential for asthma research[1][2].
DL-Leucine
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
Angiotensin IV
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Femara
L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BG - Aromatase inhibitors D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D047072 - Aromatase Inhibitors C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents Letrozole (CGS 20267) is a potent, selective, reversible and orally active non-steroidal inhibitor of aromatase, with an IC50 of 11.5 nM. Letrozole selective inhibits estrogen biosynthesis, and can be used for the research of breast cancer[1][2][3].
brimonidine
S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EA - Sympathomimetics in glaucoma therapy S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics > S01GA - Sympathomimetics used as decongestants C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78283 - Agent Affecting Organs of Special Senses > C29705 - Anti-glaucoma Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D - Dermatologicals Brimonidine (UK 14304) is a full α2-adrenergic receptor (α2-AR) agonist.
tizanidine
M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics Tizanidine is an α2-adrenergic receptor agonist and inhibits neurotransmitter release from CNS noradrenergic neurons. Target: α2-adrenergic receptor Tizanidine is a drug that is used as a muscle relaxant. It is a centrally acting α2 adrenergic agonist. It is used to treat the spasms, cramping, and tightness of muscles caused by medical problems such as multiple sclerosis, ALS, spastic diplegia, back pain, or certain other injuries to the spine or central nervous system. It is also prescribed off-label for migraine headaches, as a sleep aid, and as an anticonvulsant. It is also prescribed for some symptoms of fibromyalgia. Tizanidine has been found to be as effective as other antispasmodic drugs and has superior tolerability to that of baclofen and diazepam. Tizanidine can be very strong even at the 2 mg dose and may cause hypotension, so caution is advised when it is used in patients who have a history of orthostatic hypotension, or when switching from gel cap to tablet form and vice versa. Tizanidine can occasionally cause liver damage, generally the hepatocellular type. Clinical trials show that up to 5\% of patients treated with tizanidine had elevated liver function test values, though symptoms disappeared upon withdrawal of the drug. Care should be used when first beginning treatment with tizanidine with regular liver tests for the first 6 months of treatment.
GUANFACINE
C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
enoxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic
TRIMETHAPHAN
C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents
nbqx
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants NBQX (FG9202) is a highly selective and competitive AMPA receptor antagonist. NBQX has neuroprotective and anticonvulsant activity[1].