Ricinoleic acid (BioDeep_00000000961)

 

Secondary id: BioDeep_00000171563, BioDeep_00000593926, BioDeep_00000866412, BioDeep_00001867573

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(Z,12R)-12-hydroxyoctadec-9-enoic acid

化学式: C18H34O3 (298.2507814)
中文名称: 蓖麻油酸
谱图信息: 最多检出来源 Homo sapiens(feces) 0.79%

Reviewed

Last reviewed on 2024-11-04.

Cite this Page

Ricinoleic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/ricinoleic_acid (retrieved 2024-11-10) (BioDeep RN: BioDeep_00000000961). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(/C=C\CCCCCCCC(=O)O)[C@@H](O)CCCCCC
InChI: InChI=1S/C18H34O3/c1-2-3-4-11-14-17(19)15-12-9-7-5-6-8-10-13-16-18(20)21/h9,12,17,19H,2-8,10-11,13-16H2,1H3,(H,20,21)/b12-9-

描述信息

Ricinoleic acid is found in corn. Ricinoleic acid occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea) Ricinoleic acid (12-hydroxy-9-cis-octadecenoic acid) is an unsaturated omega-9 fatty acid that naturally occurs in mature Castor plant (Ricinus communis L., Euphorbiaceae) seeds or in sclerotium of ergot (Claviceps purpurea Tul., Clavicipitaceae). About 90\\% of the fatty acid content in castor oil is the triglyceride formed from ricinoleic acid. Ricinoleic acid is manufactured for industries by saponification or fractional distillation of hydrolyzed castor oil. The zinc salt is used in personal care products, such as deodorants
Ricinoleic acid is a (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration.. It is a conjugate acid of a ricinoleate.
Ricinoleic acid is a natural product found in Cephalocroton cordofanus, Crotalaria retusa, and other organisms with data available.
See also: Polyglyceryl-6 polyricinoleate (monomer of); Polyglyceryl-4 polyricinoleate (monomer of); Polyglyceryl-5 polyricinoleate (monomer of) ... View More ...
CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5632; ORIGINAL_PRECURSOR_SCAN_NO 5630
CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5657; ORIGINAL_PRECURSOR_SCAN_NO 5655
CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5730; ORIGINAL_PRECURSOR_SCAN_NO 5728
CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5664
CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5630; ORIGINAL_PRECURSOR_SCAN_NO 5629
CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5662
Occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea)

同义名列表

92 个代谢物同义名

InChI=1/C18H34O3/c1-2-3-4-11-14-17(19)15-12-9-7-5-6-8-10-13-16-18(20)21/h9,12,17,19H,2-8,10-11,13-16H2,1H3,(H,20,21)/b12-9-/t17-/m1/s; Ricinoleic acid (purity inverted exclamation markY99\\%); Ricinoleic acid, Vetec(TM) reagent grade, 80\\%; 9-Octadecenoic acid, 12-hydroxy-, (theta-(Z))-; 9-Octadecenoic acid, 12-hydroxy-, (9Z,12R)-; 9-octadecenoic acid, 12-hydroxy-, (9E,12R)-; 9-Octadecenoic acid, 12-hydroxy-, [R-(Z)]-; 9-Octadecenoic acid, 12-hydroxy-, (R-(Z))-; Kyselina 12-hydroxy-9-oktadecenova [Czech]; 9-Octadecenoic acid, 12-hydroxy-, (cis)-; (9Z,12R)-12-Hydroxy-9-octadecenoic acid; 12-Hydroxy-(9Z,12R)-9-octadecenoic acid; (9Z,12R)-12-hydroxyoctadec-9-enoic acid; (Z,12R)-12-hydroxyoctadec-9-enoic acid; 12-D-hydroxy-9-trans-octadecenoic acid; [r]-12-hydroxy-cis-9-octadecenoic acid; 9-Octadecenoic acid, 12-hydroxy-, (Z)-; (R)-12-Hydroxy-cis-9-octadecenoic acid; (cis,R)-12-hydroxyoctadec-9-enoic acid; (R-(Z))-12-Hydroxy-9-octadecenoic acid; 12-Hydroxy-[R-(Z)]-9-octadecenoic acid; 9-Octadecenoic acid, 12-hydroxy-(cis); (9Z)-12-Hydroxy-9-octadecenoic acid #; (9Z,12R)-12-Hydroxy-9-octadecensaeure; (R,Z)-12-Hydroxyoctadec-9-enoic acid; 9-Octadecenoic acid,12-hydroxy-,(Z)-; Ricinoleic acid, analytical standard; (Z,R)-12-hydroxyoctadec-9-enoic acid; 12-D-Hydroxy-9-cis-octadecenoic acid; (9Z)-12-Hydroxyoctadec-9-enoic acid; (9Z)-(12S)-Hydroxyoctadecenoic acid; (9Z)-12-Hydroxy-9-octadecenoic acid; 12R-Hydroxy-9-cis-octadecenoic Acid; (9Z)-(12R)-Hydroxyoctadecenoic acid; Kyselina 12-hydroxy-9-oktadecenova; cis-12-hydroxyoctadec-9-enoic acid; 12-hydroxyoctadec-cis-9-enoic acid; 12-Hydroxy-cis-9-octadecenoic acid; 12-Hydroxy-9(Z)-octadecenoic acid; 12R-hydroxy-9Z-octadecenoic acid; 9-Octadecenoic acid, 12-hydroxy-; 12-Hydroxyoctadeca-9-enoic acid; ricinoleic acid, (R-(E))-isomer; (9Z)-12-Hydroxyoctadec-9-enoate; 12-hydroxy-9-octadecenoic acid; 9-Octadecenoicacid,12-hydroxy-; 12-hydroxyoctadec-9-enoic acid; 12-hydroxy-9-octadecenic acid; lAcide ricinoleique [French]; Ricinoleic acid, tech grade; Acide ricinoleique [French]; Kyselina ricinolova [Czech]; RICINOLEIC ACID [WHO-DD]; Oleic acid, 12-hydroxy-; Ricinoleic acid, >=99\\%; RICINOLEIC ACID [VANDF]; RICINOLEIC ACID [MART.]; RICINOLEIC ACID (MART.); RICINOLEIC ACID [INCI]; RICINOLEIC ACID [HSDB]; D-12-Hydroxyoleic acid; 12-Hydroxy-oleic acid; 12-hydroxyoleic acid; RICINOLEIC ACID [MI]; Kyselina ricinolova; lacide ricinoleique; Acide ricinoleique; ricinelaidic acid; Ricinusoleic acid; 12-Hydroxyoleate; Riconoleic acid; UNII-I2D0F69854; Ricinoleic acid; ricinoleic-acid; UNII-KD8T3W6VZX; Nouracid CS 80; Ricinolic acid; Flexricin 100; 12-OH 9c-18:1; Ricinolsaeure; Tox21_113406; Tox21_301098; Ricinic acid; Ricinoleate; KD8T3W6VZX; P -10 acid; I2D0F69854; FA 18:1;O; AI3-17956; BML2-F10; RCL; Ricinoleic acid



数据库引用编号

31 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

23 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Bo Tian, Meijuan Sun, Kethmi Jayawardana, Ding Wu, Guanqun Chen. Characterization of a PLDζ2 Homology Gene from Developing Castor Bean Endosperm. Lipids. 2020 09; 55(5):537-548. doi: 10.1002/lipd.12231. [PMID: 32115716]
  • Lijun Wang, Xiaoling Jiang, Lei Wang, Wei Wang, Chunling Fu, Xingchu Yan, Xinxin Geng. A survey of transcriptome complexity using PacBio single-molecule real-time analysis combined with Illumina RNA sequencing for a better understanding of ricinoleic acid biosynthesis in Ricinus communis. BMC genomics. 2019 Jun; 20(1):456. doi: 10.1186/s12864-019-5832-9. [PMID: 31170917]
  • Jay Shockey, Ida Lager, Sten Stymne, Hari Kiran Kotapati, Jennifer Sheffield, Catherine Mason, Philip D Bates. Specialized lysophosphatidic acid acyltransferases contribute to unusual fatty acid accumulation in exotic Euphorbiaceae seed oils. Planta. 2019 May; 249(5):1285-1299. doi: 10.1007/s00425-018-03086-y. [PMID: 30610363]
  • Chinnaperumal Kamaraj, Pachiyappan Rajiv Gandhi, Gandhi Elango, Sengodan Karthi, Ill-Min Chung, Govindasamy Rajakumar. Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). International journal of biological macromolecules. 2018 Feb; 107(Pt A):59-69. doi: 10.1016/j.ijbiomac.2017.08.145. [PMID: 28860055]
  • Daniel Lunn, James G Wallis, John Browse. Overexpression of Seipin1 Increases Oil in Hydroxy Fatty Acid-Accumulating Seeds. Plant & cell physiology. 2018 Jan; 59(1):205-214. doi: 10.1093/pcp/pcx177. [PMID: 29149288]
  • Claudia Oellig. Screening for Ricinoleic Acid as a Chemical Marker for Secale cornutum in Rye by High-Performance Thin-Layer Chromatography with Fluorescence Detection. Journal of agricultural and food chemistry. 2016 Nov; 64(43):8246-8253. doi: 10.1021/acs.jafc.6b03841. [PMID: 27700105]
  • Karla Rejane de Andrade Porto, Priscilla Rezende Motti, Alexandre Alves Machado, Antonia Railda Roel. In vitro evaluation of the effect of botanical formulations used in the control of Aedes aegypti L. (Diptera: Culicidae) on liver enzymes. Revista da Sociedade Brasileira de Medicina Tropical. 2016 Nov; 49(6):693-697. doi: 10.1590/0037-8682-0117-2016. [PMID: 28001215]
  • Y Mohini, R B N Prasad, M S L Karuna, Y Poornachandra, C Ganesh Kumar. Synthesis and biological evaluation of ricinoleic acid-based lipoamino acid derivatives. Bioorganic & medicinal chemistry letters. 2016 11; 26(21):5198-5202. doi: 10.1016/j.bmcl.2016.09.063. [PMID: 27707604]
  • Ping Wang, Shangde Sun. Enhanced Enzymatic Preparation of Biodiesel Using Ricinoleic Acid as Acyl Donor: Optimization Using Response Surface Methodology. Journal of oleo science. 2016 Sep; 65(9):785-95. doi: 10.5650/jos.ess16052. [PMID: 27477073]
  • Hashem Alsaab, Rami M Alzhrani, Sai H S Boddu. Evaluation of the percutaneous absorption of chlorpromazine from PLO gels across porcine ear and human abdominal skin. Drug development and industrial pharmacy. 2016 Aug; 42(8):1258-66. doi: 10.3109/03639045.2015.1122610. [PMID: 26599694]
  • Grace Q Chen, Harrie van Erp, Jose Martin-Moreno, Kumiko Johnson, Eva Morales, John Browse, Peter J Eastmond, Jiann-Tsyh Lin. Expression of Castor LPAT2 Enhances Ricinoleic Acid Content at the sn-2 Position of Triacylglycerols in Lesquerella Seed. International journal of molecular sciences. 2016 Apr; 17(4):507. doi: 10.3390/ijms17040507. [PMID: 27058535]
  • Pedro Fong, Henry H Y Tong, Kin H Ng, Cheng K Lao, Chon I Chong, Chi M Chao. In silico prediction of prostaglandin D2 synthase inhibitors from herbal constituents for the treatment of hair loss. Journal of ethnopharmacology. 2015 Dec; 175(?):470-80. doi: 10.1016/j.jep.2015.10.005. [PMID: 26456343]
  • Dauenpen Meesapyodsuk, Yan Chen, Siew Hon Ng, Jianan Chen, Xiao Qiu. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance. Journal of lipid research. 2015 Nov; 56(11):2102-9. doi: 10.1194/jlr.m060954. [PMID: 26323290]
  • Shen Bayon, Guanqun Chen, Randall J Weselake, John Browse. A small phospholipase A2-α from castor catalyzes the removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. Plant physiology. 2015 Apr; 167(4):1259-70. doi: 10.1104/pp.114.253641. [PMID: 25667315]
  • Noureddin El-Boulifi, Siti Efliza Ashari, Marta Serrano, Jose Aracil, Mercedes Martínez. Solvent-free lipase-catalyzed synthesis of a novel hydroxyl-fatty acid derivative of kojic acid. Enzyme and microbial technology. 2014 Feb; 55(?):128-32. doi: 10.1016/j.enzmictec.2013.10.009. [PMID: 24411455]
  • A Beopoulos, J Verbeke, F Bordes, M Guicherd, M Bressy, A Marty, Jean-Marc Nicaud. Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Applied microbiology and biotechnology. 2014 Jan; 98(1):251-62. doi: 10.1007/s00253-013-5295-x. [PMID: 24136468]
  • Hisashi Yazawa, Hiromichi Kumagai, Hiroshi Uemura. Secretory production of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Applied microbiology and biotechnology. 2013 Oct; 97(19):8663-71. doi: 10.1007/s00253-013-5060-1. [PMID: 23820557]
  • Petra Kocbek, Slavko Kralj, Mateja Erdani Kreft, Julijana Kristl. Targeting intracellular compartments by magnetic polymeric nanoparticles. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2013 Sep; 50(1):130-8. doi: 10.1016/j.ejps.2013.04.004. [PMID: 23603023]
  • Hisashi Yazawa, Roman Holic, Hiromichi Kumagai, Hiroshi Uemura. Toxicity of ricinoleic acid production in fission yeast Schizosaccharomyces pombe is suppressed by the overexpression of plg7, a phospholipase A2 of a platelet-activating factor (PAF) family homolog. Applied microbiology and biotechnology. 2013 Sep; 97(18):8193-203. doi: 10.1007/s00253-013-4987-6. [PMID: 23700240]
  • Xue-Rong Zhou, Surinder P Singh, Allan G Green. Characterisation of the FAD2 gene family from Hiptage benghalensis: a ricinoleic acid accumulating plant. Phytochemistry. 2013 Aug; 92(?):42-8. doi: 10.1016/j.phytochem.2013.05.006. [PMID: 23747094]
  • Brenna A Black, Chenxing Sun, Yuan Yuan Zhao, Michael G Gänzle, Jonathan M Curtis. Antifungal lipids produced by lactobacilli and their structural identification by normal phase LC/atmospheric pressure photoionization−MS/MS. Journal of agricultural and food chemistry. 2013 Jun; 61(22):5338-46. doi: 10.1021/jf400932g. [PMID: 23706022]
  • José María Arroyo-Caro, Tarik Chileh, Michael Kazachkov, Jitao Zou, Diego López Alonso, Federico García-Maroto. The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant science : an international journal of experimental plant biology. 2013 Feb; 199-200(?):29-40. doi: 10.1016/j.plantsci.2012.09.015. [PMID: 23265316]
  • Kunduru Konda Reddy, Thumu Ravinder, Sanjit Kanjilal. Synthesis and evaluation of antioxidant and antifungal activities of novel ricinoleate-based lipoconjugates of phenolic acids. Food chemistry. 2012 Oct; 134(4):2201-7. doi: 10.1016/j.foodchem.2012.04.046. [PMID: 23442675]
  • Aswani Dutt Vadlapudi, Ramya Krishna Vadlapatla, Deep Kwatra, Ravinder Earla, Swapan K Samanta, Dhananjay Pal, Ashim K Mitra. Targeted lipid based drug conjugates: a novel strategy for drug delivery. International journal of pharmaceutics. 2012 Sep; 434(1-2):315-24. doi: 10.1016/j.ijpharm.2012.05.033. [PMID: 22692074]
  • Roman Holic, Hisashi Yazawa, Hiromichi Kumagai, Hiroshi Uemura. Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Applied microbiology and biotechnology. 2012 Jul; 95(1):179-87. doi: 10.1007/s00253-012-3959-6. [PMID: 22370951]
  • Adrian P Brown, Johan T M Kroon, David Swarbreck, Melanie Febrer, Tony R Larson, Ian A Graham, Mario Caccamo, Antoni R Slabas. Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PloS one. 2012; 7(2):e30100. doi: 10.1371/journal.pone.0030100. [PMID: 22319559]
  • Ming Li Wang, J Bradley Morris, Brandon Tonnis, David Pinnow, Jerry Davis, Paul Raymer, Gary A Pederson. Screening of the entire USDA castor germplasm collection for oil content and fatty acid composition for optimum biodiesel production. Journal of agricultural and food chemistry. 2011 Sep; 59(17):9250-6. doi: 10.1021/jf202949v. [PMID: 21838261]
  • Megan L Robertson, Jessica M Paxton, Marc A Hillmyer. Tough blends of polylactide and castor oil. ACS applied materials & interfaces. 2011 Sep; 3(9):3402-10. doi: 10.1021/am2006367. [PMID: 21823623]
  • Gollapalle Lakshminaraya Shastry Viswanatha, Shylaja Hanumanthappa, Nandakumar Krishnadas, Srinath Rangappa. Antidiarrheal effect of fractions from stem bark of Thespesia populnea in rodents: Possible antimotility and antisecretory mechanisms. Asian Pacific journal of tropical medicine. 2011 Jun; 4(6):451-6. doi: 10.1016/s1995-7645(11)60124-7. [PMID: 21771697]
  • Hyun Uk Kim, Kyeong-Ryeol Lee, Young Sam Go, Jin Hee Jung, Mi-Chung Suh, Jong Bum Kim. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant & cell physiology. 2011 Jun; 52(6):983-93. doi: 10.1093/pcp/pcr051. [PMID: 21659329]
  • Harrie van Erp, Philip D Bates, Julie Burgal, Jay Shockey, John Browse. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant physiology. 2011 Feb; 155(2):683-93. doi: 10.1104/pp.110.167239. [PMID: 21173026]
  • Ioannis Mavraganis, Dauenpen Meesapyodsuk, Patricia Vrinten, Mark Smith, Xiao Qiu. Type II diacylglycerol acyltransferase from Claviceps purpurea with ricinoleic acid, a hydroxyl fatty acid of industrial importance, as preferred substrate. Applied and environmental microbiology. 2010 Feb; 76(4):1135-42. doi: 10.1128/aem.02297-09. [PMID: 20023082]
  • Elizabeth R Dumas, Amy E Michaud, Chantal Bergeron, Jennifer L Lafrance, Susan Mortillo, Stefan Gafner. Deodorant effects of a supercritical hops extract: antibacterial activity against Corynebacterium xerosis and Staphylococcus epidermidis and efficacy testing of a hops/zinc ricinoleate stick in humans through the sensory evaluation of axillary deodorancy. Journal of cosmetic dermatology. 2009 Sep; 8(3):197-204. doi: 10.1111/j.1473-2165.2009.00449.x. [PMID: 19735518]
  • Yonghua Li, Fred Beisson. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials. Biochimie. 2009 Jun; 91(6):685-91. doi: 10.1016/j.biochi.2009.03.016. [PMID: 19344744]
  • Kouhei Yamamoto, Akemi Kinoshita, Akira Shibahara. Ricinoleic acid in common vegetable oils and oil seeds. Lipids. 2008 May; 43(5):457-60. doi: 10.1007/s11745-008-3154-9. [PMID: 18288512]
  • K M Hosamani, K S Katagi. Characterization and structure elucidation of 12-hydroxyoctadec-cis-9-enoic acid in Jatropha gossypifolia and Hevea brasiliensis seed oils: a rich source of hydroxy fatty acid. Chemistry and physics of lipids. 2008 Mar; 152(1):9-12. doi: 10.1016/j.chemphyslip.2007.11.003. [PMID: 18060875]
  • Pietro Roversi, Olga Lissina, Steven Johnson, Nurfilza Ahmat, Guido C Paesen, Kerstin Ploss, Wilhelm Boland, Miles A Nunn, Susan M Lea. The structure of OMCI, a novel lipocalin inhibitor of the complement system. Journal of molecular biology. 2007 Jun; 369(3):784-93. doi: 10.1016/j.jmb.2007.03.064. [PMID: 17445829]
  • Mitsuhiro Tomosugi, Ken'ichi Ichihara, Kazumi Saito. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Planta. 2006 Jan; 223(2):349-58. doi: 10.1007/s00425-005-0083-1. [PMID: 16133210]
  • Isabelle Billault, Peter G Mantle, Richard J Robins. Deuterium NMR used to indicate a common mechanism for the biosynthesis of ricinoleic acid by Ricinus communis and Claviceps purpurea. Journal of the American Chemical Society. 2004 Mar; 126(10):3250-6. doi: 10.1021/ja038814d. [PMID: 15012155]
  • Laurence Moire, Enea Rezzonico, Simon Goepfert, Yves Poirier. Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants. Plant physiology. 2004 Jan; 134(1):432-42. doi: 10.1104/pp.103.032938. [PMID: 14671017]
  • Mark A Smith, Hangsik Moon, Gangamma Chowrira, Ljerka Kunst. Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta. 2003 Jul; 217(3):507-16. doi: 10.1007/s00425-003-1015-6. [PMID: 14520576]
  • T M Kuo, H Kim, C T Hou. Production of a novel compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa PR3. Current microbiology. 2001 Sep; 43(3):198-203. doi: 10.1007/s002840010287. [PMID: 11400070]
  • C Vieira, S Fetzer, S K Sauer, S Evangelista, B Averbeck, M Kress, P W Reeh, R Cirillo, A Lippi, C A Maggi, S Manzini. Pro- and anti-inflammatory actions of ricinoleic acid: similarities and differences with capsaicin. Naunyn-Schmiedeberg's archives of pharmacology. 2001 Aug; 364(2):87-95. doi: 10.1007/s002100100427. [PMID: 11534859]
  • T A McKeon, G Q Chen, J T Lin. Biochemical aspects of castor oil biosynthesis. Biochemical Society transactions. 2000 Dec; 28(6):972-4. doi: 10.1042/bst0280972. [PMID: 11171276]
  • P Broun, J Shanklin, E Whittle, C Somerville. Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science (New York, N.Y.). 1998 Nov; 282(5392):1315-7. doi: 10.1126/science.282.5392.1315. [PMID: 9812895]
  • R Wilson, B J Van Schie, D Howes. Overview of the preparation, use and biological studies on polyglycerol polyricinoleate (PGPR). Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1998 Sep; 36(9-10):711-8. doi: 10.1016/s0278-6915(98)00057-x. [PMID: 9737417]
  • D Howes, R Wilson, C T James. The fate of ingested glyceran esters of condensed castor oil fatty acids [polyglycerol polyricinoleate (PGPR)] in the rat. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1998 Sep; 36(9-10):719-38. doi: 10.1016/s0278-6915(98)00055-6. [PMID: 9737418]
  • A Inoue, A Shoji, S Aso. Allergic lipstick cheilitis due to ester gum and ricinoleic acid. Contact dermatitis. 1998 Jul; 39(1):39. doi: 10.1111/j.1600-0536.1998.tb05818.x. [PMID: 9686985]
  • J T Lin, C L Woodruff, O J Lagouche, T A McKeon, A E Stafford, M Goodrich-Tanrikulu, J A Singleton, C A Haney. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase. Lipids. 1998 Jan; 33(1):59-69. doi: 10.1007/s11745-998-0180-3. [PMID: 9470174]
  • P Mayser, P Haze, C Papavassilis, M Pickel, K Gruender, E Guého. Differentiation of Malassezia species: selectivity of cremophor EL, castor oil and ricinoleic acid for M. furfur. The British journal of dermatology. 1997 Aug; 137(2):208-13. doi: 10.1046/j.1365-2133.1997.18071890.x. [PMID: 9292068]
  • P Broun, C Somerville. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant physiology. 1997 Mar; 113(3):933-42. doi: 10.1104/pp.113.3.933. [PMID: 9085577]
  • M Goodrich-Tanrikulu, A E Stafford, J T Lin, T A McKeon. Metabolism of ricinoleate by Neurospora crassa. Applied microbiology and biotechnology. 1996 Nov; 46(4):382-7. doi: 10.1007/bf00166233. [PMID: 8987727]
  • R De Caterina, H Tanaka, T Nakagawa, P J Hauptman, P Libby. The direct effect of injectable cyclosporine and its vehicle, cremophor, on endothelial vascular cell adhesion molecule-1 expression. Ricinoleic acid inhibits coronary artery endothelial activation. Transplantation. 1995 Aug; 60(3):270-5. doi: 10.1097/00007890-199508000-00011. [PMID: 7544037]
  • G Eggink, P de Waard, G N Huijberts. Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Canadian journal of microbiology. 1995; 41 Suppl 1(?):14-21. doi: 10.1139/m95-163. [PMID: 7606658]
  • S Xiu, D Lu, B Li, Z Wang, J Tao. [Antitumor effect of castor oil extract]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1992 Sep; 17(9):560-1, inside backcover. doi: ". [PMID: 1292501]
  • M Bafor, M A Smith, L Jonsson, K Stobart, S Stymne. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. The Biochemical journal. 1991 Dec; 280 ( Pt 2)(?):507-14. doi: 10.1042/bj2800507. [PMID: 1747126]
  • R W Walenga, S Boone, M J Stuart. Analysis of blood HETE levels by selected ion monitoring with ricinoleic acid as the internal standard. Prostaglandins. 1987 Nov; 34(5):733-48. doi: 10.1016/0090-6980(87)90296-6. [PMID: 3432563]
  • K D Croft, L J Beilin, G L Ford. Differential inhibition of thromboxane B2 and leukotriene B4 biosynthesis by two naturally occurring acetylenic fatty acids. Biochimica et biophysica acta. 1987 Oct; 921(3):621-4. doi: 10.1016/0005-2760(87)90091-9. [PMID: 2822134]
  • L Hagenfeldt, L Blomquist, T Midtvedt. Epoxydicarboxylic aciduria resulting from the ingestion of castor oil. Clinica chimica acta; international journal of clinical chemistry. 1986 Dec; 161(2):157-63. doi: 10.1016/0009-8981(86)90209-3. [PMID: 3802527]
  • D Winne, H Görig. Appearance of 14C-polyethylene glycol 4000 in intestinal venous blood: influence of osmolarity and laxatives, effect on net water flux determination. Naunyn-Schmiedeberg's archives of pharmacology. 1982 Nov; 321(2):149-56. doi: 10.1007/bf00518484. [PMID: 7155194]
  • A T JAMES, H C HADAWAY, J P WEBB. THE BIOSYNTHESIS OF RICINOLEIC ACID. The Biochemical journal. 1965 May; 95(?):448-52. doi: 10.1042/bj0950448. [PMID: 14340094]
  • S OKUI, M UCHIYAMA, R SATO, M MIZUGAKI. METABOLISM OF HYDROXY FATTY ACIDS. III. CHARACTERIZATION OF HYDROXY ACIDS IN DEPOT FAT AFTER FEEDING OF RICINOLEIC ACID. Journal of biochemistry. 1964 Jan; 55(?):81-6. doi: 10.1093/oxfordjournals.jbchem.a127845. [PMID: 14116625]
  • S OKUI, M UCHIYAMA, M MIZUGAKI. METABOLISM OF HYDROXY FATTY ACIDS. II. INTERMEDIATES OF THE OXIDATIVE BREAKDOWN OF RICINOLEIC ACID BY GENUS CANDIDA. Journal of biochemistry. 1963 Dec; 54(?):536-40. doi: 10.1093/oxfordjournals.jbchem.a127827. [PMID: 14099009]