3-Octanone (BioDeep_00000631170)

Main id: BioDeep_00000004241

 

natural product


代谢物信息卡片


Octan-3-one

化学式: C8H16O (128.1201)
中文名称: 3-辛酮
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(=O)(CCCCC)CC
InChI: InChI=1S/C8H16O/c1-3-5-6-7-8(9)4-2/h3-7H2,1-2H3

描述信息

A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group.

同义名列表

4 个代谢物同义名

3-Octanone; Octan-3-one; 3-Octanone; 3-Octanone



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

157 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 3 LCP1, MERTK, PLS1
Peripheral membrane protein 1 LCP1
Endoplasmic reticulum membrane 1 FADS2
Nucleus 2 CBX4, KLK3
cytosol 3 LCP1, MB, PLS1
nuclear body 1 CBX4
nucleoplasm 1 CBX4
Cell membrane 2 MERTK, TNF
Cytoplasmic side 1 LCP1
ruffle membrane 1 LCP1
Multi-pass membrane protein 1 FADS2
cell junction 1 LCP1
cell surface 1 TNF
Golgi apparatus 1 ATRN
neuronal cell body 1 TNF
plasma membrane 8 ATRN, FADS2, KLK3, KNG1, LCP1, MERTK, PLS1, TNF
Membrane 2 FADS2, MERTK
brush border 1 PLS1
extracellular exosome 6 ATRN, KLK3, KNG1, LCP1, MB, PLS1
extracellular space 6 ATRN, KLK3, KNG1, LCP1, MERTK, TNF
perinuclear region of cytoplasm 1 LCP1
protein-containing complex 1 KLK3
filopodium 1 LCP1
Single-pass type I membrane protein 2 ATRN, MERTK
extracellular region 3 KLK3, KNG1, TNF
[Isoform 2]: Secreted 1 ATRN
photoreceptor outer segment 1 MERTK
external side of plasma membrane 1 TNF
actin cytoskeleton 1 LCP1
sarcoplasm 1 MB
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cell projection, ruffle membrane 1 LCP1
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 LCP1
focal adhesion 1 LCP1
collagen-containing extracellular matrix 1 KNG1
secretory granule 1 KLK3
nuclear speck 1 CBX4
ruffle 1 LCP1
receptor complex 1 MERTK
cell projection 1 LCP1
phagocytic cup 2 LCP1, TNF
podosome 1 LCP1
Secreted, extracellular space 1 KNG1
actin filament 2 LCP1, PLS1
blood microparticle 1 KNG1
[Isoform 3]: Secreted 1 ATRN
Cell projection, stereocilium 1 PLS1
stereocilium 1 PLS1
Nucleus speckle 1 CBX4
endoplasmic reticulum lumen 1 KNG1
PcG protein complex 1 CBX4
PRC1 complex 1 CBX4
platelet alpha granule lumen 1 KNG1
[Isoform 1]: Cell membrane 1 ATRN
terminal web 1 PLS1
glial cell projection 1 LCP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Cytoplasm, sarcoplasm 1 MB
actin filament bundle 2 LCP1, PLS1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Wei-Zhen Li, Wen-Juan Kang, Jing-Jiang Zhou, Su-Qin Shang, Shang-Li Shi. The antennal transcriptome analysis and characterizations of odorant-binding proteins in Megachile saussurei (Hymenoptera, Megachilidae). BMC genomics. 2023 Dec; 24(1):781. doi: 10.1186/s12864-023-09871-8. [PMID: 38102559]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Patricia Martín Santos, Miguel Del Nogal Sánchez, Ángel Pedro Crisolino Pozas, José Luis Pérez Pavón, Bernardo Moreno Cordero. Determination of ketones and ethyl acetate-a preliminary study for the discrimination of patients with lung cancer. Analytical and bioanalytical chemistry. 2017 Sep; 409(24):5689-5696. doi: 10.1007/s00216-017-0508-2. [PMID: 28717894]
  • Yan Qian, Sheng Yu, Ming-Qiu Shan, Wei-Feng Yao, Li Zhang. [Comparison between traditional processing and integration processing for Schizonepetae Herba based on chemical constituents and pharmacological effect]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2016 Jun; 41(11):2081-2086. doi: 10.4268/cjcmm20161117. [PMID: 28901104]
  • Jun Tabata, Consuelo M De Moraes, Mark C Mescher. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle. PloS one. 2011; 6(8):e23799. doi: 10.1371/journal.pone.0023799. [PMID: 21876772]
  • Sheng Yu, Yiwen Chen, Li Zhang, Mingqiu Shan, Yuping Tang, Anwei Ding. Quantitative comparative analysis of the bio-active and toxic constituents of leaves and spikes of Schizonepeta tenuifolia at different harvesting times. International journal of molecular sciences. 2011; 12(10):6635-44. doi: 10.3390/ijms12106635. [PMID: 22072908]
  • Jakob Eifler, Eugenio Martinelli, Marco Santonico, Rosamaria Capuano, Detlev Schild, Corrado Di Natale. Differential detection of potentially hazardous Fusarium species in wheat grains by an electronic nose. PloS one. 2011; 6(6):e21026. doi: 10.1371/journal.pone.0021026. [PMID: 21695232]
  • Michiel van Wijk, Paulien J A de Bruijn, Maurice W Sabelis. The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects. Journal of chemical ecology. 2010 Nov; 36(11):1211-25. doi: 10.1007/s10886-010-9858-3. [PMID: 20872172]
  • Michiel van Wijk, Paulien J A De Bruijn, Maurice W Sabelis. Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles. Journal of chemical ecology. 2008 Jun; 34(6):791-803. doi: 10.1007/s10886-008-9492-5. [PMID: 18521678]
  • Jetske G de Boer, Cornelis A Hordijk, Maarten A Posthumus, Marcel Dicke. Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. Journal of chemical ecology. 2008 Mar; 34(3):281-90. doi: 10.1007/s10886-007-9405-z. [PMID: 18185960]
  • Sven Steiner, Daniel Erdmann, Johannes L M Steidle, Joachim Ruther. Host habitat assessment by a parasitoid using fungal volatiles. Frontiers in zoology. 2007 Feb; 4(?):3. doi: 10.1186/1742-9994-4-3. [PMID: 17284315]
  • Sandrine P Gouinguené, Erich Städler. Oviposition in Delia platura (Diptera, Anthomyiidae): the role of volatile and contact cues of bean. Journal of chemical ecology. 2006 Jul; 32(7):1399-413. doi: 10.1007/s10886-006-9058-3. [PMID: 16718565]
  • Glen C Rains, Samuel L Utley, W Joe Lewis. Behavioral monitoring of trained insects for chemical detection. Biotechnology progress. 2006 Jan; 22(1):2-8. doi: 10.1021/bp050164p. [PMID: 16454485]
  • Yong-Suk Kim, Dong-Hwa Shin. Volatile constituents from the leaves of Callicarpa japonica Thunb. and their antibacterial activities. Journal of agricultural and food chemistry. 2004 Feb; 52(4):781-7. doi: 10.1021/jf034936d. [PMID: 14969531]
  • C Höckelmann, F Jüttner. Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Water science and technology : a journal of the International Association on Water Pollution Research. 2004; 49(9):47-54. doi: . [PMID: 15237606]
  • Stephen M Boué, Betty Y Shih, Carol H Carter-Wientjes, Thomas E Cleveland. Identification of volatile compounds in soybean at various developmental stages using solid phase microextraction. Journal of agricultural and food chemistry. 2003 Aug; 51(17):4873-6. doi: 10.1021/jf030051q. [PMID: 12903938]
  • M A Birkett, K Chamberlain, E Guerrieri, J A Pickett, L J Wadhams, T Yasuda. Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa. Journal of chemical ecology. 2003 Jul; 29(7):1589-600. doi: 10.1023/a:1024218729423. [PMID: 12921437]
  • Yasmin J Cardoza, Hans T Alborn, James H Tumlinson. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. Journal of chemical ecology. 2002 Jan; 28(1):161-74. doi: 10.1023/a:1013523104853. [PMID: 11868672]