Cycloartenol (BioDeep_00000001004)

 

Secondary id: BioDeep_00000288897

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

化学式: C30H50O (426.3861)
中文名称: 环阿屯醇
谱图信息: 最多检出来源 Bos taurus(plant) 20.27%

分子结构信息

SMILES: CC(=CCC[C@@H](C)[C@H]1CC[C@@]2(C)[C@@H]3CC[C@H]4C(C)(C)[C@H](CC[C@]54C[C@@]35CC[C@]12C)O)C
InChI: InChI=1S/C30H50O/c1-20(2)9-8-10-21(3)22-13-15-28(7)24-12-11-23-26(4,5)25(31)14-16-29(23)19-30(24,29)18-17-27(22,28)6/h9,21-25,31H,8,10-19H2,1-7H3/t21-,22-,23+,24+,25+,27-,28+,29-,30+/m1/s1

描述信息

Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol
Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane.
Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available.
Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

同义名列表

32 个代谢物同义名

(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol; (1S,3R,6S,8R,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.01,3.03,8.012,16]octadecan-6-ol; 9,19-Cyclo-9.beta.-lanost-24-en-3.beta.-ol; (3beta,9beta)-9,19-cyclolanost-24-en-3-ol; 9,19-Cyclolanost-24-en-3-ol, (3.beta.)-; 9,19-Cyclo-9beta-lanost-24-en-3beta-ol; 9,19-Cyclolanost-24-en-3-ol, (3beta)-; (3beta)-9,19-Cyclolanost-24-en-3-ol; 9beta,19-cyclo-24-lanosten-3beta-ol; 9beta,19-cyclolanost-24-en-3beta-ol; (3Β,9β)-9,19-cyclolanost-24-en-3-ol; 9,19-CYCLO-24-LANOSTEN-3.BETA.-OL; 9,19-Cyclo-9β-lanost-24-en-3β-ol; (3Β)-9,19-cyclolanost-24-en-3-ol; 9,19-Cyclo-24-lanosten-3beta-ol; 9,19-Cycloart-24-ene, 3beta-ol; 9b,19-Cyclo-24-lanosten-3b-ol; 9Β,19-cyclo-24-lanosten-3β-ol; 9,19-Cyclo-24-lanosten-3β-ol; ONQRKEUAIJMULO-YBXTVTTCSA-N; CYCLOART-24-EN-3.BETA.-OL; Cycloart-24-en-3beta-ol; Cycloart-24-en-3β-ol; cycloart-24(25)-enol; UNII-YU32VE82N3; cycloarterenol; Cycloartenol; YU32VE82N3; ST 30:2;O; Handianol; Artosenol; Cycloartenol



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(3)

代谢反应

697 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(237)

INOH(0)

PlantCyc(459)

COVID-19 Disease Map(0)

PathBank(1)

  • Steroid Biosynthesis: Hydrogen Ion + Lathosterol + Oxygen + ferrocytochrome b5 ⟶ 7-Dehydrocholesterol + Water + ferricytochrome b5

PharmGKB(0)

729 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AKT1, BCL2, CALM1, CALM3, CAT, FOXP3, G6PD, ODC1, XDH
Peripheral membrane protein 4 CYP1B1, G6PD, LSS, SQLE
Endoplasmic reticulum membrane 6 BCL2, CYP1B1, FDFT1, HMGCR, LSS, SQLE
Nucleus 5 AKT1, BCL2, CALM1, CALM3, FOXP3
cytosol 9 AKT1, BCL2, CALM1, CAT, FOXP3, G6PD, GSR, ODC1, XDH
centrosome 2 CALM1, CALM3
nucleoplasm 3 AKT1, CALM1, FOXP3
Cell membrane 2 AKT1, TNF
lamellipodium 1 AKT1
Multi-pass membrane protein 2 FDFT1, HMGCR
cell cortex 1 AKT1
cell surface 1 TNF
glutamatergic synapse 1 AKT1
Golgi membrane 1 INS
neuronal cell body 1 TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 G6PD
plasma membrane 4 AKT1, CALM1, CALM3, TNF
Membrane 9 AKT1, BCL2, CAT, CYP1B1, FDFT1, G6PD, HMGCR, LSS, SQLE
extracellular exosome 3 CAT, G6PD, GSR
endoplasmic reticulum 4 BCL2, FDFT1, HMGCR, SQLE
extracellular space 5 IL10, IL17A, INS, TNF, XDH
mitochondrion 4 BCL2, CAT, CYP1B1, GSR
protein-containing complex 6 AKT1, BCL2, CALM1, CALM3, CAT, FOXP3
intracellular membrane-bounded organelle 4 CAT, CYP1B1, G6PD, SQLE
Microsome membrane 2 CYP1B1, SQLE
Secreted 4 IL10, IL17A, IL23A, INS
extracellular region 7 CALM1, CAT, IL10, IL17A, IL23A, INS, TNF
cytoplasmic side of plasma membrane 1 G6PD
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 2 CAT, GSR
centriolar satellite 1 G6PD
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 CALM1, CALM3
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 3 GSR, IL17A, TNF
microtubule cytoskeleton 1 AKT1
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 3 AKT1, CALM1, CALM3
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton, spindle 2 CALM1, CALM3
focal adhesion 1 CAT
spindle 1 AKT1
Peroxisome 2 CAT, XDH
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 2 CAT, HMGCR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
sarcomere 2 CALM1, CALM3
ciliary basal body 1 AKT1
chromatin 1 FOXP3
phagocytic cup 1 TNF
spindle pole 2 CALM1, CALM3
Cell projection, cilium, flagellum 1 CALM1
sperm midpiece 2 CALM1, CALM3
Cytoplasm, cytoskeleton, spindle pole 2 CALM1, CALM3
endosome lumen 1 INS
Lipid droplet 1 LSS
myelin sheath 3 BCL2, CALM1, CALM3
Peroxisome membrane 1 HMGCR
voltage-gated potassium channel complex 2 CALM1, CALM3
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 IL23A, INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
calyx of Held 2 CALM1, CALM3
calcium channel complex 2 CALM1, CALM3
spindle microtubule 2 CALM1, CALM3
presynaptic cytosol 2 CALM1, CALM3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
catalytic complex 2 CALM1, CALM3
BAD-BCL-2 complex 1 BCL2
interleukin-23 complex 1 IL23A
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Qinhua Gan, Haifeng Zheng, Xinyu Li, Jing Li, Jingxue Ma, Yuji Zhang, Jiakun Han, Lin Zhang, Wenxu Zhou, Yandu Lu. Solving the Jigsaw puzzle of phytosterol diversity by a novel sterol methyltransferase from Zea mays. The Journal of steroid biochemistry and molecular biology. 2024 Jun; 240(?):106498. doi: 10.1016/j.jsbmb.2024.106498. [PMID: 38447903]
  • Xue Yin, Jia Liu, Chengxi Kou, Jiaojiao Lu, He Zhang, Wei Song, Yuhua Li, Zheyong Xue, Xin Hua. Deciphering the network of cholesterol biosynthesis in Paris polyphylla laid a base for efficient diosgenin production in plant chassis. Metabolic engineering. 2023 Feb; 76(?):232-246. doi: 10.1016/j.ymben.2023.02.009. [PMID: 36849090]
  • Kuan Chen, Meng Zhang, Lulu Xu, Yang Yi, Linlin Wang, Haotian Wang, Zilong Wang, Jiangtao Xing, Pi Li, Xiaohui Zhang, Xiaomeng Shi, Min Ye, Anne Osbourn, Xue Qiao. Identification of oxidosqualene cyclases associated with saponin biosynthesis from Astragalus membranaceus reveals a conserved motif important for catalytic function. Journal of advanced research. 2023 01; 43(?):247-257. doi: 10.1016/j.jare.2022.03.014. [PMID: 36585112]
  • Carmela Gallo, Simone Landi, Giuliana d'Ippolito, Genoveffa Nuzzo, Emiliano Manzo, Angela Sardo, Angelo Fontana. Diatoms synthesize sterols by inclusion of animal and fungal genes in the plant pathway. Scientific reports. 2020 03; 10(1):4204. doi: 10.1038/s41598-020-60993-5. [PMID: 32144288]
  • Ajikumaran Nair Sadasivan Nair, Reshma Vijayakumari Raveendran Nair, Aroma Prasanna Rajendran Nair, Akhila Sasikumar Nair, Sabu Thyagarajan, Anil John Johnson, Sabulal Baby. Antidiabetes constituents, cycloartenol and 24-methylenecycloartanol, from Ficus krishnae. PloS one. 2020; 15(6):e0235221. doi: 10.1371/journal.pone.0235221. [PMID: 32584888]
  • Zhenyan Yang, Lifang Yang, Changkun Liu, Xujie Qin, Haiyang Liu, Jiahui Chen, Yunheng Ji. Transcriptome analyses of Paris polyphylla var. chinensis, Ypsilandra thibetica, and Polygonatum kingianum characterize their steroidal saponin biosynthesis pathway. Fitoterapia. 2019 Jun; 135(?):52-63. doi: 10.1016/j.fitote.2019.04.008. [PMID: 30999023]
  • Ahmed Adebayo Ishola, Kayode Ezekiel Adewole. Phytosterols and triterpenes from Morinda lucida Benth. exhibit binding tendency against class I HDAC and HDAC7 isoforms. Molecular biology reports. 2019 Apr; 46(2):2307-2325. doi: 10.1007/s11033-019-04689-8. [PMID: 30771146]
  • Xiaohui Zhao, Banmacailang Dong, Pi Li, Wei Wei, Jun Dang, Zenggeng Liu, Yanduo Tao, Hongping Han, Yun Shao, Huilan Yue. Fatty Acid and Phytosterol Composition, and Biological Activities of Lycium ruthenicum Murr. Seed Oil. Journal of food science. 2018 Oct; 83(10):2448-2456. doi: 10.1111/1750-3841.14328. [PMID: 30178878]
  • Hong-Yu Guan, Ping Su, Yu-Jun Zhao, Xia-Nan Zhang, Zhu-Bo Dai, Juan Guo, Yu-Ru Tong, Yu-Jia Liu, Tian-Yuan Hu, Yan Yin, Lin-Hui Gao, Wei Gao, Lu-Qi Huang. Cloning and functional analysis of two sterol-C24-methyltransferase 1 (SMT1) genes from Paris polyphylla. Journal of Asian natural products research. 2018 Jul; 20(7):595-604. doi: 10.1080/10286020.2016.1271791. [PMID: 28276759]
  • Medhanie E Kidane, Boden H Vanderloop, Wenxu Zhou, Crista D Thomas, Emilio Ramos, Ujjal Singha, Minu Chaudhuri, W David Nes. Sterol methyltransferase a target for anti-amoeba therapy: towards transition state analog and suicide substrate drug design. Journal of lipid research. 2017 12; 58(12):2310-2323. doi: 10.1194/jlr.m079418. [PMID: 29042405]
  • Akhilesh Kumar, Edna Fogelman, Mira Weissberg, Zachariah Tanami, Richard E Veilleux, Idit Ginzberg. Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta. 2017 Dec; 246(6):1189-1202. doi: 10.1007/s00425-017-2763-z. [PMID: 28828630]
  • Miho Takemura, Rie Tanaka, Norihiko Misawa. Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli-a method to biosynthesize plant-derived triterpene skeletons in E. coli. Applied microbiology and biotechnology. 2017 Sep; 101(17):6615-6625. doi: 10.1007/s00253-017-8409-z. [PMID: 28710558]
  • Zhong-Lian Zhang, Zu-Liang Luo, Hong-Wu Shi, Li-Xia Zhang, Xiao-Jun Ma. [Research advance of functional plant pharmaceutical cycloartenol about pharmacological and physiological activity]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2017 Feb; 42(3):433-437. doi: 10.19540/j.cnki.cjcmm.20161222.066. [PMID: 28952245]
  • Fumiaki Okahara, Junko Suzuki, Kohjiro Hashizume, Noriko Osaki, Akira Shimotoyodome. Triterpene alcohols and sterols from rice bran reduce postprandial hyperglycemia in rodents and humans. Molecular nutrition & food research. 2016 07; 60(7):1521-31. doi: 10.1002/mnfr.201500897. [PMID: 26935127]
  • Gabriela Calegario, Jacob Pollier, Philipp Arendt, Louisi Souza de Oliveira, Cristiane Thompson, Angélica Ribeiro Soares, Renato Crespo Pereira, Alain Goossens, Fabiano L Thompson. Cloning and Functional Characterization of Cycloartenol Synthase from the Red Seaweed Laurencia dendroidea. PloS one. 2016; 11(11):e0165954. doi: 10.1371/journal.pone.0165954. [PMID: 27832119]
  • Lun Wu, Zhi-Li Chen, Yang Su, Qiu-Hong Wang, Hai-Xue Kuang. Cycloartenol triterpenoid saponins from Cimicifuga simplex (Ranunculaceae) and their biological effects. Chinese journal of natural medicines. 2015 Feb; 13(2):81-9. doi: 10.1016/s1875-5364(15)60011-5. [PMID: 25769890]
  • Yang Su, Lun Wu, Qiuhong Wang, Bingyou Yang, Haixue Kuang. New 9,19-cycloartenol glycosides isolated from the roots of Cimicifuga simplex and their anti-inflammatory effects. Bioorganic & medicinal chemistry letters. 2014 Dec; 24(24):5688-5691. doi: 10.1016/j.bmcl.2014.10.066. [PMID: 25467162]
  • Shefali Singh, Shaifali Pal, Karuna Shanker, Chandan Singh Chanotiya, Madan Mohan Gupta, Upendra Nath Dwivedi, Ajit Kumar Shasany. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis. Physiologia plantarum. 2014 Dec; 152(4):617-33. doi: 10.1111/ppl.12213. [PMID: 24749735]
  • Luciane C Lopes, João Ernesto de Carvalho, Marise Kakimore, Débora B Vendramini-Costa, Maria A Medeiros, Humberto M Spindola, Javier Ávila-Román, Ana M Lourenço, Virginia Motilva. Pharmacological characterization of Solanum cernuum Vell.: 31-norcycloartanones with analgesic and anti-inflammatory properties. Inflammopharmacology. 2014 Jun; 22(3):179-85. doi: 10.1007/s10787-013-0182-8. [PMID: 23925459]
  • S Montserrat-de la Paz, F Marín-Aguilar, M D García-Giménez, M A Fernández-Arche. Hemp ( Cannabis sativa L.) seed oil: analytical and phytochemical characterization of the unsaponifiable fraction. Journal of agricultural and food chemistry. 2014 Feb; 62(5):1105-10. doi: 10.1021/jf404278q. [PMID: 24422510]
  • Shunyan Mo, Linlin Dong, W Jeffrey Hurst, Richard B van Breemen. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. Lipids. 2013 Sep; 48(9):949-56. doi: 10.1007/s11745-013-3813-3. [PMID: 23884629]
  • HaiXue Kuang, Yang Su, QiuHong Wang, Lun Wu, BingYou Yang, ZhiBin Wang, YongGang Xia. Three new cycloartenol glycosides from the roots of Cimicifuga simplex. Planta medica. 2012 Apr; 78(6):622-5. doi: 10.1055/s-0031-1298224. [PMID: 22322397]
  • Augusta Caligiani, Francesca Bonzanini, Gerardo Palla, Martina Cirlini, Renato Bruni. Characterization of a potential nutraceutical ingredient: pomegranate (Punica granatum L.) seed oil unsaponifiable fraction. Plant foods for human nutrition (Dordrecht, Netherlands). 2010 Sep; 65(3):277-83. doi: 10.1007/s11130-010-0173-5. [PMID: 20607413]
  • Wahid Herchi, Saoussem Harrabi, Khaled Sebei, Sophie Rochut, Sadok Boukhchina, Claude Pepe, Habib Kallel. Phytosterols accumulation in the seeds of Linum usitatissimum L. Plant physiology and biochemistry : PPB. 2009 Oct; 47(10):880-5. doi: 10.1016/j.plaphy.2009.07.001. [PMID: 19616960]
  • Junqing Wang, W David Nes. Cyclobranol: a substrate for C25-methyl sterol side chains and potent mechanism-based inactivator of plant sterol methyltransferase. Bioorganic & medicinal chemistry letters. 2008 Jul; 18(14):3878-81. doi: 10.1016/j.bmcl.2008.06.044. [PMID: 18590960]
  • Satoru Sawai, Tomoyoshi Akashi, Nozomu Sakurai, Hideyuki Suzuki, Daisuke Shibata, Shin-Ichi Ayabe, Toshio Aoki. Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes. Plant & cell physiology. 2006 May; 47(5):673-7. doi: 10.1093/pcp/pcj032. [PMID: 16531457]
  • Consolacion Y Ragasa, Floren Tiu, John A Rideout. New cycloartenol esters from Ixora coccinea. Natural product research. 2004 Aug; 18(4):319-23. doi: 10.1080/14786410310001630519. [PMID: 15214483]
  • X Qi, S Bakht, M Leggett, C Maxwell, R Melton, A Osbourn. A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proceedings of the National Academy of Sciences of the United States of America. 2004 May; 101(21):8233-8. doi: 10.1073/pnas.0401301101. [PMID: 15148404]
  • Xing-qi Tan, Hai-sheng Chen, Cong-li Xu, Run-hui Liu, Wei-dong Xuan. [Studies on chemical constituents of Ervatamia hainanensis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2003 Nov; 28(11):1040-2. doi: ". [PMID: 15615411]
  • Sarwat Sultana, Aftab Alam, Naghma Khan, Sonia Sharma. Inhibition of benzoyl peroxide and ultraviolet-B radiation induced oxidative stress and tumor promotion markers by cycloartenol in murine skin. Redox report : communications in free radical research. 2003; 8(2):105-12. doi: 10.1179/135100003125001422. [PMID: 12804013]
  • Helge Björn Bode, Bernd Zeggel, Barbara Silakowski, Silke C Wenzel, Hans Reichenbach, Rolf Müller. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Molecular microbiology. 2003 Jan; 47(2):471-81. doi: 10.1046/j.1365-2958.2003.03309.x. [PMID: 12519197]
  • Hideyuki Suzuki, Lahoucine Achnine, Ran Xu, Seiichi P T Matsuda, Richard A Dixon. A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. The Plant journal : for cell and molecular biology. 2002 Dec; 32(6):1033-48. doi: 10.1046/j.1365-313x.2002.01497.x. [PMID: 12492844]
  • Laurent F Wentzinger, Thomas J Bach, Marie-Andrée Hartmann. Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase. Plant physiology. 2002 Sep; 130(1):334-46. doi: 10.1104/pp.004655. [PMID: 12226513]
  • Marie-Andrée Hartmann, Anne-Marie Perret, Jean-Pierre Carde, Claude Cassagne, Patrick Moreau. Inhibition of the sterol pathway in leek seedlings impairs phosphatidylserine and glucosylceramide synthesis but triggers an accumulation of triacylglycerols. Biochimica et biophysica acta. 2002 Aug; 1583(3):285-96. doi: 10.1016/s1388-1981(02)00249-4. [PMID: 12176396]
  • Steven D Clouse. Brassinosteroids. Plant counterparts to animal steroid hormones?. Vitamins and hormones. 2002; 65(?):195-223. doi: 10.1016/s0083-6729(02)65065-4. [PMID: 12481548]
  • V Ravikanth, V L Niranjan Reddy, P Ramesh, T Prabhakar Rao, P V Diwan, A Khar, Y Venkateswarlu. An immunosuppressive tryptophan-derived alkaloid from Lepidagathis cristata. Phytochemistry. 2001 Dec; 58(8):1263-6. doi: 10.1016/s0031-9422(01)00383-1. [PMID: 11738419]
  • J I Ruan, J B Chen, X Y Zhao, N J Sun, J M Cassady, G D Stoner. [Studies on chemical constituents of Fragaria ananassa Duch]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2001 Sep; 26(9):610-2. doi: ". [PMID: 12776428]
  • W D Nes, M Venkatramesh. Enzymology of phytosterol transformations. Critical reviews in biochemistry and molecular biology. 1999; 34(2):81-93. doi: 10.1080/10409239991209219. [PMID: 10333386]
  • K Yasukawa, T Akihisa, Y Kimura, T Tamura, M Takido. Inhibitory effect of cycloartenol ferulate, a component of rice bran, on tumor promotion in two-stage carcinogenesis in mouse skin. Biological & pharmaceutical bulletin. 1998 Oct; 21(10):1072-6. doi: 10.1248/bpb.21.1072. [PMID: 9821812]
  • P Bouvier-Navé, T Husselstein, P Benveniste. Two families of sterol methyltransferases are involved in the first and the second methylation steps of plant sterol biosynthesis. European journal of biochemistry. 1998 Aug; 256(1):88-96. doi: 10.1046/j.1432-1327.1998.2560088.x. [PMID: 9746350]
  • C Ahumada, T Sáenz, D García, R De La Puerta, A Fernandez, E Martinez. The effects of a triterpene fraction isolated from Crataegus monogyna Jacq. on different acute inflammation models in rats and mice. Leucocyte migration and phospholipase A2 inhibition. The Journal of pharmacy and pharmacology. 1997 Mar; 49(3):329-31. doi: 10.1111/j.2042-7158.1997.tb06806.x. [PMID: 9231356]
  • E J Corey, S P Matsuda, B Bartel. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proceedings of the National Academy of Sciences of the United States of America. 1993 Dec; 90(24):11628-32. doi: 10.1073/pnas.90.24.11628. [PMID: 7505443]
  • W D Nes, G G Janssen, A Bergenstrahle. Structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine:delta 24(25)-sterol methyl transferase. The Journal of biological chemistry. 1991 Aug; 266(23):15202-12. doi: . [PMID: 1869550]
  • D Raederstorff, M Rohmer. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi. European journal of biochemistry. 1987 Apr; 164(2):427-34. doi: 10.1111/j.1432-1033.1987.tb11075.x. [PMID: 3569274]
  • I Ikeda, K Nakashima-Yoshida, M Sugano. Effects of cycloartenol on absorption and serum levels of cholesterol in rats. Journal of nutritional science and vitaminology. 1985 Jun; 31(3):375-84. doi: 10.3177/jnsv.31.375. [PMID: 4067669]
  • A Rahier, A S Narula, P Benveniste, P Schmitt. 25-Azacycloartanol, a potent inhibitor of S-adenosyl-L-methionine-sterol-C-24 and C-28 methyltransferases in higher plant cells. Biochemical and biophysical research communications. 1980 Jan; 92(1):20-5. doi: 10.1016/0006-291x(80)91513-2. [PMID: 7356453]
  • . . . . doi: . [PMID: 19139393]
  • . . . . doi: . [PMID: 20610397]
  • . . . . doi: . [PMID: 12226510]