Clofilium (BioDeep_00000002984)

   


代谢物信息卡片


Clofilium

化学式: C21H37ClN+ (338.2614)
中文名称:
谱图信息: 最多检出来源 Mentha canadensis(plant) 79.31%

分子结构信息

SMILES: CCCCCCC[N+](CC)(CC)CCCCC1=CC=C(C=C1)Cl
InChI: InChI=1S/C21H37ClN/c1-4-7-8-9-11-18-23(5-2,6-3)19-12-10-13-20-14-16-21(22)17-15-20/h14-17H,4-13,18-19H2,1-3H3/q+1

描述信息

C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent
D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers
D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
D049990 - Membrane Transport Modulators

同义名列表

2 个代谢物同义名

Clofilium; Clofilium



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 AXIN2, CASP3, KCNQ1, PRKX
Endoplasmic reticulum membrane 1 KCNA2
Nucleus 3 AXIN2, CASP3, PRKX
cytosol 5 AXIN2, CASP3, KCNA1, KCNN4, PRKCQ
dendrite 3 KCNA1, KCNA2, KCNH1
centrosome 1 AXIN2
nucleoplasm 4 ATP2B1, CASP3, PRKX, SCNN1G
Cell membrane 13 ATP2B1, KCNA1, KCNA2, KCNA4, KCNA5, KCND2, KCNE1, KCNH1, KCNH2, KCNMA1, KCNN4, KCNQ1, KCNU1
lamellipodium 1 KCNA2
ruffle membrane 1 KCNN4
Cell projection, axon 4 KCNA1, KCNA2, KCNA4, KCNH1
Early endosome membrane 1 KCNH1
Multi-pass membrane protein 15 ATP2B1, KCNA1, KCNA2, KCNA3, KCNA4, KCNA5, KCND2, KCNH1, KCNH2, KCNK5, KCNMA1, KCNN4, KCNQ1, KCNU1, SCNN1G
Synapse 4 ATP2B1, KCNA1, KCNA2, KCND2
cell junction 2 KCNA1, KCND2
cell surface 4 KCNA1, KCNA5, KCNE1, KCNH2
glutamatergic synapse 6 ATP2B1, CASP3, KCNA1, KCNA2, KCNA3, KCND2
Golgi apparatus 1 KCNA5
neuronal cell body 5 CASP3, KCNA1, KCND2, KCNN4, KCNQ1
presynaptic membrane 5 ATP2B1, KCNA1, KCNA2, KCNA3, KCNH1
Lysosome 2 KCNE1, KCNQ1
Presynapse 1 KCNA1
plasma membrane 18 ATP2B1, AXIN2, KCNA1, KCNA2, KCNA3, KCNA4, KCNA5, KCND2, KCNE1, KCNH1, KCNH2, KCNK5, KCNMA1, KCNN4, KCNQ1, KCNU1, PRKCQ, SCNN1G
synaptic vesicle membrane 1 ATP2B1
Membrane 13 ATP2B1, KCNA1, KCNA2, KCNA3, KCNA4, KCNA5, KCNH1, KCNH2, KCNK5, KCNMA1, KCNN4, KCNQ1, KCNU1
apical plasma membrane 5 KCNA1, KCNE1, KCNMA1, KCNQ1, SCNN1G
axon 4 KCNA2, KCNA3, KCNA4, KCNH1
basolateral plasma membrane 2 ATP2B1, KCNQ1
caveola 1 KCNMA1
extracellular exosome 2 ATP2B1, SCNN1G
endoplasmic reticulum 2 KCNA1, KCNQ1
perinuclear region of cytoplasm 3 KCNA3, KCNA5, KCNH2
intercalated disc 1 KCNA5
intracellular membrane-bounded organelle 2 ATP2B1, KCNH1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 KCNE1
neuronal cell body membrane 2 KCNA2, KCND2
anchoring junction 2 KCNA1, KCND2
centriolar satellite 1 PRKCQ
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 1 SCNN1G
dendritic spine 2 KCNA4, KCND2
perikaryon 4 KCNA1, KCNA2, KCND2, KCNH1
Z disc 2 KCNA5, KCNE1
beta-catenin destruction complex 1 AXIN2
cytoplasmic vesicle 1 KCNA1
Early endosome 1 KCNQ1
vesicle 1 KCNN4
postsynaptic membrane 5 KCNA1, KCNA2, KCNA3, KCND2, KCNMA1
Apical cell membrane 3 KCNE1, KCNQ1, SCNN1G
Cell projection, ruffle membrane 1 KCNN4
Membrane raft 4 KCNA3, KCNA5, KCNE1, KCNQ1
GABA-ergic synapse 1 KCND2
Cell projection, dendritic spine 1 KCND2
lateral plasma membrane 2 ATP2B1, KCNQ1
Nucleus inner membrane 1 KCNH1
nuclear inner membrane 1 KCNH1
Postsynaptic cell membrane 1 KCND2
Late endosome 1 KCNQ1
neuron projection 3 KCNA2, KCNN4, KCNQ1
ciliary base 1 KCNQ1
cell projection 1 ATP2B1
Basolateral cell membrane 2 ATP2B1, KCNQ1
[Isoform 2]: Cell membrane 1 KCNA3
sperm flagellum 1 KCNU1
Cell projection, cilium, flagellum membrane 1 KCNU1
monoatomic ion channel complex 5 KCNH1, KCNH2, KCNK5, KCNQ1, KCNU1
Cytoplasmic vesicle membrane 1 KCNQ1
sodium channel complex 1 SCNN1G
axon initial segment 3 KCNA1, KCNA2, KCNA4
Cell projection, dendrite 4 KCNA1, KCNA2, KCND2, KCNH1
Presynaptic cell membrane 4 ATP2B1, KCNA1, KCNA2, KCNH1
inward rectifier potassium channel complex 1 KCNH2
potassium channel complex 1 KCNA5
synaptic membrane 1 KCNA2
voltage-gated potassium channel complex 12 KCNA1, KCNA2, KCNA3, KCNA4, KCNA5, KCND2, KCNE1, KCNH1, KCNH2, KCNMA1, KCNN4, KCNQ1
plasma membrane raft 1 KCND2
axon terminus 2 KCNA1, KCNA2
transport vesicle 1 KCNQ1
paranode region of axon 1 KCNA1
postsynaptic density membrane 1 KCNH1
immunological synapse 2 ATP2B1, PRKCQ
aggresome 1 PRKCQ
calyx of Held 3 KCNA1, KCNA2, KCNA3
paranodal junction 1 KCNA2
Synapse, synaptosome 1 KCNA2
death-inducing signaling complex 1 CASP3
postsynaptic specialization membrane 1 KCND2
[Isoform 1]: Cell membrane 1 KCNA3
intracellular canaliculus 1 KCNA5
lamellipodium membrane 1 KCNA2
Cell projection, lamellipodium membrane 1 KCNA2
photoreceptor ribbon synapse 1 ATP2B1
Cell junction, paranodal septate junction 1 KCNA2
juxtaparanode region of axon 2 KCNA1, KCNA2
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
lumenal side of membrane 1 KCNQ1
basolateral part of cell 1 KCNQ1
Kv4.2-KChIP2 channel complex 1 KCND2


文献列表

  • H Papp, A Sarusi, A S Farkas, H Takacs, P Kui, D Vincze, E Ivany, A Varro, J G Papp, T Forster, A Farkas. Hyperventilation assists proarrhythmia development during delayed repolarization in clofilium-treated, anaesthetized, mechanically ventilated rabbits. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2016 Oct; 67(5):731-737. doi: . [PMID: 28011953]
  • Yanli Zhang, Thai Phung, James Dunlop, Julie Dalziel. hERG ion channel pharmacology: cell membrane liposomes in porous-supported lipid bilayers compared with whole-cell patch-clamping. European biophysics journal : EBJ. 2012 Nov; 41(11):949-58. doi: 10.1007/s00249-012-0852-2. [PMID: 22936309]
  • A M Neal, H C Taylor, I D Millar, J D Kibble, S J White, L Robson. Renal defects in KCNE1 knockout mice are mimicked by chromanol 293B in vivo: identification of a KCNE1-regulated K+ conductance in the proximal tubule. The Journal of physiology. 2011 Jul; 589(Pt 14):3595-609. doi: 10.1113/jphysiol.2011.209155. [PMID: 21576273]
  • Signe Skyum Kirkegaard, Ian Henry Lambert, Steen Gammeltoft, Else Kay Hoffmann. Activation of the TASK-2 channel after cell swelling is dependent on tyrosine phosphorylation. American journal of physiology. Cell physiology. 2010 Oct; 299(4):C844-53. doi: 10.1152/ajpcell.00024.2010. [PMID: 20631251]
  • Marie Teixeira, Say Viengchareun, Daniel Butlen, Chrystophe Ferreira, Françoise Cluzeaud, Marcel Blot-Chabaud, Marc Lombès, Evelyne Ferrary. Functional IsK/KvLQT1 potassium channel in a new corticosteroid-sensitive cell line derived from the inner ear. The Journal of biological chemistry. 2006 Apr; 281(15):10496-507. doi: 10.1074/jbc.m512254200. [PMID: 16478723]
  • Mónika Gönczi, Norbert Szentandrássy, Ian T Johnson, Anthony M Heagerty, Arthur H Weston. Investigation of the role of TASK-2 channels in rat pulmonary arteries; pharmacological and functional studies following RNA interference procedures. British journal of pharmacology. 2006 Mar; 147(5):496-505. doi: 10.1038/sj.bjp.0706649. [PMID: 16432512]
  • Kellie A Davis, Elizabeth A Cowley. Two-pore-domain potassium channels support anion secretion from human airway Calu-3 epithelial cells. Pflugers Archiv : European journal of physiology. 2006 Feb; 451(5):631-41. doi: 10.1007/s00424-005-1505-4. [PMID: 16311719]
  • Sang Wook Kim, Seung Dae Yang, Byung Jae Ahn, Jeong Hoon Park, Dong Soo Lee, Guido Gessner, Stefan H Heinemann, Wilhelm Herdering, Kook Hyun Yu. In vivo targeting of ERG potassium channels in mice and dogs by a positron-emitting analogue of fluoroclofilium. Experimental & molecular medicine. 2005 Aug; 37(4):269-75. doi: 10.1038/emm.2005.36. [PMID: 16155403]
  • J P Barfield, C H Yeung, T G Cooper. The effects of putative K+ channel blockers on volume regulation of murine spermatozoa. Biology of reproduction. 2005 May; 72(5):1275-81. doi: 10.1095/biolreprod.104.038448. [PMID: 15673604]
  • Ling Wei, Ai Ying Xiao, Chun Jin, Aizhen Yang, Zhong Yang Lu, Shan Ping Yu. Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Archiv : European journal of physiology. 2004 Jun; 448(3):325-34. doi: 10.1007/s00424-004-1277-2. [PMID: 15057559]
  • I D Millar, J A Hartley, C Haigh, A A Grace, S J White, J D Kibble, L Robson. Volume regulation is defective in renal proximal tubule cells isolated from KCNE1 knockout mice. Experimental physiology. 2004 Mar; 89(2):173-80. doi: 10.1113/expphysiol.2003.026674. [PMID: 15123546]
  • James D Lillich, Peter C Rakestraw, Allen J Roussel, Melissa R Finley, Suhasini Ganta, Lisa C Freeman. Expression of the ether-a-go-go (ERG) potassium channel in smooth muscle of the equine gastrointestinal tract and influence on activity of jejunal smooth muscle. American journal of veterinary research. 2003 Mar; 64(3):267-72. doi: 10.2460/ajvr.2003.64.267. [PMID: 12661864]
  • M I Niemeyer, L P Cid, L F Barros, F V Sepúlveda. Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. The Journal of biological chemistry. 2001 Nov; 276(46):43166-74. doi: 10.1074/jbc.m107192200. [PMID: 11560934]
  • K Finlayson, L Turnbull, C T January, J Sharkey, J S Kelly. [3H]dofetilide binding to HERG transfected membranes: a potential high throughput preclinical screen. European journal of pharmacology. 2001 Oct; 430(1):147-8. doi: 10.1016/s0014-2999(01)01362-0. [PMID: 11698075]
  • R A Li, J Miake, U C Hoppe, D C Johns, E Marbán, H B Nuss. Functional consequences of the arrhythmogenic G306R KvLQT1 K+ channel mutant probed by viral gene transfer in cardiomyocytes. The Journal of physiology. 2001 May; 533(Pt 1):127-33. doi: 10.1111/j.1469-7793.2001.0127b.x. [PMID: 11351021]
  • R Søgaard, T Ljungstrøm, K A Pedersen, S P Olesen, B S Jensen. KCNQ4 channels expressed in mammalian cells: functional characteristics and pharmacology. American journal of physiology. Cell physiology. 2001 Apr; 280(4):C859-66. doi: 10.1152/ajpcell.2001.280.4.c859. [PMID: 11245603]
  • B Attali, N Wang, A Kolot, A Sobko, V Cherepanov, B Soliven. Characterization of delayed rectifier Kv channels in oligodendrocytes and progenitor cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1997 Nov; 17(21):8234-45. doi: 10.1523/jneurosci.17-21-08234.1997. [PMID: 9334399]
  • J D Rabinowitz, P Rigler, C Carswell-Crumpton, C Beeson, H M McConnell. Screening for novel drug effects with a microphysiometer: a potent effect of clofilium unrelated to potassium channel blockade. Life sciences. 1997; 61(7):PL87-94. doi: 10.1016/s0024-3205(97)00543-2. [PMID: 9252253]
  • H Sakuta, K Okamoto, Y Watanabe. Antiarrhythmic drugs, clofilium and cibenzoline are potent inhibitors of glibenclamide-sensitive K+ currents in Xenopus oocytes. British journal of pharmacology. 1993 Jul; 109(3):866-72. doi: 10.1111/j.1476-5381.1993.tb13655.x. [PMID: 8358576]
  • N Mori, M Sakagami, K Fukazawa, T Matsunaga. An immunohistochemical and electrophysiological study on Isk protein in the stria vascularis of the guinea pig. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery. 1993; 250(3):186-9. doi: 10.1007/bf00171709. [PMID: 8357611]
  • H S Young, V Skita, R P Mason, L G Herbette. Molecular basis for the inhibition of 1,4-dihydropyridine calcium channel drugs binding to their receptors by a nonspecific site interaction mechanism. Biophysical journal. 1992 May; 61(5):1244-55. doi: 10.1016/s0006-3495(92)81933-1. [PMID: 1318093]
  • J Nettleton, N A Castle, G K Wang. Block of single batrachotoxin-activated Na+ channels by clofilium. Molecular pharmacology. 1991 Mar; 39(3):352-8. doi: ". [PMID: 1848656]
  • D S Echt, J N Black, J T Barbey, D R Coxe, E Cato. Evaluation of antiarrhythmic drugs on defibrillation energy requirements in dogs. Sodium channel block and action potential prolongation. Circulation. 1989 May; 79(5):1106-17. doi: 10.1161/01.cir.79.5.1106. [PMID: 2469545]
  • K S Su, K M Campanale, C L Gries. Nasal drug delivery system of a quaternary ammonium compound: clofilium tosylate. Journal of pharmaceutical sciences. 1984 Sep; 73(9):1251-4. doi: 10.1002/jps.2600730915. [PMID: 6491944]
  • T D Lindstrom, R L Wolen. Determination of clofilium, a new antifibrillatory agent, in plasma by gas chromatography--mass spectrometry. Journal of chromatography. 1982 Dec; 233(?):175-80. doi: 10.1016/s0378-4347(00)81744-2. [PMID: 7161331]
  • T D Lindstrom, P J Murphy, J K Smallwood, S A Wiest, M I Steinberg. Correlation between the disposition of [14C]clofilium and its cardiac electrophysiological effect. The Journal of pharmacology and experimental therapeutics. 1982 Jun; 221(3):584-9. doi: NULL. [PMID: 7086672]