Benzyl acetate (BioDeep_00000003099)
Secondary id: BioDeep_00000396903, BioDeep_00000862595
human metabolite PANOMIX_OTCML-2023 Endogenous Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C9H10O2 (150.06807600000002)
中文名称: 乙酸苄酯
谱图信息:
最多检出来源 Viridiplantae(plant) 0.1%
分子结构信息
SMILES: CC(=O)OCC1=CC=CC=C1
InChI: InChI=1S/C9H10O2/c1-8(10)11-7-9-5-3-2-4-6-9/h2-6H,7H2,1H3
描述信息
Benzyl acetate, also known as benzyl ethanoate or fema 2135, belongs to the class of organic compounds known as benzyloxycarbonyls. These are organic compounds containing a carbonyl group substituted with a benzyloxyl group. Benzyl acetate is a sweet, apple, and apricot tasting compound. Benzyl acetate is found, on average, in the highest concentration within sweet basils. Benzyl acetate has also been detected, but not quantified, in several different foods, such as figs, fruits, pomes, tea, and alcoholic beverages. On high concnetrations benzyl acetate is a potentially toxic compound. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water.
Occurs in jasmine, apple, cherry, guava fruit and peel, wine grape, white wine, tea, plum, cooked rice, Bourbon vanilla, naranjila fruit (Solanum quitoense), Chinese cabbage and quince. Flavouring agent
Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].
Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].
同义名列表
27 个代谢物同义名
Benzyl acetate + glycine combination; Acetic acid, phenylmethyl ester; Acetic acid phenylmethyl ester; Benzyl ester OF acetic acid; Benzylester kyseliny octove; Acetate, phenylmethyl ester; Phenylmethyl ethanoic acid; Acetic acid, benzyl ester; Acetic acid benzyl ester; Phenylmethyl ethanoate; (Acetoxymethyl)benzene; Benzyl (1-14C)acetate; Benzyl (2-14C)acetate; Acetate, benzyl ester; Phenylmethyl acetate; alpha-Acetoxytoluene; Benzyl ethanoic acid; (14C)Benzyl acetate; acetato De bencilo; Benzyl acetic acid; Benzyl ethanoate; Nchem.167-comp5; Benzyl acetate; Plastolin I; FEMA 2135; Benzyl acetate; Benzyl acetate
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:52051
- KEGG: C15513
- PubChem: 8785
- HMDB: HMDB0031310
- Metlin: METLIN70954
- ChEMBL: CHEMBL1233714
- Wikipedia: Benzyl acetate
- MetaCyc: CPD-6501
- KNApSAcK: C00035535
- foodb: FDB003367
- chemspider: 13850405
- CAS: 140-11-4
- PMhub: MS000008070
- PubChem: 17396505
- PDB-CCD: J0Z
- NIKKAJI: J2.950E
- medchemexpress: HY-N7124
- KNApSAcK: 52051
- LOTUS: LTS0185985
分类词条
相关代谢途径
Reactome(0)
代谢反应
116 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(114)
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
acetyl-CoA + benzyl alcohol ⟶ benzyl acetate + coenzyme A
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + salicylate ⟶ SAH + methylsalicylate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
106 个相关的物种来源信息
- 155619 - Agaricomycetes: LTS0185985
- 4668 - Amaryllidaceae: LTS0185985
- 4011 - Anacardiaceae: LTS0185985
- 22140 - Annonaceae: LTS0185985
- 283104 - Antidesma: LTS0185985
- 2708716 - Antidesma laciniatum: 10.1016/J.PHYTOCHEM.2003.08.004
- 2708716 - Antidesma laciniatum: LTS0185985
- 4454 - Araceae: LTS0185985
- 4210 - Asteraceae: LTS0185985
- 2 - Bacteria: LTS0185985
- 5204 - Basidiomycota: LTS0185985
- 3700 - Brassicaceae: LTS0185985
- 13392 - Cananga: LTS0185985
- 13393 - Cananga odorata: 10.1021/JF00069A028
- 13393 - Cananga odorata: LTS0185985
- 3481 - Cannabaceae: LTS0185985
- 3482 - Cannabis: LTS0185985
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0185985
- 3655 - Cucumis: LTS0185985
- 3656 - Cucumis melo: 10.1111/J.1365-2621.1987.TB14284.X
- 3656 - Cucumis melo: LTS0185985
- 3650 - Cucurbitaceae: LTS0185985
- 406287 - Curio: LTS0185985
- 189231 - Curio articulatus: 10.1016/S0031-9422(97)00141-6
- 66679 - Daphne: LTS0185985
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 329675 - Daphne odora: LTS0185985
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: LTS0185985
- 4345 - Ericaceae: LTS0185985
- 2759 - Eukaryota: LTS0185985
- 4751 - Fungi: LTS0185985
- 264417 - Hesperis: LTS0185985
- 264418 - Hesperis matronalis: 10.1016/0031-9422(94)00332-N
- 264418 - Hesperis matronalis: LTS0185985
- 9606 - Homo sapiens: -
- 4147 - Jasminum: LTS0185985
- 389181 - Jasminum grandiflorum: 10.1002/FFJ.2730010305
- 389181 - Jasminum grandiflorum: LTS0185985
- 4447 - Liliopsida: LTS0185985
- 3398 - Magnoliopsida: LTS0185985
- 3749 - Malus: LTS0185985
- 3750 - Malus domestica: 10.1021/JF00025A025
- 3750 - Malus domestica: LTS0185985
- 283210 - Malus pumila: 10.1021/JF00025A025
- 283210 - Malus pumila: LTS0185985
- 3752 - Malus sylvestris: 10.1021/JF00025A025
- 3752 - Malus sylvestris: LTS0185985
- 24647 - Mandragora: LTS0185985
- 389206 - Mandragora autumnalis:
- 389206 - Mandragora autumnalis: 10.1016/J.PHYTOCHEM.2005.07.016
- 389206 - Mandragora autumnalis: 10.1080/10412905.1998.9700991
- 389206 - Mandragora autumnalis: LTS0185985
- 33117 - Mandragora officinarum:
- 33117 - Mandragora officinarum: 10.1016/J.PHYTOCHEM.2005.07.016
- 33117 - Mandragora officinarum: 10.1080/10412905.1998.9700991
- 33117 - Mandragora officinarum: LTS0185985
- 4697 - Narcissus: LTS0185985
- 54860 - Narcissus tazetta: 10.3109/13880209409083015
- 54860 - Narcissus tazetta: LTS0185985
- 4144 - Oleaceae: LTS0185985
- 4724 - Pandanaceae: LTS0185985
- 4725 - Pandanus: LTS0185985
- 4726 - Pandanus tectorius: 10.1016/S0031-9422(96)00386-X
- 4726 - Pandanus tectorius: LTS0185985
- 233880 - Phyllanthaceae: LTS0185985
- 33090 - Plants: -
- 3754 - Prunus: LTS0185985
- 3759 - Prunus yedoensis: 10.1271/BBB.56.1655
- 3759 - Prunus yedoensis: LTS0185985
- 3745 - Rosaceae: LTS0185985
- 4070 - Solanaceae: LTS0185985
- 78381 - Spathiphyllum: LTS0185985
- 258320 - Spathiphyllum cannifolium: 10.1016/0305-1978(96)00016-6
- 258320 - Spathiphyllum cannifolium: LTS0185985
- 43860 - Spondias: LTS0185985
- 80338 - Spondias mombin: 10.1021/JF00008A025
- 80338 - Spondias mombin: LTS0185985
- 1883 - Streptomyces: 10.1002/CBDV.200590062
- 1883 - Streptomyces: LTS0185985
- 2062 - Streptomycetaceae: LTS0185985
- 35493 - Streptophyta: LTS0185985
- 13699 - Styrax: -
- 99105 - Tanacetum: LTS0185985
- 127999 - Tanacetum parthenium: 10.1007/S004030050433
- 127999 - Tanacetum parthenium: LTS0185985
- 39987 - Thymelaeaceae: LTS0185985
- 58023 - Tracheophyta: LTS0185985
- 40144 - Tricholoma: LTS0185985
- 40145 - Tricholoma matsutake:
- 40145 - Tricholoma matsutake: 10.1271/BBB1961.45.373
- 40145 - Tricholoma matsutake: LTS0185985
- 5351 - Tricholomataceae: LTS0185985
- 13749 - Vaccinium: LTS0185985
- 180772 - Vaccinium vitis-idaea:
- 180772 - Vaccinium vitis-idaea: 10.3891/ACTA.CHEM.SCAND.21-2076
- 180772 - Vaccinium vitis-idaea: LTS0185985
- 33090 - Viridiplantae: LTS0185985
- 3602 - Vitaceae: LTS0185985
- 3603 - Vitis: LTS0185985
- 103349 - Vitis rotundifolia:
- 103349 - Vitis rotundifolia: 10.1021/JF00112A014
- 103349 - Vitis rotundifolia: 10.1111/J.1365-2621.1984.TB13669.X
- 103349 - Vitis rotundifolia: LTS0185985
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Paramita Bera, Jhansi Narmada Reddy Kotamreddy, Tanmoy Samanta, Saborni Maiti, Adinpunya Mitra. Inter-specific variation in headspace scent volatiles composition of four commercially cultivated jasmine flowers.
Natural product research.
2015; 29(14):1328-35. doi:
10.1080/14786419.2014.1000319
. [PMID: 25583067] - Qiuping Ye, Xinyi Jin, Xinliang Zhu, Tongxiang Lin, Zhilong Hao, Qian Yang. An Efficient Extraction Method for Fragrant Volatiles from Jasminum sambac (L.) Ait.
Journal of oleo science.
2015; 64(6):645-52. doi:
10.5650/jos.ess15014
. [PMID: 25891116] - Mayuree Kanlayavattanakul, Sarun Kitsiripaisarn, Nattaya Lourith. Aroma profiles and preferences of Jasminum sambac L. flowers grown in Thailand.
Journal of cosmetic science.
2013 Nov; 64(6):483-93. doi:
"
. [PMID: 24397885] - Eric G Dennis, Robert A Keyzers, Curtis M Kalua, Suzanne M Maffei, Emily L Nicholson, Paul K Boss. Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must.
Journal of agricultural and food chemistry.
2012 Mar; 60(10):2638-46. doi:
10.1021/jf2042517
. [PMID: 22332880] - Martin Pareja, Erika Qvarfordt, Ben Webster, Patrick Mayon, John Pickett, Michael Birkett, Robert Glinwood. Herbivory by a Phloem-feeding insect inhibits floral volatile production.
PloS one.
2012; 7(2):e31971. doi:
10.1371/journal.pone.0031971
. [PMID: 22384116] - Dariusz Piesik, Grzegorz Lemńczyk, Agata Skoczek, Robert Lamparski, Jan Bocianowski, Karol Kotwica, Kevin J Delaney. Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus.
Journal of plant physiology.
2011 Sep; 168(13):1534-42. doi:
10.1016/j.jplph.2011.01.032
. [PMID: 21492953] - Lindsey K Tuominen, Virgil E Johnson, Chung-Jui Tsai. Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues.
BMC genomics.
2011 May; 12(?):236. doi:
10.1186/1471-2164-12-236
. [PMID: 21569431] - Luis Morales-Quintana, Lida Fuentes, Carlos Gaete-Eastman, Raúl Herrera, María Alejandra Moya-León. Structural characterization and substrate specificity of VpAAT1 protein related to ester biosynthesis in mountain papaya fruit.
Journal of molecular graphics & modelling.
2011 Feb; 29(5):635-42. doi:
10.1016/j.jmgm.2010.11.011
. [PMID: 21146433] - Sunday Oluwafemi, Toby J A Bruce, John A Pickett, Jurriaan Ton, Michael A Birkett. Behavioral responses of the leafhopper, Cicadulina storeyi China, a major vector of maize streak virus, to volatile cues from intact and leafhopper-damaged maize.
Journal of chemical ecology.
2011 Jan; 37(1):40-8. doi:
10.1007/s10886-010-9891-2
. [PMID: 21191806] - Annick Dubois, Arnaud Remay, Olivier Raymond, Sandrine Balzergue, Aurélie Chauvet, Marion Maene, Yann Pécrix, Shu-Hua Yang, Julien Jeauffre, Tatiana Thouroude, Véronique Boltz, Marie-Laure Martin-Magniette, Stéphane Janczarski, Fabrice Legeai, Jean-Pierre Renou, Philippe Vergne, Manuel Le Bris, Fabrice Foucher, Mohammed Bendahmane. Genomic approach to study floral development genes in Rosa sp.
PloS one.
2011; 6(12):e28455. doi:
10.1371/journal.pone.0028455
. [PMID: 22194838] - Ira Marton, Amir Zuker, Elena Shklarman, Vardit Zeevi, Andrey Tovkach, Suzy Roffe, Marianna Ovadis, Tzvi Tzfira, Alexander Vainstein. Nontransgenic genome modification in plant cells.
Plant physiology.
2010 Nov; 154(3):1079-87. doi:
10.1104/pp.110.164806
. [PMID: 20876340] - Cielo Pasay, Kate Mounsey, Graeme Stevenson, Rohan Davis, Larry Arlian, Marjorie Morgan, Diann Vyszenski-Moher, Kathy Andrews, James McCarthy. Acaricidal activity of eugenol based compounds against scabies mites.
PloS one.
2010 Aug; 5(8):e12079. doi:
10.1371/journal.pone.0012079
. [PMID: 20711455] - Fachuang Lu, Jane M Marita, Catherine Lapierre, Lise Jouanin, Kris Morreel, Wout Boerjan, John Ralph. Sequencing around 5-hydroxyconiferyl alcohol-derived units in caffeic acid O-methyltransferase-deficient poplar lignins.
Plant physiology.
2010 Jun; 153(2):569-79. doi:
10.1104/pp.110.154278
. [PMID: 20427467] - Iris F Kappers, Francel W A Verstappen, Ludo L P Luckerhoff, Harro J Bouwmeester, Marcel Dicke. Genetic variation in jasmonic acid- and spider mite-induced plant volatile emission of cucumber accessions and attraction of the predator Phytoseiulus persimilis.
Journal of chemical ecology.
2010 May; 36(5):500-12. doi:
10.1007/s10886-010-9782-6
. [PMID: 20383796] - Cristian Balbontín, Carlos Gaete-Eastman, Lida Fuentes, Carlos R Figueroa, Raúl Herrera, Daniel Manriquez, Alain Latché, Jean-Claude Pech, María Alejandra Moya-León. VpAAT1, a gene encoding an alcohol acyltransferase, is involved in ester biosynthesis during ripening of mountain papaya fruit.
Journal of agricultural and food chemistry.
2010 Apr; 58(8):5114-21. doi:
10.1021/jf904296c
. [PMID: 20369803] - Itay Gonda, Einat Bar, Vitaly Portnoy, Shery Lev, Joseph Burger, Arthur A Schaffer, Ya'akov Tadmor, Shimon Gepstein, James J Giovannoni, Nurit Katzir, Efraim Lewinsohn. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit.
Journal of experimental botany.
2010 Feb; 61(4):1111-23. doi:
10.1093/jxb/erp390
. [PMID: 20065117] - Norbert A Braun, Birgit Kohlenberg, Sherina Sim, Manfred Meier, Franz-Josef Hammerschmidt. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.
Natural product communications.
2009 Sep; 4(9):1239-50. doi:
"
. [PMID: 19831037] - Dirk W Lachenmeier, Pham Thi Hoang Anh, Svetlana Popova, Jürgen Rehm. The quality of alcohol products in Vietnam and its implications for public health.
International journal of environmental research and public health.
2009 08; 6(8):2090-101. doi:
10.3390/ijerph6082090
. [PMID: 19742208] - Jeyasankar Alagarmalai, David Nestel, Daniela Dragushich, Ester Nemny-Lavy, Leonid Anshelevich, Anat Zada, Victoria Soroker. Identification of host attractants for the ethiopian fruit fly, Dacus ciliatus loew.
Journal of chemical ecology.
2009 May; 35(5):542-51. doi:
10.1007/s10886-009-9636-2
. [PMID: 19440796] - Alfreda Wei, Takayuki Shibamoto. Antioxidant activities and volatile constituents of various essential oils.
Journal of agricultural and food chemistry.
2007 Mar; 55(5):1737-42. doi:
10.1021/jf062959x
. [PMID: 17295511] - Inna Guterman, Tania Masci, Xinlu Chen, Florence Negre, Eran Pichersky, Natalia Dudareva, David Weiss, Alexander Vainstein. Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers.
Plant molecular biology.
2006 Mar; 60(4):555-63. doi:
10.1007/s11103-005-4924-x
. [PMID: 16525891] - Islam El-Sharkawy, Daniel Manríquez, Francisco B Flores, Farid Regad, Mondher Bouzayen, Alain Latché, Jean-Claude Pech. Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity*.
Plant molecular biology.
2005 Sep; 59(2):345-62. doi:
10.1007/s11103-005-8884-y
. [PMID: 16247561] - Kaoru Sekihashi, Ayumu Yamamoto, Yukie Matsumura, Shunji Ueno, Mie Watanabe-Akanuma, Fekadu Kassie, Siegfried Knasmüller, Shuji Tsuda, Yu F Sasaki. Comparative investigation of multiple organs of mice and rats in the comet assay.
Mutation research.
2002 May; 517(1-2):53-75. doi:
10.1016/s1383-5718(02)00034-7
. [PMID: 12034309] - S Kevekordes, J Spielberger, C M Burghaus, P Birkenkamp, B Zietz, P Paufler, M Diez, C Bolten, H Dunkelberg. Micronucleus formation in human lymphocytes and in the metabolically competent human hepatoma cell line Hep-G2: results with 15 naturally occurring substances.
Anticancer research.
2001 Jan; 21(1A):461-9. doi:
. [PMID: 11299780]
- J H Yuan, T J Goehl, K Abdo, J Clark, O Espinosa, C Bugge, D Garcia. Effects of gavage versus dosed feed administration on the toxicokinetics of benzyl acetate in rats and mice.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
1995 Feb; 33(2):151-8. doi:
10.1016/0278-6915(94)00123-6
. [PMID: 7868001] - D S Longnecker, B D Roebuck, T J Curphey, D L MacMillan. Evaluation of promotion of pancreatic carcinogenesis in rats by benzyl acetate.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
1990 Oct; 28(10):665-8. doi:
10.1016/0278-6915(90)90141-9
. [PMID: 2276694] - T F McMahon, J J Diliberto, L S Birnbaum. Age-related changes in the disposition of benzyl acetate. A model compound for glycine conjugation.
Drug metabolism and disposition: the biological fate of chemicals.
1989 Sep; 17(5):506-12. doi:
. [PMID: 2573493]
- M A Chidgey, J F Kennedy, J Caldwell. Studies on benzyl acetate. III. The percutaneous absorption and disposition of [methylene-14C]benzyl acetate in the rat.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
1987 Jul; 25(7):521-5. doi:
10.1016/0278-6915(87)90203-1
. [PMID: 3623341] - M A Chidgey, J Caldwell. Studies on benzyl acetate. I. Effect of dose size and vehicle on the plasma pharmacokinetics and metabolism of [methylene-14C]benzyl acetate in the rat.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
1986 Dec; 24(12):1257-65. doi:
10.1016/0278-6915(86)90056-6
. [PMID: 3804130] - M A Chidgey, J F Kennedy, J Caldwell. Studies on benzyl acetate. II. Use of specific metabolic inhibitors to define the pathway leading to the formation of benzylmercapturic acid in the rat.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
1986 Dec; 24(12):1267-72. doi:
10.1016/0278-6915(86)90057-8
. [PMID: 3804131] - D S Longnecker, B D Roebuck, T J Curphey, E Lhoste, C I Coon, D MacMillan. Effects of corn oil and benzyl acetate on number and size of azaserine-induced foci in the pancreas of LEW and F344 rats.
Environmental health perspectives.
1986 Sep; 68(?):197-201. doi:
10.1289/ehp.8668197
. [PMID: 3490965] - K M Abdo, J E Huff, J K Haseman, G A Boorman, S L Eustis, H B Matthews, L T Burka, J D Prejean, R B Thompson. Benzyl acetate carcinogenicity, metabolism, and disposition in Fischer 344 rats and B6C3F1 mice.
Toxicology.
1985 Oct; 37(1-2):159-70. doi:
10.1016/0300-483x(85)90121-0
. [PMID: 4060166]