Pyrvinium (BioDeep_00000006495)

 

Secondary id: BioDeep_00001868445

human metabolite


代谢物信息卡片


2-[(E)-2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-6-(dimethylamino)-1-methylquinolin-1-ium

化学式: C26H28N3+ (382.2283)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(not specific) 27.27%

分子结构信息

SMILES: CC1=CC(=C(N1C2=CC=CC=C2)C)C=CC3=[N+](C4=C(C=C3)C=C(C=C4)N(C)C)C
InChI: InChI=1S/C26H28N3/c1-19-17-21(20(2)29(19)24-9-7-6-8-10-24)11-13-23-14-12-22-18-25(27(3)4)15-16-26(22)28(23)5/h6-18H,1-5H3/q+1

描述信息

Pyrvinium, also known as molevac or pyrcon, belongs to the class of organic compounds known as phenylpyrroles. These are polycyclic aromatic compounds containing a benzene ring linked to a pyrrole ring through a CC or CN bond. Pyrvinium is considered to be a practically insoluble (in water) and relatively neutral molecule.
P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics
C254 - Anti-Infective Agent > C276 - Antiparasitic Agent

同义名列表

4 个代谢物同义名

2-[(E)-2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-6-(dimethylamino)-1-methylquinolin-1-ium; SCHEMBL149062; Pyrvinium; Pyrvinium



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 APC, AR, ATF4, BCL2, CASP3, CRBN, CSNK1A1, CTNNB1, HAP1, INPP4B, MTOR, PIK3CA, PPARG, PRKN, STAT3
Peripheral membrane protein 3 ANOS1, CRBN, MTOR
Endoplasmic reticulum membrane 2 BCL2, MTOR
Cytoplasmic vesicle, autophagosome 1 HAP1
Nucleus 14 APC, AR, ATF4, BCL2, CASP3, CRBN, CSNK1A1, CTNNB1, HAP1, MPO, MTOR, PPARG, PRKN, STAT3
autophagosome 1 HAP1
cytosol 15 APC, AR, ATF4, BCL2, CASP3, CRBN, CSNK1A1, CTNNB1, HAP1, INPP4B, MTOR, PIK3CA, PPARG, PRKN, STAT3
dendrite 2 HAP1, MTOR
phagocytic vesicle 1 MTOR
centrosome 5 APC, ATF4, CSNK1A1, CTNNB1, HAP1
nucleoplasm 10 APC, AR, ATF4, CASP3, CTNNB1, HAP1, MPO, MTOR, PPARG, STAT3
RNA polymerase II transcription regulator complex 3 ATF4, PPARG, STAT3
Cell membrane 4 ANOS1, APC, ATF4, CTNNB1
Cytoplasmic side 1 MTOR
lamellipodium 3 APC, CTNNB1, PIK3CA
ruffle membrane 1 APC
Cell projection, axon 1 HAP1
Cell projection, growth cone 1 HAP1
Multi-pass membrane protein 2 PROM1, SLC22A2
Golgi apparatus membrane 1 MTOR
Synapse 1 CTNNB1
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 2 ANOS1, PROM1
glutamatergic synapse 2 CASP3, CTNNB1
Golgi apparatus 2 APC, PRKN
Golgi membrane 1 MTOR
growth cone 1 HAP1
lysosomal membrane 1 MTOR
neuronal cell body 1 CASP3
presynaptic membrane 1 CTNNB1
synaptic vesicle 1 HAP1
Cytoplasm, cytosol 1 PRKN
Lysosome 3 HAP1, MPO, MTOR
Presynapse 3 HAP1, PRKN, SLC22A2
plasma membrane 8 ANOS1, APC, AR, CTNNB1, PIK3CA, PROM1, SLC22A2, STAT3
Membrane 9 AR, BCL2, C1orf115, CRBN, CSNK1A1, CTNNB1, INPP4B, MTOR, SLC22A2
apical plasma membrane 2 PROM1, SLC22A2
basolateral plasma membrane 2 CTNNB1, SLC22A2
extracellular exosome 4 CTNNB1, MPO, PROM1, SLC22A2
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 BCL2, HAP1, PRKN, PROM1
extracellular space 3 ANOS1, MPO, PROM1
perinuclear region of cytoplasm 7 APC, CRBN, CTNNB1, HAP1, PIK3CA, PPARG, PRKN
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 2 APC, CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 2 APC, CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, HAP1, PRKN
protein-containing complex 4 AR, ATF4, BCL2, CTNNB1
intracellular membrane-bounded organelle 2 MPO, PPARG
Microsome membrane 1 MTOR
postsynaptic density 2 CASP3, PRKN
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 1 ANOS1
extracellular region 2 ANOS1, MPO
Mitochondrion outer membrane 3 BCL2, MTOR, PRKN
Single-pass membrane protein 2 BCL2, C1orf115
mitochondrial outer membrane 3 BCL2, MTOR, PRKN
transcription regulator complex 2 CTNNB1, STAT3
photoreceptor outer segment 1 PROM1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 ATF4, CSNK1A1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
actin cytoskeleton 1 HAP1
dendritic spine 1 HAP1
Z disc 1 CTNNB1
beta-catenin destruction complex 3 APC, CSNK1A1, CTNNB1
cytoplasmic vesicle 1 HAP1
nucleolus 1 HAP1
Wnt signalosome 2 APC, CTNNB1
axon cytoplasm 1 HAP1
Early endosome 1 HAP1
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
vesicle 1 PROM1
postsynaptic membrane 1 CTNNB1
Apical cell membrane 2 PROM1, SLC22A2
Cell projection, lamellipodium 1 APC
Cell projection, ruffle membrane 1 APC
pore complex 1 BCL2
Cytoplasm, cytoskeleton 3 APC, CTNNB1, HAP1
Cytoplasm, cytoskeleton, spindle 1 CSNK1A1
focal adhesion 1 CTNNB1
microtubule 1 APC
spindle 1 CSNK1A1
Cell junction, adherens junction 2 APC, CTNNB1
flotillin complex 1 CTNNB1
extracellular matrix 1 ANOS1
Cell projection, dendritic spine 1 HAP1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
secretory granule 1 MPO
fascia adherens 1 CTNNB1
lateral plasma membrane 2 APC, CTNNB1
nuclear speck 5 AR, ATF4, CSNK1A1, HAP1, PRKN
receptor complex 1 PPARG
Cell projection, neuron projection 2 HAP1, PRKN
neuron projection 2 ATF4, PRKN
ciliary basal body 1 CSNK1A1
cilium 2 CSNK1A1, PROM1
chromatin 4 AR, ATF4, PPARG, STAT3
cell periphery 2 APC, CTNNB1
cytoskeleton 1 HAP1
Cytoplasm, cytoskeleton, cilium basal body 2 CSNK1A1, CTNNB1
centriole 1 HAP1
Cell projection, cilium, photoreceptor outer segment 1 PROM1
spindle pole 1 CTNNB1
chromosome, telomeric region 1 HAP1
postsynaptic density, intracellular component 1 CTNNB1
Basolateral cell membrane 1 SLC22A2
Cell projection, microvillus membrane 1 PROM1
microvillus membrane 2 CTNNB1, PROM1
nuclear envelope 1 MTOR
Endomembrane system 2 CTNNB1, MTOR
microvillus 1 PROM1
Chromosome, centromere, kinetochore 1 CSNK1A1
Cell projection, dendrite 1 HAP1
Nucleus speckle 2 ATF4, CSNK1A1
euchromatin 1 CTNNB1
myelin sheath 1 BCL2
ubiquitin ligase complex 1 PRKN
basal plasma membrane 1 SLC22A2
azurophil granule 1 MPO
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
kinetochore 2 APC, CSNK1A1
beta-catenin-TCF complex 1 CTNNB1
azurophil granule lumen 1 MPO
aggresome 1 PRKN
presynaptic active zone cytoplasmic component 1 CTNNB1
9+0 non-motile cilium 1 C1orf115
phagocytic vesicle lumen 1 MPO
endoplasmic reticulum-Golgi intermediate compartment 1 PROM1
Basal cell membrane 1 SLC22A2
protein-DNA complex 1 CTNNB1
death-inducing signaling complex 1 CASP3
dopaminergic synapse 1 PRKN
photoreceptor outer segment membrane 1 PROM1
prominosome 1 PROM1
dendrite membrane 1 ATF4
Lewy body 1 PRKN
Parkin-FBXW7-Cul1 ubiquitin ligase complex 1 PRKN
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 2 APC, CTNNB1
nuclear periphery 1 ATF4
ribosome 1 HAP1
inclusion body 1 HAP1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle 1 HAP1
BAD-BCL-2 complex 1 BCL2
beta-catenin-TCF7L2 complex 1 CTNNB1
ATF4-CREB1 transcription factor complex 1 ATF4
ATF1-ATF4 transcription factor complex 1 ATF4
CHOP-ATF4 complex 1 ATF4
Lewy body core 1 ATF4
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
Cul4A-RING E3 ubiquitin ligase complex 1 CRBN


文献列表

  • Khalid Saad Alharbi, Tabinda Ali, Yogendra Singh, Ahmed Saleh Ali Al-Ghamdi, Imran Kazmi, Fahad A Al-Abbasi, Sami I Alzarea, Obaid Afzal, Abdulmalik Saleh Alfawaz Altamimi, Sachin Kumar Singh, Dinesh Kumar Chellappan, Kamal Dua, Gaurav Gupta. Biochemical interaction of pyrvinium in gentamicin-induced acute kidney injury by modulating calcium dyshomeostasis and mitochondrial dysfunction. Chemico-biological interactions. 2022 Aug; 363(?):110020. doi: 10.1016/j.cbi.2022.110020. [PMID: 35750223]
  • Shriyansh Srivastava, Shubham Yadav, Gaaminepreet Singh, Shamsher Singh Bajwa. Wnt/β-catenin antagonist pyrvinium rescues high dose isoproterenol induced cardiotoxicity in rats: Biochemical and immunohistological evidences. Chemico-biological interactions. 2022 May; 358(?):109902. doi: 10.1016/j.cbi.2022.109902. [PMID: 35305975]
  • Nisha Mahey, Rushikesh Tambat, Nishtha Chandal, Dipesh Kumar Verma, Krishan Gopal Thakur, Hemraj Nandanwar. Repurposing Approved Drugs as Fluoroquinolone Potentiators to Overcome Efflux Pump Resistance in Staphylococcus aureus. Microbiology spectrum. 2021 12; 9(3):e0095121. doi: 10.1128/spectrum.00951-21. [PMID: 34908453]
  • Pallavi Sen, Kirti Gupta, Abha Kumari, Gaaminepreet Singh, Sneha Pandey, Ragini Singh. Wnt/β-Catenin Antagonist Pyrvinium Exerts Cardioprotective Effects in Polymicrobial Sepsis Model by Attenuating Calcium Dyshomeostasis and Mitochondrial Dysfunction. Cardiovascular toxicology. 2021 07; 21(7):517-532. doi: 10.1007/s12012-021-09643-4. [PMID: 33723718]
  • Yingpinyapat Kittirat, Jutarop Phetcharaburanin, Bundit Promraksa, Thanaporn Kulthawatsiri, Arporn Wangwiwatsin, Poramate Klanrit, Sakkarn Sangkhamanon, Apiwat Jarearnrat, Suyanee Thongchot, Panupong Mahalapbutr, Watcharin Loilome, Hideyuki Saya, Nisana Namwat. Lipidomic Analyses Uncover Apoptotic and Inhibitory Effects of Pyrvinium Pamoate on Cholangiocarcinoma Cells via Mitochondrial Membrane Potential Dysfunction. Frontiers in public health. 2021; 9(?):766455. doi: 10.3389/fpubh.2021.766455. [PMID: 34950627]
  • Rosanna Dattilo, Carla Mottini, Emanuela Camera, Alessia Lamolinara, Noam Auslander, Ginevra Doglioni, Michela Muscolini, Wei Tang, Melanie Planque, Cristiana Ercolani, Simonetta Buglioni, Isabella Manni, Daniela Trisciuoglio, Alessandra Boe, Sveva Grande, Anna Maria Luciani, Manuela Iezzi, Gennaro Ciliberto, Stefan Ambs, Ruggero De Maria, Sarah-Maria Fendt, Eytan Ruppin, Luca Cardone. Pyrvinium Pamoate Induces Death of Triple-Negative Breast Cancer Stem-Like Cells and Reduces Metastases through Effects on Lipid Anabolism. Cancer research. 2020 10; 80(19):4087-4102. doi: 10.1158/0008-5472.can-19-1184. [PMID: 32718996]
  • Marwa O El-Derany, Ebtehal El-Demerdash. Pyrvinium pamoate attenuates non-alcoholic steatohepatitis: Insight on hedgehog/Gli and Wnt/β-catenin signaling crosstalk. Biochemical pharmacology. 2020 07; 177(?):113942. doi: 10.1016/j.bcp.2020.113942. [PMID: 32240652]
  • Mitsuharu Ueda, Masamitsu Okada, Mineyuki Mizuguchi, Barbara Kluve-Beckerman, Kyosuke Kanenawa, Aito Isoguchi, Yohei Misumi, Masayoshi Tasaki, Akihiko Ueda, Akinori Kanai, Ryoko Sasaki, Teruaki Masuda, Yasuteru Inoue, Toshiya Nomura, Satoru Shinriki, Tsuyoshi Shuto, Hirofumi Kai, Taro Yamashita, Hirotaka Matsui, Merrill D Benson, Yukio Ando. A cell-based high-throughput screening method to directly examine transthyretin amyloid fibril formation at neutral pH. The Journal of biological chemistry. 2019 07; 294(29):11259-11275. doi: 10.1074/jbc.ra119.007851. [PMID: 31167790]
  • Obinna N Obianom, Yong Ai, Yingjun Li, Wei Yang, Dong Guo, Hong Yang, Srilatha Sakamuru, Menghang Xia, Fengtian Xue, Yan Shu. Triazole-Based Inhibitors of the Wnt/β-Catenin Signaling Pathway Improve Glucose and Lipid Metabolisms in Diet-Induced Obese Mice. Journal of medicinal chemistry. 2019 01; 62(2):727-741. doi: 10.1021/acs.jmedchem.8b01408. [PMID: 30605343]
  • Long Cui, Juan Zhao, Jingjing Liu. Pyrvinium Sensitizes Clear Cell Renal Cell Carcinoma Response to Chemotherapy Via Casein Kinase 1α-Dependent Inhibition of Wnt/β-Catenin. The American journal of the medical sciences. 2018 03; 355(3):274-280. doi: 10.1016/j.amjms.2017.11.017. [PMID: 29549930]
  • Kaat De Cremer, Ellen Lanckacker, Tanne L Cools, Marijke Bax, Katrijn De Brucker, Paul Cos, Bruno P A Cammue, Karin Thevissen. Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms. Antimicrobial agents and chemotherapy. 2015 Jan; 59(1):421-6. doi: 10.1128/aac.04229-14. [PMID: 25367916]
  • Catherina A Cuevas, Cheril Tapia-Rojas, Carlos Cespedes, Nibaldo C Inestrosa, Carlos P Vio. β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. BioMed research international. 2015; 2015(?):726012. doi: 10.1155/2015/726012. [PMID: 25945342]
  • Yasuo Harada, Isao Ishii, Kiyohiko Hatake, Tadashi Kasahara. Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. Cancer letters. 2012 Jun; 319(1):83-8. doi: 10.1016/j.canlet.2011.12.034. [PMID: 22210382]
  • Simran Preet, Sanjay Bharati, Geeta Shukla, Ashwani Koul, Praveen Rishi. Evaluation of amoebicidal potential of Paneth cell cryptdin-2 against Entamoeba histolytica. PLoS neglected tropical diseases. 2011 Dec; 5(12):e1386. doi: 10.1371/journal.pntd.0001386. [PMID: 22206022]
  • Yupin Suputtamongkol, Nalinee Premasathian, Kid Bhumimuang, Duangdao Waywa, Surasak Nilganuwong, Ekkapun Karuphong, Thanomsak Anekthananon, Darawan Wanachiwanawin, Saowaluk Silpasakorn. Efficacy and safety of single and double doses of ivermectin versus 7-day high dose albendazole for chronic strongyloidiasis. PLoS neglected tropical diseases. 2011 May; 5(5):e1044. doi: 10.1371/journal.pntd.0001044. [PMID: 21572981]
  • Ernst Hempelmann. Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitology research. 2007 Mar; 100(4):671-6. doi: 10.1007/s00436-006-0313-x. [PMID: 17111179]
  • J Kobayashi, Y Sato, H Toma, M Takara, Y Shiroma. Application of enzyme immunoassay for postchemotherapy evaluation of human strongyloidiasis. Diagnostic microbiology and infectious disease. 1994 Jan; 18(1):19-23. doi: 10.1016/0732-8893(94)90129-5. [PMID: 8026153]
  • C C WANG, G A GALLI. STRONGYLOIDIASIS TREATED WITH PYRVINIUM PAMOATE. JAMA. 1965 Sep; 193(?):847-8. doi: 10.1001/jama.1965.03090100093040. [PMID: 14330001]
  • P VILELAMDE, A W ZUCAS, J IGLESIAS. THE THERAPY OF TRICHURIASIS WITH A COMBINATION OF THIABENDAZOLE AND PYRVINIUM PAMOATE. The Journal of new drugs. 1965 Mar; 5(2):86-9. doi: 10.1002/j.1552-4604.1965.tb00229.x. [PMID: 14317649]
  • J J OSIMANI, J GRUMBERG, A ANZALONE, J C VARELA. [TREATMENT OF ENTEROBIASIS WITH PYRVINIUM PAMOATE. PROBLEMS OF THE THERAPEUTIC EVOLUTION OF THIS PARASITOSIS]. Archivos de pediatria del Uruguay. 1964 Mar; 35(?):160-9. doi: NULL. [PMID: 14141591]
  • J R LOPEZ FERNANDEZ, J WITKIND. [FAMILIAL OXYURIASIS. ITS TREATMENT WITH A SINGLE DOSE OF PYRVINIUM PAMOATE (VANQUIN). CLINICAL, EPIDEMIOLOGICAL AND THERAPEUTICAL CONSIDERATIONS. CONCLUSION]. Archivos de pediatria del Uruguay. 1963 Nov; 34(?):688-94. doi: NULL. [PMID: 14123548]
  • J R LOPEZ FERNANDEZ, J WITKIND. [FAMILIAL OXYURIASIS. ITS TREATMENT WITH A SINGLE DOSE OF PYRVINIUM PAMOATE (VANQUIN). CLINICAL CONSIDERATIONS, EPIDEMIOLOGY AND THERAPEUTICS]. Archivos de pediatria del Uruguay. 1963 Oct; 34(?):616-29 CONTD. doi: NULL. [PMID: 14093874]