Peonidin-3-glucoside (BioDeep_00001875445)
Main id: BioDeep_00000003549
PANOMIX_OTCML-2023 PANOMIX-Anthocyanidin natural product
代谢物信息卡片
化学式: C22H23O11+ (463.124)
中文名称: 芍药苷-3-葡萄糖苷
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: COC1=C(C=CC(=C1)C2=[O+]C3=CC(=CC(=C3C=C2OC4C(C(C(C(O4)CO)O)O)O)O)O)O
InChI: InChI=1S/C22H22O11/c1-30-15-4-9(2-3-12(15)25)21-16(7-11-13(26)5-10(24)6-14(11)31-21)32-22-20(29)19(28)18(27)17(8-23)33-22/h2-7,17-20,22-23,27-29H,8H2,1H3,(H2-,24,25,26)/p+1/t17-,18-,19+,20-,22-/m1/s1
数据库引用编号
12 个数据库交叉引用编号
- ChEBI: CHEBI:74793
- KEGG: C12141
- PubChem: 443654
- ChEMBL: CHEMBL1784263
- LipidMAPS: LMPK12010233
- CAS: 68795-37-9
- PubChem: 14288
- 3DMET: B04435
- NIKKAJI: J291.386K
- RefMet: Peonidin-3-glucoside
- KNApSAcK: 74793
- LOTUS: LTS0204470
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
69 个相关的物种来源信息
- 4206 - Adoxaceae: LTS0204470
- 7458 - Apidae: LTS0204470
- 7459 - Apis: LTS0204470
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0204470
- 193297 - Aronia: LTS0204470
- 661339 - Aronia melanocarpa: 10.1021/JF0486850
- 661339 - Aronia melanocarpa: LTS0204470
- 6656 - Arthropoda: LTS0204470
- 4345 - Ericaceae: LTS0204470
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0204470
- 3746 - Fragaria: 10.1002/(SICI)1097-0010(199702)73:2<207::AID-JSFA703>3.0.CO;2-8
- 3746 - Fragaria: LTS0204470
- 23066 - Grossulariaceae: LTS0204470
- 50557 - Insecta: LTS0204470
- 3398 - Magnoliopsida: LTS0204470
- 33208 - Metazoa: LTS0204470
- 4530 - Oryza sativa: 10.1016/J.CBI.2006.08.003
- 3754 - Prunus: LTS0204470
- 42229 - Prunus avium:
- 42229 - Prunus avium: 10.1002/(SICI)1097-0010(199702)73:2<207::AID-JSFA703>3.0.CO;2-8
- 42229 - Prunus avium: 10.1016/S0023-6438(03)00143-9
- 42229 - Prunus avium: 10.1016/S0308-8146(01)00231-X
- 42229 - Prunus avium: 10.1021/JF00050A015
- 42229 - Prunus avium: LTS0204470
- 3801 - Ribes: LTS0204470
- 78511 - Ribes nigrum:
- 78511 - Ribes nigrum: 10.1002/(SICI)1097-0010(199702)73:2<207::AID-JSFA703>3.0.CO;2-8
- 78511 - Ribes nigrum: 10.1021/JF0486850
- 78511 - Ribes nigrum: LTS0204470
- 175228 - Ribes rubrum: 10.1021/JF0486850
- 175228 - Ribes rubrum: LTS0204470
- 135518 - Ribes uva-crispa: 10.1021/JF0486850
- 135518 - Ribes uva-crispa: LTS0204470
- 3745 - Rosaceae: LTS0204470
- 23216 - Rubus: 10.1002/(SICI)1097-0010(199702)73:2<207::AID-JSFA703>3.0.CO;2-8
- 23216 - Rubus: 10.1002/JSFA.1885
- 23216 - Rubus: LTS0204470
- 32247 - Rubus idaeus: 10.1002/(SICI)1097-0010(199702)73:2<207::AID-JSFA703>3.0.CO;2-8
- 32247 - Rubus idaeus: LTS0204470
- 4201 - Sambucus: LTS0204470
- 4202 - Sambucus nigra: 10.1021/JF0486850
- 4202 - Sambucus nigra: LTS0204470
- 35493 - Streptophyta: LTS0204470
- 58023 - Tracheophyta: LTS0204470
- 13749 - Vaccinium: LTS0204470
- 472369 - Vaccinium angustifolium:
- 472369 - Vaccinium angustifolium: 10.1002/(SICI)1097-0010(199702)73:2<207::AID-JSFA703>3.0.CO;2-8
- 472369 - Vaccinium angustifolium: 10.1111/J.1365-2621.1994.TB08189.X
- 472369 - Vaccinium angustifolium: LTS0204470
- 69266 - Vaccinium corymbosum:
- 69266 - Vaccinium corymbosum: 10.1002/JSFA.1885
- 69266 - Vaccinium corymbosum: 10.1111/J.1365-2621.1994.TB08189.X
- 69266 - Vaccinium corymbosum: LTS0204470
- 33090 - Viridiplantae: LTS0204470
- 3602 - Vitaceae: LTS0204470
- 3603 - Vitis: LTS0204470
- 3605 - Vitis aestivalis: 10.1002/JSFA.1885
- 3605 - Vitis aestivalis: LTS0204470
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1002/JSFA.1885
- 29760 - Vitis vinifera: 10.1002/JSSC.200401822
- 29760 - Vitis vinifera: 10.1016/J.JFCA.2004.02.010
- 29760 - Vitis vinifera: 10.1021/JF0346612
- 29760 - Vitis vinifera: 10.1021/JF0346612.S001
- 29760 - Vitis vinifera: 10.1080/09571260120095030
- 29760 - Vitis vinifera: 10.21548/25-2-2143
- 29760 - Vitis vinifera: LTS0204470
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Warathit Semmarath, Sariya Mapoung, Sonthaya Umsumarng, Punnida Arjsri, Kamonwan Srisawad, Pilaiporn Thippraphan, Supachai Yodkeeree, Pornngarm Dejkriengkraikul. Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3 Inflammasome Pathway.
Nutrients.
2022 Jun; 14(13):. doi:
10.3390/nu14132738
. [PMID: 35807916] - Jim Fang, Jiannan Huang. Accumulation of plasma levels of anthocyanins following multiple saskatoon berry supplements.
Xenobiotica; the fate of foreign compounds in biological systems.
2020 Apr; 50(4):454-457. doi:
10.1080/00498254.2019.1637967
. [PMID: 31269857] - Weihua Liu, Jinmei Xu, Yilun Liu, Xiaoping Yu, Xi Tang, Zhi Wang, Xin Li. Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo.
Molecular medicine reports.
2014 Oct; 10(4):1921-6. doi:
10.3892/mmr.2014.2414
. [PMID: 25070704] - Gui-Fang Deng, Xiang-Rong Xu, Yuan Zhang, Dan Li, Ren-You Gan, Hua-Bin Li. Phenolic compounds and bioactivities of pigmented rice.
Critical reviews in food science and nutrition.
2013; 53(3):296-306. doi:
10.1080/10408398.2010.529624
. [PMID: 23216001] - Andreja Vanzo, Urska Vrhovsek, Federica Tramer, Fulvio Mattivi, Sabina Passamonti. Exceptionally fast uptake and metabolism of cyanidin 3-glucoside by rat kidneys and liver.
Journal of natural products.
2011 May; 74(5):1049-54. doi:
10.1021/np100948a
. [PMID: 21510696] - Aly R Abdel-Moemin. Switching to black rice diets modulates low-density lipoprotein oxidation and lipid measurements in rabbits.
The American journal of the medical sciences.
2011 Apr; 341(4):318-24. doi:
10.1097/maj.0b013e3182019f62
. [PMID: 21289511] - Tomoyuki Oki, Ikuo Suda, Norihiko Terahara, Maki Sato, Minoru Hatakeyama. Determination of acylated anthocyanin in human urine after ingesting a purple-fleshed sweet potato beverage with various contents of anthocyanin by LC-ESI-MS/MS.
Bioscience, biotechnology, and biochemistry.
2006 Oct; 70(10):2540-3. doi:
10.1271/bbb.60187
. [PMID: 17031052] - Séverine Talavéra, Catherine Felgines, Odile Texier, Catherine Besson, Claudine Manach, Jean-Louis Lamaison, Christian Rémésy. Anthocyanins are efficiently absorbed from the small intestine in rats.
The Journal of nutrition.
2004 Sep; 134(9):2275-9. doi:
10.1093/jn/134.9.2275
. [PMID: 15333716] - Séverine Talavéra, Catherine Felgines, Odile Texier, Catherine Besson, Jean-Louis Lamaison, Christian Rémésy. Anthocyanins are efficiently absorbed from the stomach in anesthetized rats.
The Journal of nutrition.
2003 Dec; 133(12):4178-82. doi:
10.1093/jn/133.12.4178
. [PMID: 14652368]