M-Coumaric acid (BioDeep_00000001700)
Secondary id: BioDeep_00000409201
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C9H8O3 (164.0473)
中文名称: 香豆酸, 反式-3-羟基肉桂酸, 3-羟基肉桂酸
谱图信息:
最多检出来源 Viridiplantae(plant) 25.16%
Last reviewed on 2024-09-13.
Cite this Page
M-Coumaric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/m-coumaric_acid (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001700). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC(=CC(=C1)O)C=CC(=O)O
InChI: InChI=1S/C9H8O3/c10-8-3-1-2-7(6-8)4-5-9(11)12/h1-6,10H,(H,11,12)/b5-4+
描述信息
m-Coumaric acid, also known as 3-coumarate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. m-Coumaric acid exists in all living organisms, ranging from bacteria to humans. m-Coumaric acid (CAS: 588-30-7) is a polyphenol metabolite from caffeic acid, formed by the gut microflora. Outside of the human body, m-Coumaric acid is found, on average, in the highest concentration within a few different foods, such as olives, corns, and beers. m-Coumaric acid has also been detected, but not quantified in several different foods, such as carrots, strawberries, grape wines, garden tomato, and bilberries. MCT-mediated absorption of phenolic compounds per se and their colonic metabolites would exert a significant impact on human health (PMID:16870009, 15479001, 15479001). m-Coumaric acid is transported by the monocarboxylic acid transporter (MCT). The amount of this compound in human biofluids is diet-dependant. m-Coumaric acid is detected after the consumption of whole grain.
Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. m-Coumaric acid is found in many foods, some of which are corn, garden tomato (variety), grape wine, and beer.
Acquisition and generation of the data is financially supported in part by CREST/JST.
(E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant.
(E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an aromatic acid that highly abundant in food. (E)-m-Coumaric acid (3-Hydroxycinnamic acid) is an antioxidant.
m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.
m-Coumaric acid is a polyphenol metabolite from caffeic acid, formed by the gut microflora and the amount in human biofluids is diet-dependant.
同义名列表
36 个代谢物同义名
trans-3-(m-Hydroxyphenyl)-2-propenoic acid; (2E)-3-(3-Hydroxyphenyl)prop-2-enoic acid; (2E)-3-(3-Hydroxyphenyl)-2-propenoic acid; (e)-3-(3-Hydroxyphenyl)-2-propenoic acid; (2E)-3-(3-Hydroxyphenyl)prop-2-enoate; (2E)-3-(3-Hydroxyphenyl)-2-propenoate; 3-(3-Hydroxyphenyl)prop-2-enoic acid; (2E)-3-(3-Hydroxyphenyl)acrylic acid; (e)-3-(3-Hydroxyphenyl)-2-propenoate; 3-(3-Hydroxyphenyl)-2-propenoic acid; (E)-3-(3-Hydroxyphenyl)acrylic acid; 3-(3-Hydroxyphenyl)-2-propenoate; 3-(3-Hydroxyphenyl)prop-2-enoate; (2E)-3-(3-Hydroxyphenyl)acrylate; 3-(3-Hydroxyphenyl)acrylsaeure; trans-m-Hydroxycinnamic acid; trans-3-Hydroxycinnamic acid; 3-(3-Hydroxyphenyl)acrylate; 3-Coumaric acid, (e)-isomer; (E)-3-Hydroxycinnamic acid; trans-3-Hydroxycinnamate; m-Hydroxy-cinnamic acid; m-Hydroxycinnamic acid; 3-Hydroxycinnamic acid; trans-m-Coumaric acid; m-Hydroxy-cinnamate; m-Hydroxycinnamate; 3-Hydroxycinnamate; Meta-coumaric acid; trans-3-Coumarate; m-Coumaric acid; 3-Coumaric acid; 3-Coumarate; m-Coumarate; (E)-m-Coumaric acid; trans-3-Hydroxycinnamate
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:32357
- ChEBI: CHEBI:47925
- KEGG: C12621
- PubChem: 637541
- PubChem: 11496
- HMDB: HMDB0001713
- Metlin: METLIN305
- ChEMBL: CHEMBL98521
- Wikipedia: M-coumaric_acid
- KNApSAcK: C00052344
- foodb: FDB002590
- chemspider: 553147
- CAS: 14755-02-3
- MoNA: PR100767
- MoNA: PR100766
- MoNA: PS076308
- MoNA: PS076309
- MoNA: PS076307
- PMhub: MS000001005
- PubChem: 583011
- 3DMET: B04535
- NIKKAJI: J1.638A
- RefMet: trans-m-Coumaric acid
- medchemexpress: HY-N7127
- medchemexpress: HY-113357
- KNApSAcK: 32357
- LOTUS: LTS0022256
- LOTUS: LTS0084075
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
5 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(4)
- 2-Oxopent-4-enoate Metabolism:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- 2-Oxopent-4-enoate Metabolism 2:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- 2-Oxopent-4-enoate Metabolism:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- 2-Oxopent-4-enoate Metabolism 2:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
PharmGKB(0)
76 个相关的物种来源信息
- 4454 - Araceae: LTS0084075
- 6656 - Arthropoda: LTS0084075
- 25674 - Balanophora: LTS0022256
- 25674 - Balanophora: LTS0084075
- 1128104 - Balanophora tobiracola: 10.1016/0031-9422(80)83209-2
- 1128104 - Balanophora tobiracola: LTS0022256
- 1128104 - Balanophora tobiracola: LTS0084075
- 25673 - Balanophoraceae: LTS0022256
- 25673 - Balanophoraceae: LTS0084075
- 3504 - Betula: LTS0022256
- 38787 - Betula pubescens: 10.1016/0305-1978(94)00092-U
- 38787 - Betula pubescens: LTS0022256
- 3514 - Betulaceae: LTS0022256
- 6658 - Branchiopoda: LTS0084075
- 23159 - Crataegus: LTS0022256
- 298643 - Crataegus laevigata: 10.1515/ZNC-2001-9-1012
- 298643 - Crataegus laevigata: LTS0022256
- 140997 - Crataegus monogyna: 10.1515/ZNC-2001-9-1012
- 140997 - Crataegus monogyna: LTS0022256
- 510738 - Crataegus rhipidophylla: 10.1515/ZNC-2001-9-1012
- 6668 - Daphnia: LTS0084075
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0084075
- 77658 - Daphniidae: LTS0084075
- 4039 - Daucus carota: 10.1021/JF020028P
- 13054 - Epilobium: LTS0022256
- 33136 - Epilobium dodonaei: 10.1016/S0021-9673(97)01259-4
- 4345 - Ericaceae: LTS0022256
- 2759 - Eukaryota: LTS0022256
- 2759 - Eukaryota: LTS0084075
- 3803 - Fabaceae: LTS0022256
- 3746 - Fragaria: 10.1021/JF020028P
- 167660 - Gliricidia: LTS0022256
- 167663 - Gliricidia sepium: 10.1007/BF00982301
- 167663 - Gliricidia sepium: LTS0022256
- 9606 - Homo sapiens: -
- 3433 - Lauraceae: LTS0022256
- 4469 - Lemna: LTS0084075
- 89585 - Lemna aequinoctialis: 10.1371/JOURNAL.PONE.0187622
- 89585 - Lemna aequinoctialis: LTS0084075
- 161103 - Lemna perpusilla: 10.1371/JOURNAL.PONE.0187622
- 4447 - Liliopsida: LTS0084075
- 3398 - Magnoliopsida: LTS0022256
- 3398 - Magnoliopsida: LTS0084075
- 3750 - Malus domestica: 10.1021/JF020028P
- 283210 - Malus pumila: 10.1021/JF020028P
- 33208 - Metazoa: LTS0084075
- 4145 - Olea: LTS0022256
- 4146 - Olea europaea:
- 4146 - Olea europaea: 10.1016/J.JFOODENG.2005.05.061
- 4146 - Olea europaea: 10.1016/S0308-8146(98)00146-0
- 4146 - Olea europaea: 10.1016/S0963-9969(00)00072-7
- 4146 - Olea europaea: LTS0022256
- 4144 - Oleaceae: LTS0022256
- 3934 - Onagraceae: LTS0022256
- 3469 - Papaver somniferum: -
- 3434 - Persea: LTS0022256
- 3435 - Persea americana: 10.1021/JF00078A018
- 3435 - Persea americana: LTS0022256
- 3726 - Raphanus sativus: 10.3390/NU11020402
- 3745 - Rosaceae: LTS0022256
- 32247 - Rubus idaeus: 10.1021/JF020028P
- 4081 - Solanum lycopersicum: 10.1021/JF020028P
- 35493 - Streptophyta: LTS0022256
- 35493 - Streptophyta: LTS0084075
- 58023 - Tracheophyta: LTS0022256
- 58023 - Tracheophyta: LTS0084075
- 78532 - Trigonella: LTS0022256
- 78534 - Trigonella foenum-graecum: 10.1016/J.FOODCHEM.2013.07.016
- 78534 - Trigonella foenum-graecum: LTS0022256
- 13749 - Vaccinium: LTS0022256
- 180763 - Vaccinium myrtillus: 10.1111/J.1365-2621.1987.TB14056.X
- 180763 - Vaccinium myrtillus: LTS0022256
- 33090 - Viridiplantae: LTS0022256
- 33090 - Viridiplantae: LTS0084075
- 29760 - Vitis vinifera: 10.1021/JF020028P
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jun-Lan Xiong, Ni Ma. Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Brassica napus L.
International journal of molecular sciences.
2022 Dec; 23(23):. doi:
10.3390/ijms232315304
. [PMID: 36499633] - Julia Wohl, Maike Petersen. Phenolic metabolism in the hornwort Anthoceros agrestis: 4-coumarate CoA ligase and 4-hydroxybenzoate CoA ligase.
Plant cell reports.
2020 Sep; 39(9):1129-1141. doi:
10.1007/s00299-020-02552-w
. [PMID: 32405654] - Sonia Losada-Barreiro, Carlos Bravo-Díaz. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases.
European journal of medicinal chemistry.
2017 Jun; 133(?):379-402. doi:
10.1016/j.ejmech.2017.03.061
. [PMID: 28415050] - Amma G Adomako-Bonsu, Sue Lf Chan, Margaret Pratten, Jeffrey R Fry. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics.
Toxicology in vitro : an international journal published in association with BIBRA.
2017 Apr; 40(?):248-255. doi:
10.1016/j.tiv.2017.01.016
. [PMID: 28122265] - Xiao-Ling Jin, Xia Wei, Feng-Ming Qi, Sha-Sha Yu, Bo Zhou, Shi Bai. Characterization of hydroxycinnamic acid derivatives binding to bovine serum albumin.
Organic & biomolecular chemistry.
2012 May; 10(17):3424-31. doi:
10.1039/c2ob25237f
. [PMID: 22434333] - Kathleen Trautwein, Heinz Wilkes, Ralf Rabus. Proteogenomic evidence for β-oxidation of plant-derived 3-phenylpropanoids in "Aromatoleum aromaticum" EbN1.
Proteomics.
2012 May; 12(9):1402-13. doi:
10.1002/pmic.201100279
. [PMID: 22589189] - Antonia Nostro, Angela Filocamo, Annalisa Giovannini, Stefania Catania, Chiara Costa, Andreana Marino, Giuseppe Bisignano. Antimicrobial activity and phenolic content of natural site and micropropagated Limonium avei (De Not.) Brullo & Erben plant extracts.
Natural product research.
2012; 26(22):2132-6. doi:
10.1080/14786419.2011.628669
. [PMID: 22014177] - Xiao-Xue Wang, Jiu-Ming He, Chun-Lan Wang, Rui-Ping Zhang, Wen-Yi He, Shun-Xing Guo, Rui-Xiang Sun, Zeper Abliz. Simultaneous structural identification of natural products in fractions of crude extract of the rare endangered plant Anoectochilus roxburghii using H NMR/RRLC-MS parallel dynamic spectroscopy.
International journal of molecular sciences.
2011; 12(4):2556-71. doi:
10.3390/ijms12042556
. [PMID: 21731458] - Yong Chang Seo, Woon Yong Choi, Choon Geun Lee, Seon Woo Cha, Young Ock Kim, Jin-Chul Kim, Gregor P C Drummen, Hyeon Yong Lee. Enhanced immunomodulatory activity of gelatin-encapsulated Rubus coreanus Miquel nanoparticles.
International journal of molecular sciences.
2011; 12(12):9031-56. doi:
10.3390/ijms12129031
. [PMID: 22272118] - Hsiu-Chen Huang, Kai-Yang Syu, Jen-Kun Lin. Chemical composition of Solanum nigrum linn extract and induction of autophagy by leaf water extract and its major flavonoids in AU565 breast cancer cells.
Journal of agricultural and food chemistry.
2010 Aug; 58(15):8699-708. doi:
10.1021/jf101003v
. [PMID: 20681660] - Wendy Pearson, Ronald S Fletcher, Laima S Kott, Mark B Hurtig. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata.
BMC complementary and alternative medicine.
2010 May; 10(?):19. doi:
10.1186/1472-6882-10-19
. [PMID: 20459798] - Ung-Kyu Choi, Ok-Hwan Lee, Joo Hyuk Yim, Chang-Won Cho, Young Kyung Rhee, Seong-Il Lim, Young-Chan Kim. Hypolipidemic and antioxidant effects of dandelion (Taraxacum officinale) root and leaf on cholesterol-fed rabbits.
International journal of molecular sciences.
2010 Jan; 11(1):67-78. doi:
10.3390/ijms11010067
. [PMID: 20162002] - Sirichai Adisakwattana, Preecha Moonsan, Sirintorn Yibchok-Anun. Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo.
Journal of agricultural and food chemistry.
2008 Sep; 56(17):7838-44. doi:
10.1021/jf801208t
. [PMID: 18651742] - L I Mennen, D Sapinho, H Ito, P Galan, S Hercberg, A Scalbert. Urinary excretion of 13 dietary flavonoids and phenolic acids in free-living healthy subjects - variability and possible use as biomarkers of polyphenol intake.
European journal of clinical nutrition.
2008 Apr; 62(4):519-25. doi:
10.1038/sj.ejcn.1602744
. [PMID: 17426744] - Neeraj Kumar, Pamita Bhandari, Bikram Singh, Ajai P Gupta, Vijay K Kaul. Reversed phase-HPLC for rapid determination of polyphenols in flowers of rose species.
Journal of separation science.
2008 Feb; 31(2):262-7. doi:
10.1002/jssc.200700372
. [PMID: 18172921] - Sandrine P Claus, Tsz M Tsang, Yulan Wang, Olivier Cloarec, Eleni Skordi, François-Pierre Martin, Serge Rezzi, Alastair Ross, Sunil Kochhar, Elaine Holmes, Jeremy K Nicholson. Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes.
Molecular systems biology.
2008; 4(?):219. doi:
10.1038/msb.2008.56
. [PMID: 18854818] - José Angel Gómez-Ruiz, David S Leake, Jennifer M Ames. In vitro antioxidant activity of coffee compounds and their metabolites.
Journal of agricultural and food chemistry.
2007 Aug; 55(17):6962-9. doi:
10.1021/jf0710985
. [PMID: 17655324] - Hao Chen, Hanxiao Jiang, John A Morgan. Non-natural cinnamic acid derivatives as substrates of cinnamate 4-hydroxylase.
Phytochemistry.
2007 Feb; 68(3):306-11. doi:
10.1016/j.phytochem.2006.10.018
. [PMID: 17141284] - J H Kim, B C Campbell, N Mahoney, K L Chan, G S May. Targeting antioxidative signal transduction and stress response system: control of pathogenic Aspergillus with phenolics that inhibit mitochondrial function.
Journal of applied microbiology.
2006 Jul; 101(1):181-9. doi:
10.1111/j.1365-2672.2006.02882.x
. [PMID: 16834605] - Louise I Mennen, David Sapinho, Hideyuki Ito, Sandrine Bertrais, Pilar Galan, Serge Hercberg, Augustin Scalbert. Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods.
The British journal of nutrition.
2006 Jul; 96(1):191-8. doi:
10.1079/bjn20061808
. [PMID: 16870009] - Miroslav Polásek, Ivan Petriska, Marie Pospísilová, Ludek Jahodár. Use of molybdate as novel complex-forming selector in the analysis of polyhydric phenols by capillary zone electrophoresis.
Talanta.
2006 Mar; 69(1):192-8. doi:
10.1016/j.talanta.2005.09.026
. [PMID: 18970553] - Ryszard Zadernowski, Marian Naczk, Jarosław Nesterowicz. Phenolic acid profiles in some small berries.
Journal of agricultural and food chemistry.
2005 Mar; 53(6):2118-24. doi:
10.1021/jf040411p
. [PMID: 15769144] - Seigo Baba, Naomi Osakabe, Midori Natsume, Akiko Yasuda, Yuko Muto, Kyoko Hiyoshi, Hirohisa Takano, Toshikazu Yoshikawa, Junji Terao. Absorption, metabolism, degradation and urinary excretion of rosmarinic acid after intake of Perilla frutescens extract in humans.
European journal of nutrition.
2005 Feb; 44(1):1-9. doi:
10.1007/s00394-004-0482-2
. [PMID: 15309457] - Jong H Kim, Bruce C Campbell, Noreen E Mahoney, Kathleen L Chan, Russell J Molyneux. Identification of phenolics for control of Aspergillus flavus using Saccharomyces cerevisiae in a model target-gene bioassay.
Journal of agricultural and food chemistry.
2004 Dec; 52(26):7814-21. doi:
10.1021/jf0487093
. [PMID: 15612761] - Seigo Baba, Naomi Osakabe, Midori Natsume, Junji Terao. Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid.
Life sciences.
2004 May; 75(2):165-78. doi:
10.1016/j.lfs.2003.11.028
. [PMID: 15120569] - Hisashi Matsuda, Toshio Morikawa, Hiromi Managi, Masayuki Yoshikawa. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-alpha and IL-4 in RBL-2H3 cells.
Bioorganic & medicinal chemistry letters.
2003 Oct; 13(19):3197-202. doi:
10.1016/s0960-894x(03)00710-8
. [PMID: 12951092] - Toshiyuki Kohri, Masayuki Suzuki, Fumio Nanjo. Identification of metabolites of (-)-epicatechin gallate and their metabolic fate in the rat.
Journal of agricultural and food chemistry.
2003 Aug; 51(18):5561-6. doi:
10.1021/jf034450x
. [PMID: 12926915] - Hae Kyung Kim, Tae-Sook Jeong, Mi-Kyung Lee, Yong Bok Park, Myung-Sook Choi. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats.
Clinica chimica acta; international journal of clinical chemistry.
2003 Jan; 327(1-2):129-37. doi:
10.1016/s0009-8981(02)00344-3
. [PMID: 12482628] - Pirjo Mattila, Jorma Kumpulainen. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection.
Journal of agricultural and food chemistry.
2002 Jun; 50(13):3660-7. doi:
10.1021/jf020028p
. [PMID: 12059140] - C L Gavaghan, J K Nicholson, S C Connor, I D Wilson, B Wright, E Holmes. Directly coupled high-performance liquid chromatography and nuclear magnetic resonance spectroscopic with chemometric studies on metabolic variation in Sprague--Dawley rats.
Analytical biochemistry.
2001 Apr; 291(2):245-52. doi:
10.1006/abio.2000.5034
. [PMID: 11401298]