Paucine (BioDeep_00000000474)

 

Secondary id: BioDeep_00001867508, BioDeep_00001883994

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(Z,2Z)-N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)propa-2-enimidic acid

化学式: C13H18N2O3 (250.1317)
中文名称: 咖啡酰丁二胺
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 24.91%

分子结构信息

SMILES: C(CCNC(=O)/C=C/c1ccc(c(c1)O)O)CN
InChI: InChI=1S/C13H18N2O3/c14-7-1-2-8-15-13(18)6-4-10-3-5-11(16)12(17)9-10/h3-6,9,16-17H,1-2,7-8,14H2,(H,15,18)

描述信息

N-caffeoylputrescine is a N-substituted putrescine. It is a conjugate base of a N-caffeoylputrescinium(1+).
N-Caffeoylputrescine is a natural product found in Iochroma cyaneum, Solanum tuberosum, and Selaginella moellendorffii with data available.
Paucine is found in avocado. Paucine is an alkaloid from the famine food Pentaclethra macrophylla and from Persea gratissima (avocado
Alkaloid from the famine food Pentaclethra macrophylla and from Persea gratissima (avocado). Paucine is found in avocado and fruits.

同义名列表

27 个代谢物同义名

(Z,2Z)-N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)propa-2-enimidic acid; 2-Propenamide, N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)-, (2E)-; 2-Propenamide, N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)-, (E)-; (2Z)-N-(4-Aminobutyl)-3-(3,4-dihydroxyphenyl)prop-2-enimidate; (2E)-N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)prop-2-enamide; (2E)-N-(4-Aminobutyl)-3-(3,4-dihydroxyphenyl)-2-propenamide; N-(4-Aminobutyl)-3-(3,4-dihydroxyphenyl)-2-propanamide, 9ci; (E)-N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)prop-2-enamide; 2-Propenamide, N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)-; (2E)-N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)acrylamide; N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)prop-2-enamide; Cinnamamide, N-(4-aminobutyl)-3,4-dihydroxy-, (E)-; N-(4-Aminobutyl)-3,4-dihydroxy-(e)-cinnamamide; N-(3,4-Dihydroxycinnamoyl)-1,4-butanediamine; N-?Caffeoylputrescine,?(E)?-; N-Caffeoylputrescine, (E) -; KTZNZCYTXQYEHT-GQCTYLIASA-N; N-Caffeoylputrescine, (E)-; N-Caffeoylputrescine,(E)-; (E)-N-Caffeoylputrescine; N-Caffeoylputrescine; caffeoylputrescine; Caffeoylputrescin; UNII-ZE5I4Z92IW; ZE5I4Z92IW; Paucine; N-Caffeoylputrescine



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 5 ADH5, AZIN2, ODC1, PAOX, TXN
Peripheral membrane protein 2 AOC1, HSD17B6
Endoplasmic reticulum membrane 2 HSP90B1, SLC33A1
Nucleus 4 AZIN2, HSP90B1, MYB, TXN
cytosol 10 ADH5, ARF4, AZIN2, HSP90B1, MYB, ODC1, PAOX, PDPN, SRM, TXN
dendrite 2 AZIN2, OPRM1
trans-Golgi network 1 AZIN2
nucleoplasm 2 MYB, TXN
RNA polymerase II transcription regulator complex 1 MYB
Cell membrane 3 AOC1, OPRM1, ROS1
Lipid-anchor 1 ARF4
lamellipodium 1 PDPN
ruffle membrane 2 ARF4, PDPN
Cell projection, axon 1 OPRM1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 2 OPRM1, SLC33A1
Synapse 1 OPRM1
cell junction 1 PDPN
cell surface 1 ROS1
glutamatergic synapse 1 ARF4
Golgi apparatus 2 ARF4, OPRM1
Golgi membrane 2 ARF4, SLC33A1
lysosomal membrane 1 GAA
smooth endoplasmic reticulum 1 HSP90B1
Lysosome 1 GAA
endosome 1 OPRM1
plasma membrane 8 AOC1, ARF4, GAA, NPR1, OPRM1, PDPN, ROS1, SLC33A1
Membrane 10 ARF4, AZIN2, GAA, HSP90B1, MYB, NPR1, OPRM1, PDPN, ROS1, SLC33A1
apical plasma membrane 1 PDPN
axon 2 AZIN2, OPRM1
basolateral plasma membrane 1 PDPN
extracellular exosome 6 ADH5, AOC1, ARF4, GAA, HSP90B1, TXN
Lysosome membrane 1 GAA
Lumenal side 1 HSD17B6
endoplasmic reticulum 3 HSD17B6, HSP90B1, OPRM1
extracellular space 1 AOC1
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 3 AZIN2, HSP90B1, ROS1
bicellular tight junction 1 AOC1
mitochondrion 3 ADH5, AZIN2, PDPN
protein-containing complex 1 HSP90B1
intracellular membrane-bounded organelle 2 GAA, HSD17B6
Microsome membrane 1 HSD17B6
filopodium 1 PDPN
Single-pass type I membrane protein 2 PDPN, ROS1
Secreted 2 GAA, TXN
extracellular region 4 AOC1, GAA, HSP90B1, TXN
Extracellular side 1 AOC1
anchoring junction 1 PDPN
dendritic spine 1 ARF4
perikaryon 2 AZIN2, OPRM1
cytoplasmic vesicle 2 AZIN2, PDPN
midbody 1 HSP90B1
Apical cell membrane 1 PDPN
Cell projection, ruffle membrane 1 PDPN
Membrane raft 1 PDPN
focal adhesion 1 HSP90B1
cis-Golgi network 1 AZIN2
Peroxisome 2 AOC1, PAOX
peroxisomal matrix 1 PAOX
collagen-containing extracellular matrix 1 HSP90B1
ruffle 1 PDPN
receptor complex 2 NPR1, ROS1
neuron projection 1 OPRM1
cell projection 1 PDPN
Secreted, extracellular space 1 AOC1
Basolateral cell membrane 1 PDPN
Cell projection, microvillus membrane 1 PDPN
microvillus membrane 1 PDPN
Cell projection, dendrite 1 OPRM1
tertiary granule membrane 1 GAA
Melanosome 1 HSP90B1
sperm plasma membrane 1 HSP90B1
filopodium membrane 1 PDPN
endoplasmic reticulum lumen 1 HSP90B1
nuclear matrix 1 MYB
specific granule lumen 1 AOC1
transport vesicle 1 AZIN2
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 AZIN2
tetraspanin-enriched microdomain 1 PDPN
Sarcoplasmic reticulum lumen 1 HSP90B1
endoplasmic reticulum-Golgi intermediate compartment 1 AZIN2
ficolin-1-rich granule membrane 1 GAA
Golgi apparatus, cis-Golgi network 1 AZIN2
Cell projection, filopodium membrane 1 PDPN
lamellipodium membrane 1 PDPN
endocytic vesicle lumen 1 HSP90B1
Cell projection, lamellipodium membrane 1 PDPN
endoplasmic reticulum chaperone complex 1 HSP90B1
autolysosome lumen 1 GAA
ANPR-A receptor complex 1 NPR1
[Isoform 12]: Cytoplasm 1 OPRM1
Cell projection, invadopodium 1 PDPN
[Podoplanin]: Membrane 1 PDPN
[29kDa cytosolic podoplanin intracellular domain]: Cytoplasm, cytosol 1 PDPN
leading edge of lamellipodium 1 PDPN
granular vesicle 1 AZIN2


文献列表

  • Lu Zhang, Youngjoo Oh, Hongyu Li, Ian T Baldwin, Ivan Galis. Alternative oxidase in resistance to biotic stresses: Nicotiana attenuata AOX contributes to resistance to a pathogen and a piercing-sucking insect but not Manduca sexta larvae. Plant physiology. 2012 Nov; 160(3):1453-67. doi: 10.1104/pp.112.200865. [PMID: 22961128]
  • Emmanuel Gaquerel, Anke Steppuhn, Ian T Baldwin. Nicotiana attenuata α-DIOXYGENASE1 through its production of 2-hydroxylinolenic acid is required for intact plant defense expression against attack from Manduca sexta larvae. The New phytologist. 2012 Oct; 196(2):574-585. doi: 10.1111/j.1469-8137.2012.04286.x. [PMID: 22937952]
  • Raja S Payyavula, Duroy A Navarre, Joseph C Kuhl, Alberto Pantoja, Syamkumar S Pillai. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC plant biology. 2012 Mar; 12(?):39. doi: 10.1186/1471-2229-12-39. [PMID: 22429339]
  • Nawaporn Onkokesung, Emmanuel Gaquerel, Hemlata Kotkar, Harleen Kaur, Ian T Baldwin, Ivan Galis. MYB8 controls inducible phenolamide levels by activating three novel hydroxycinnamoyl-coenzyme A:polyamine transferases in Nicotiana attenuata. Plant physiology. 2012 Jan; 158(1):389-407. doi: 10.1104/pp.111.187229. [PMID: 22082505]
  • Hendrik Wünsche, Ian T Baldwin, Jianqiang Wu. S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. Journal of experimental botany. 2011 Aug; 62(13):4605-16. doi: 10.1093/jxb/err171. [PMID: 21622839]
  • Maria Heinrich, Ian T Baldwin, Jianqiang Wu. Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. Journal of experimental botany. 2011 Aug; 62(12):4355-65. doi: 10.1093/jxb/err162. [PMID: 21610019]
  • Michael Stitz, Ian T Baldwin, Emmanuel Gaquerel. Diverting the flux of the JA pathway in Nicotiana attenuata compromises the plant's defense metabolism and fitness in nature and glasshouse. PloS one. 2011; 6(10):e25925. doi: 10.1371/journal.pone.0025925. [PMID: 22022469]
  • Delfina A Ré, Carlos A Dezar, Raquel L Chan, Ian T Baldwin, Gustavo Bonaventure. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. Journal of experimental botany. 2011 Jan; 62(1):155-66. doi: 10.1093/jxb/erq252. [PMID: 20713465]
  • Olga Serra, Carolin Hohn, Rochus Franke, Salomé Prat, Marisa Molinas, Mercè Figueras. A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. The Plant journal : for cell and molecular biology. 2010 Apr; 62(2):277-90. doi: 10.1111/j.1365-313x.2010.04144.x. [PMID: 20088895]
  • Harleen Kaur, Nicolas Heinzel, Mathias Schöttner, Ian T Baldwin, Ivan Gális. R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant physiology. 2010 Mar; 152(3):1731-47. doi: 10.1104/pp.109.151738. [PMID: 20089770]
  • Cecil Stushnoff, Laurence J M Ducreux, Robert D Hancock, Pete E Hedley, David G Holm, Gordon J McDougall, James W McNicol, Jenny Morris, Wayne L Morris, Julie A Sungurtas, Susan R Verrall, Tatiana Zuber, Mark A Taylor. Flavonoid profiling and transcriptome analysis reveals new gene-metabolite correlations in tubers of Solanum tuberosum L. Journal of experimental botany. 2010 Feb; 61(4):1225-38. doi: 10.1093/jxb/erp394. [PMID: 20110266]
  • Avital Adato, Tali Mandel, Shira Mintz-Oron, Ilya Venger, Dorit Levy, Merav Yativ, Eva Domínguez, Zhonghua Wang, Ric C H De Vos, Reinhard Jetter, Lukas Schreiber, Antonio Heredia, Ilana Rogachev, Asaph Aharoni. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS genetics. 2009 Dec; 5(12):e1000777. doi: 10.1371/journal.pgen.1000777. [PMID: 20019811]
  • Cbgowda Rayapuram, Ian T Baldwin. Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata. BMC plant biology. 2008 Oct; 8(?):109. doi: 10.1186/1471-2229-8-109. [PMID: 18950524]
  • Cbgowda Rayapuram, Ian T Baldwin. Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. The Plant journal : for cell and molecular biology. 2007 Nov; 52(4):700-15. doi: 10.1111/j.1365-313x.2007.03267.x. [PMID: 17850230]
  • Anja Paschold, Rayko Halitschke, Ian T Baldwin. Co(i)-ordinating defenses: NaCOI1 mediates herbivore- induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. The Plant journal : for cell and molecular biology. 2007 Jul; 51(1):79-91. doi: 10.1111/j.1365-313x.2007.03119.x. [PMID: 17561925]
  • Shin-ichi Tebayashi, Yoh Horibata, Eriko Mikagi, Takehiro Kashiwagi, Daniel Bisrat Mekuria, Aman Dekebo, Atushi Ishihara, Chul-Sa Kim. Induction of resistance against the leafminer, Liriomyza trifolii, by jasmonic acid in sweet pepper. Bioscience, biotechnology, and biochemistry. 2007 Jun; 71(6):1521-6. doi: 10.1271/bbb.70033. [PMID: 17587684]
  • Hui Chen, A Daniel Jones, Gregg A Howe. Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS letters. 2006 May; 580(11):2540-6. doi: 10.1016/j.febslet.2006.03.070. [PMID: 16647069]
  • Benoît van der Rest, Saïda Danoun, Alain-Michel Boudet, Soizic F Rochange. Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. Journal of experimental botany. 2006; 57(6):1399-411. doi: 10.1093/jxb/erj120. [PMID: 16551686]
  • R Mungur, A D M Glass, D B Goodenow, D A Lightfoot. Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. Journal of biomedicine & biotechnology. 2005 Jun; 2005(2):198-214. doi: 10.1155/jbb.2005.198. [PMID: 16046826]
  • Fumio Matsuda, Keiko Morino, Rieko Ano, Masaki Kuzawa, Kyo Wakasa, Hisashi Miyagawa. Metabolic flux analysis of the phenylpropanoid pathway in elicitor-treated potato tuber tissue. Plant & cell physiology. 2005 Mar; 46(3):454-66. doi: 10.1093/pcp/pci042. [PMID: 15695456]
  • Anke Steppuhn, Klaus Gase, Bernd Krock, Rayko Halitschke, Ian T Baldwin. Nicotine's defensive function in nature. PLoS biology. 2004 Aug; 2(8):E217. doi: 10.1371/journal.pbio.0020217. [PMID: 15314646]
  • Juan J Camacho-Cristóbal, Loreto Lunar, Fernando Lafont, Alfred Baumert, Agustín González-Fontes. Boron deficiency causes accumulation of chlorogenic acid and caffeoyl polyamine conjugates in tobacco leaves. Journal of plant physiology. 2004 Jul; 161(7):879-81. doi: 10.1016/j.jplph.2003.12.003. [PMID: 15310078]
  • M Keinänen, N J Oldham, I T Baldwin. Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata. Journal of agricultural and food chemistry. 2001 Aug; 49(8):3553-8. doi: 10.1021/jf010200+. [PMID: 11513627]