Solamargine (BioDeep_00000008341)

 

Secondary id: BioDeep_00000183876

PANOMIX_OTCML-2023 Antitumor activity Cytotoxicity natural product


代谢物信息卡片


(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-piperidine]-16-yl]oxy-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

化学式: C45H73NO15 (867.498)
中文名称: 澳洲茄边碱, 边缘茄碱
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 100%

分子结构信息

SMILES: CC1CCC2(C(C3C(O2)CC4C3(CCC5C4CC=C6C5(CCC(C6)OC7C(C(C(C(O7)CO)OC8C(C(C(C(O8)C)O)O)O)O)OC9C(C(C(C(O9)C)O)O)O)C)C)C)NC1
InChI: InChI=1S/C45H73NO15/c1-19-9-14-45(46-17-19)20(2)30-28(61-45)16-27-25-8-7-23-15-24(10-12-43(23,5)26(25)11-13-44(27,30)6)57-42-39(60-41-36(53)34(51)32(49)22(4)56-41)37(54)38(29(18-47)58-42)59-40-35(52)33(50)31(48)21(3)55-40/h7,19-22,24-42,46-54H,8-18H2,1-6H3/t19-,20+,21+,22+,24+,25-,26+,27+,28+,29-,30+,31+,32+,33-,34-,35-,36-,37+,38-,39-,40+,41+,42-,43+,44+,45-/m1/s1

描述信息

Solamargine is an azaspiro compound, a steroid and an oxaspiro compound.
Solamargine has been used in trials studying the treatment of Actinic Keratosis.
Solamargine is a natural product found in Solanum pittosporifolium, Solanum americanum, and other organisms with data available.
Solamargine, a derivative from the steroidal solasodine in Solanum species, exhibits anticancer activities in numerous types of cancer. Solamargine induces non-selective cytotoxicity and P-glycoprotein inhibition. Solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity[1][2].
Solamargine, a derivative from the steroidal solasodine in Solanum species, exhibits anticancer activities in numerous types of cancer. Solamargine induces non-selective cytotoxicity and P-glycoprotein inhibition. Solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity[1][2].

同义名列表

19 个代谢物同义名

(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-piperidine]-16-yl]oxy-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol; BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,22.ALPHA.,25R)-SPIROSOL-5-EN-3-YL O-6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->2)-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->4))-; beta-D-Glucopyranoside, (3beta,22alpha,25R)-spirosol-5-en-3-yl O-6-deoxy-alpha-L-mannopyranosyl-(1-2)-O-(6-deoxy-alpha-L-mannopyranosyl-(1-4))-; b-D-Glucopyranoside, (3b,22a,25R)-spirosol-5-en-3-yl O-6-deoxy-a-L-mannopyranosyl-(1®2)-O-[6-deoxy-a-L-mannopyranosyl-(1®4)]-; .DELTA.-SOLANIGRINE; .ALPHA.-SOLAMARGINE; SOLAMARGINE, (-)-; UNII-8KG991E7BN; (-)-SOLAMARGINE; beta-solamarine; |A-Solanigrine; o-Solanigrine; Solamargine; Solamargin; 8KG991E7BN; 1ST163965; AC1L2K61; δ-Solanigrine; Solamargine



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

144 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 17 ABCB1, AKT1, ANXA5, BCL2, BCL2L1, CASP3, CASP8, CASP9, ERBB2, FADD, MAPK14, MUC1, SP1, STAT3, TOP2A, TRADD, XIAP
Peripheral membrane protein 1 ANXA5
Endosome membrane 1 ERBB2
Endoplasmic reticulum membrane 1 BCL2
Mitochondrion membrane 1 BCL2L1
Nucleus 13 AKT1, BCL2, CASP3, CASP8, CASP9, ERBB2, MAPK14, MUC1, SP1, STAT3, TOP2A, TRADD, XIAP
cytosol 13 AKT1, ANXA5, BCL2, BCL2L1, CASP3, CASP8, CASP9, ERBB2, FADD, MAPK14, STAT3, TRADD, XIAP
centrosome 1 BCL2L1
nucleoplasm 9 AKT1, CASP3, CASP8, ERBB2, MAPK14, SP1, STAT3, TOP2A, XIAP
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 5 ABCB1, AKT1, ERBB2, MUC1, TNF
Cytoplasmic side 1 BCL2L1
lamellipodium 2 AKT1, CASP8
ruffle membrane 1 ERBB2
Multi-pass membrane protein 1 ABCB1
cell cortex 1 AKT1
cell surface 2 ABCB1, TNF
glutamatergic synapse 3 AKT1, CASP3, MAPK14
Golgi apparatus 1 IGFBP1
mitochondrial inner membrane 1 BCL2L1
neuromuscular junction 1 ERBB2
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
presynaptic membrane 1 ERBB2
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 BCL2L1
plasma membrane 8 ABCB1, AKT1, ERBB2, FADD, MUC1, STAT3, TNF, TRADD
synaptic vesicle membrane 1 BCL2L1
Membrane 6 ABCB1, AKT1, ANXA5, BCL2, ERBB2, MUC1
apical plasma membrane 3 ABCB1, ERBB2, MUC1
axon 1 CCK
basolateral plasma membrane 1 ERBB2
extracellular exosome 3 ABCB1, ANXA5, MUC1
endoplasmic reticulum 2 BCL2, BCL2L1
extracellular space 5 CCK, IGFBP1, MUC1, SP1, TNF
perinuclear region of cytoplasm 1 ERBB2
mitochondrion 5 BCL2, BCL2L1, CASP8, CASP9, MAPK14
protein-containing complex 5 AKT1, BCL2, CASP8, CASP9, TOP2A
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 ERBB2, MUC1
Secreted 3 CCK, IGFBP1, SP1
extracellular region 7 ANXA5, CCK, ERBB2, IGFBP1, MAPK14, SP1, TNF
cytoplasmic side of plasma membrane 2 FADD, TRADD
Mitochondrion outer membrane 2 BCL2, BCL2L1
Single-pass membrane protein 2 BCL2, BCL2L1
mitochondrial outer membrane 3 BCL2, BCL2L1, CASP8
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
transcription regulator complex 1 STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 2 BCL2, BCL2L1
external side of plasma membrane 2 ANXA5, TNF
cytoplasmic vesicle 1 ERBB2
microtubule cytoskeleton 1 AKT1
nucleolus 1 TOP2A
Early endosome 1 ERBB2
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 2 AKT1, MUC1
Apical cell membrane 2 ABCB1, MUC1
Cell projection, lamellipodium 1 CASP8
Cell projection, ruffle membrane 1 ERBB2
Cytoplasm, perinuclear region 1 ERBB2
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TRADD
focal adhesion 1 ANXA5
spindle 1 AKT1
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 ANXA5
nuclear speck 1 MAPK14
receptor complex 2 ERBB2, TRADD
Zymogen granule membrane 1 ANXA5
ciliary basal body 1 AKT1
chromatin 3 MUC1, SP1, STAT3
phagocytic cup 1 TNF
cytoskeleton 2 CASP8, TRADD
Nucleus, nucleolus 1 TOP2A
spindle pole 1 MAPK14
Nucleus, nucleoplasm 1 TOP2A
euchromatin 1 SP1
cell body 2 CASP8, FADD
myelin sheath 2 BCL2, ERBB2
basal plasma membrane 1 ERBB2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
Golgi lumen 1 MUC1
endoplasmic reticulum lumen 1 IGFBP1
transcription repressor complex 1 SP1
male germ cell nucleus 1 TOP2A
apoptosome 1 CASP9
chromosome, centromeric region 1 TOP2A
semaphorin receptor complex 1 ERBB2
vesicle membrane 1 ANXA5
ribonucleoprotein complex 1 TOP2A
protein-DNA complex 1 SP1
external side of apical plasma membrane 1 ABCB1
CD95 death-inducing signaling complex 2 CASP8, FADD
death-inducing signaling complex 4 CASP3, CASP8, FADD, TRADD
ripoptosome 2 CASP8, FADD
[Isoform 1]: Cell membrane 1 ERBB2
condensed chromosome 1 TOP2A
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
ERBB3:ERBB2 complex 1 ERBB2
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
DNA topoisomerase type II (double strand cut, ATP-hydrolyzing) complex 1 TOP2A
tumor necrosis factor receptor superfamily complex 1 TRADD
caspase complex 1 CASP9
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Qing Tang, Qichun Zhou, Jing Li, Xiaobing Yang, Rui Wang, Xi Wang, Mengfei Xu, Ling Han, Wanyin Wu, Sumei Wang. Solamargine enhanced gefitinib anti-tumor effect via regulating MALAT1/miR-141-3p/Sp1/IGFBP1 signaling pathway in non-small cell lung cancer. Carcinogenesis. 2023 May; ?(?):. doi: 10.1093/carcin/bgad028. [PMID: 37144780]
  • Qiaoyan Han, Hua Bai, Yong Xu, Min Zhou, He Zhou, Xiaoqing Dong, Bing Chen. Solamargine induces autophagy-mediated apoptosis and enhances bortezomib activity in multiple myeloma. Clinical and experimental pharmacology & physiology. 2022 06; 49(6):674-685. doi: 10.1111/1440-1681.13643. [PMID: 35294057]
  • Qing Tang, Xiaojuan Li, Yun Chen, Shunqin Long, Yaya Yu, Honghao Sheng, Sumei Wang, Ling Han, Wanyin Wu. Solamargine inhibits the growth of hepatocellular carcinoma and enhances the anticancer effect of sorafenib by regulating HOTTIP-TUG1/miR-4726-5p/MUC1 pathway. Molecular carcinogenesis. 2022 04; 61(4):417-432. doi: 10.1002/mc.23389. [PMID: 35040191]
  • Shuangshuang Yin, Wenke Jin, Yuling Qiu, Leilei Fu, Tao Wang, Haiyang Yu. Solamargine induces hepatocellular carcinoma cell apoptosis and autophagy via inhibiting LIF/miR-192-5p/CYR61/Akt signaling pathways and eliciting immunostimulatory tumor microenvironment. Journal of hematology & oncology. 2022 03; 15(1):32. doi: 10.1186/s13045-022-01248-w. [PMID: 35313929]
  • Ricardo Andrade Furtado, Saulo Duarte Ozelin, Natália Helen Ferreira, Bárbara Ayumi Miura, Silvio Almeida Junior, Geórgia Modé Magalhães, Eduardo José Nassar, Mariza Abreu Miranda, Jairo Kenupp Bastos, Denise Crispim Tavares. Antitumor activity of solamargine in mouse melanoma model: relevance to clinical safety. Journal of toxicology and environmental health. Part A. 2022 02; 85(4):131-142. doi: 10.1080/15287394.2021.1984348. [PMID: 34612163]
  • Billy Cabanillas, François Chassagne, Pedro Vásquez-Ocmín, Ali Tahrioui, Sylvie Chevalier, Marieke Vansteelandt, Asih Triastuti, Carlos A Amasifuen Guerra, Nicolas Fabre, Mohamed Haddad. Pharmacological validation of Solanum mammosum L. as an anti-infective agent: Role of solamargine. Journal of ethnopharmacology. 2021 Nov; 280(?):114473. doi: 10.1016/j.jep.2021.114473. [PMID: 34343650]
  • Qing Tang, Fang Zheng, Zheng Liu, JingJing Wu, XiaoSu Chai, CuenXa He, Liuning Li, Swei Sunny Hann. Novel reciprocal interaction of lncRNA HOTAIR and miR-214-3p contribute to the solamargine-inhibited PDPK1 gene expression in human lung cancer. Journal of cellular and molecular medicine. 2019 11; 23(11):7749-7761. doi: 10.1111/jcmm.14649. [PMID: 31475459]
  • Chao-Chun Yang, Tak-Wah Wong, Chih-Hung Lee, Chien-Hui Hong, Chung-Hsing Chang, Feng-Jie Lai, Shang-Hung Lin, Ching-Chi Chi, Tzu-Kai Lin, Hsi Yen, Chin-Han Wu, Hamm-Ming Sheu, Cheng-Che E Lan. Efficacy and safety of topical SR-T100 gel in treating actinic keratosis in Taiwan: A Phase III randomized double-blind vehicle-controlled parallel trial. Journal of dermatological science. 2018 Jun; 90(3):295-302. doi: 10.1016/j.jdermsci.2018.02.015. [PMID: 29530340]
  • Yuqing Chen, Qing Tang, Qian Xiao, LiJun Yang, Swei S Hann. Targeting EP4 downstream c-Jun through ERK1/2-mediated reduction of DNMT1 reveals novel mechanism of solamargine-inhibited growth of lung cancer cells. Journal of cellular and molecular medicine. 2017 02; 21(2):222-233. doi: 10.1111/jcmm.12958. [PMID: 27620163]
  • Qing Tang, Fang Zheng, JingJing Wu, Qian Xiao, Liuning Li, Swei Sunny Hann. Combination of Solamargine and Metformin Strengthens IGFBP1 Gene Expression Through Inactivation of Stat3 and Reciprocal Interaction Between FOXO3a and SP1. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2017; 43(6):2310-2326. doi: 10.1159/000484383. [PMID: 29073599]
  • S S El-Hawary, R Mohammed, S F AbouZid, W Bakeer, R Ebel, A M Sayed, M E Rateb. Solamargine production by a fungal endophyte of Solanum nigrum. Journal of applied microbiology. 2016 Apr; 120(4):900-11. doi: 10.1111/jam.13077. [PMID: 26811095]
  • Fatma Njeh, Houda Feki, Imed Koubaa, Nejia Hamed, Mohamed Damak, Ali Ayadi, Hayet Hammami, Raoudha Mezghani-Jarraya. Molluscicidal activity of Solanum elaeagnifolium seeds against Galba truncatula intermediate host of Fasciola hepatica: Identification of β-solamarine. Pharmaceutical biology. 2016; 54(4):726-31. doi: 10.3109/13880209.2015.1073332. [PMID: 26429590]
  • YuQing Chen, Qing Tang, JingJing Wu, Fang Zheng, LiJun Yang, Swei Sunny Hann. Inactivation of PI3-K/Akt and reduction of SP1 and p65 expression increase the effect of solamargine on suppressing EP4 expression in human lung cancer cells. Journal of experimental & clinical cancer research : CR. 2015 Dec; 34(?):154. doi: 10.1186/s13046-015-0272-0. [PMID: 26689593]
  • Renata F J Tiossi, Juliana C Da Costa, Mariza A Miranda, Fabíola S G Praça, James D McChesney, Maria Vitória L B Bentley, Jairo K Bastos. In vitro and in vivo evaluation of the delivery of topical formulations containing glycoalkaloids of Solanum lycocarpum fruits. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2014 Sep; 88(1):28-33. doi: 10.1016/j.ejpb.2014.01.010. [PMID: 24509413]
  • Yan Zhou, Qing Tang, Shunyu Zhao, Fang Zhang, Liuning Li, WanYin Wu, ZhiYu Wang, Swei Hann. Targeting signal transducer and activator of transcription 3 contributes to the solamargine-inhibited growth and -induced apoptosis of human lung cancer cells. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014 Aug; 35(8):8169-78. doi: 10.1007/s13277-014-2047-1. [PMID: 24845028]
  • Carla Carolina Munari, Pollyanna Francielli de Oliveira, Jacqueline Costa Lima Campos, Sabrina de Paula Lima Martins, Juliana Carvalho Da Costa, Jairo Kenupp Bastos, Denise Crispim Tavares. Antiproliferative activity of Solanum lycocarpum alkaloidic extract and their constituents, solamargine and solasonine, in tumor cell lines. Journal of natural medicines. 2014 Jan; 68(1):236-41. doi: 10.1007/s11418-013-0757-0. [PMID: 23475509]
  • Mahenina Jaovita Manase, Anne-Claire Mitaine-Offer, David Pertuit, Tomofumi Miyamoto, Chiaki Tanaka, Stéphanie Delemasure, Patrick Dutartre, Jean-François Mirjolet, Olivier Duchamp, Marie-Aleth Lacaille-Dubois. Solanum incanum and S. heteracanthum as sources of biologically active steroid glycosides: confirmation of their synonymy. Fitoterapia. 2012 Sep; 83(6):1115-9. doi: 10.1016/j.fitote.2012.04.024. [PMID: 22579841]
  • Bill Elliot Cham, Tania Robyn Chase. Solasodine rhamnosyl glycosides cause apoptosis in cancer cells. Do they also prime the immune system resulting in long-term protection against cancer?. Planta medica. 2012 Mar; 78(4):349-53. doi: 10.1055/s-0031-1298149. [PMID: 22399274]
  • Xia Ding, Fang-Shi Zhu, Min Li, Si-Guo Gao. Induction of apoptosis in human hepatoma SMMC-7721 cells by solamargine from Solanum nigrum L. Journal of ethnopharmacology. 2012 Jan; 139(2):599-604. doi: 10.1016/j.jep.2011.11.058. [PMID: 22172325]
  • Xiao Zheng, Lianming Xu, Yan Liang, Wei Xiao, Lin Xie, Yan Zhang, Li Zhao, Liang Cao, Jun Chen, Guangji Wang. Quantitative determination and pharmacokinetic study of solamargine in rat plasma by liquid chromatography-mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2011 Jul; 55(5):1157-62. doi: 10.1016/j.jpba.2011.04.007. [PMID: 21549540]
  • Lingmei Sun, Ying Zhao, Huiqing Yuan, Xia Li, Aixia Cheng, Hongxiang Lou. Solamargine, a steroidal alkaloid glycoside, induces oncosis in human K562 leukemia and squamous cell carcinoma KB cells. Cancer chemotherapy and pharmacology. 2011 Apr; 67(4):813-21. doi: 10.1007/s00280-010-1387-9. [PMID: 20563579]
  • Waraporn Putalun. Technology of compact MAb and its application for medicinal plant breeding named as missile type molecular breeding. Current drug discovery technologies. 2011 Mar; 8(1):24-31. doi: 10.2174/157016311794519965. [PMID: 21143130]
  • Karuna Shanker, Shalini Gupta, Pooja Srivastava, Santosh K Srivastava, Subash C Singh, Madan M Gupta. Simultaneous determination of three steroidal glycoalkaloids in Solanum xanthocarpum by high performance thin layer chromatography. Journal of pharmaceutical and biomedical analysis. 2011 Feb; 54(3):497-502. doi: 10.1016/j.jpba.2010.09.025. [PMID: 20965683]
  • Padma Kumar, Bindu Sharma, Nidhi Bakshi. Biological activity of alkaloids from Solanum dulcamara L. Natural product research. 2009; 23(8):719-23. doi: 10.1080/14786410802267692. [PMID: 19418354]
  • L Y Shiu, L C Chang, C H Liang, Y S Huang, H M Sheu, K W Kuo. Solamargine induces apoptosis and sensitizes breast cancer cells to cisplatin. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2007 Nov; 45(11):2155-64. doi: 10.1016/j.fct.2007.05.009. [PMID: 17619073]
  • Masayuki Yoshikawa, Seikou Nakamura, Kenichi Ozaki, Akira Kumahara, Toshio Morikawa, Hisashi Matsuda. Structures of steroidal alkaloid oligoglycosides, robeneosides A and B, and antidiabetogenic constituents from the Brazilian medicinal plant Solanum lycocarpum. Journal of natural products. 2007 Feb; 70(2):210-4. doi: 10.1021/np0680580. [PMID: 17249729]
  • Aline Schwarz, Erika C G Felippe, Maria M Bernardi, Helenice S Spinosa. Impaired female sexual behavior of rat offspring exposed to Solanum lycocarpum unripe fruits during gestation and lactation: lack of hormonal and fertility alterations. Pharmacology, biochemistry, and behavior. 2005 Aug; 81(4):928-34. doi: 10.1016/j.pbb.2005.07.003. [PMID: 16095678]
  • W Putalun, F Taura, W Qing, H Matsushita, H Tanaka, Y Shoyama. Anti-solasodine glycoside single-chain Fv antibody stimulates biosynthesis of solasodine glycoside in plants. Plant cell reports. 2003 Dec; 22(5):344-9. doi: 10.1007/s00299-003-0689-3. [PMID: 14504907]
  • Alphonse W Wanyonyi, Sumesh C Chhabra, Gerald Mkoji, Udo Eilert, Wilson M Njue. Bioactive steroidal alkaloid glycosides from Solanum aculeastrum. Phytochemistry. 2002 Jan; 59(1):79-84. doi: 10.1016/s0031-9422(01)00424-1. [PMID: 11754948]
  • J T Blankemeyer, M L McWilliams, J R Rayburn, M Weissenberg, M Friedman. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1998 May; 36(5):383-9. doi: 10.1016/s0278-6915(97)00164-6. [PMID: 9662413]
  • H Tanaka, W Putalun, C Tsuzaki, Y Shoyama. A simple determination of steroidal alkaloid glycosides by thin-layer chromatography immunostaining using monoclonal antibody against solamargine. FEBS letters. 1997 Mar; 404(2-3):279-82. doi: 10.1016/s0014-5793(97)00106-3. [PMID: 9119079]
  • K Fukuhara, I Kubo. Isolation of steroidal glycoalkaloids from Solanum incanum by two countercurrent chromatographic methods. Phytochemistry. 1991; 30(2):685-7. doi: 10.1016/0031-9422(91)83753-8. [PMID: 1367270]