Galactinol (BioDeep_00000018671)

 

Secondary id: BioDeep_00000003578

human metabolite Endogenous


代谢物信息卡片


(1S,2R,3R,4S,5S,6R)-6-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexane-1,2,3,4,5-pentol

化学式: C12H22O11 (342.11620619999997)
中文名称: 肌醇半乳糖苷水合物
谱图信息: 最多检出来源 Viridiplantae(plant) 0.36%

分子结构信息

SMILES: C(C1C(C(C(C(O1)OC2C(C(C(C(C2O)O)O)O)O)O)O)O)O
InChI: InChI=1S/C12H22O11/c13-1-2-3(14)4(15)10(21)12(22-2)23-11-8(19)6(17)5(16)7(18)9(11)20/h2-21H,1H2/t2-,3+,4+,5-,6-,7+,8+,9+,10-,11-,12-/m1/s1

描述信息

Galactinol belongs to the class of organic compounds known as O-glycosyl compounds. These are glycoside in which a sugar group is bonded through one carbon to another group via an O-glycosidic bond. Galactinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Galactinol is an intermediate in galactose metabolism. Galactinol is the fourth-to-last step in the synthesis of D-galactose and the third-to-last step in the synthesis of D-glucose and D-fructose. Galactinol is converted from UDP-galactose via the enzyme inositol 3-alpha-galactosyltransferase (EC 2.4.1.123). It is then converted into raffinose via the enzyme raffinose synthase (EC 2.4.1.82).
Constituent of sugar-beet juice, castor-oil seed meal and potatoes after cold storage

同义名列表

20 个代谢物同义名

(1S,2R,3R,4S,5S,6R)-6-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexane-1,2,3,4,5-pentol; 2,3,4,5,6-pentahydroxycyclohexyl hexopyranoside; O-alpha-D-Galactosyl-(1->3)-1D-myo-inositol; 3-O-alpha-D-Galactopyranosyl-D-myo-inositol; O-Α-D-galactosyl-(1->3)-1D-myo-inositol; O-a-D-Galactosyl-(1->3)-1D-myo-inositol; 3-O-α-D-Galactopyranosyl-D-myo-inositol; 3-O-alpha-D-Galactosyl-1D-myo-inositol; 1-O-alpha-D-Galactosyl-D-myo-inositol; α-D-galactosyl-(1->3)-1D-myo-inositol; a-D-Galactosyl-(1->3)-1D-myo-inositol; 3-O-a-D-Galactosyl-1D-myo-inositol; 3-O-Α-D-galactosyl-1D-myo-inositol; 1-O-Α-D-galactosyl-D-myo-inositol; 1-O-a-D-Galactosyl-D-myo-inositol; 1-alpha-D-Galactosyl-myo-inositol; 1-a-D-Galactosyl-myo-inositol; 1-Α-D-galactosyl-myo-inositol; galactinol dihydrate; Galactinol



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(6)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

20 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Avriti Ranjan, Rahul Michael, Swati Gautam, Prabodh Kumar Trivedi. HY5-dependent light-mediated regulation of galactinol synthase gene, AtGolS1, modulates galactinol biosynthesis in Arabidopsis. Biochemical and biophysical research communications. 2024 Feb; 695(?):149423. doi: 10.1016/j.bbrc.2023.149423. [PMID: 38157630]
  • YuDong Liu, Li Zhang, SiDa Meng, HuiDong Zhang, Shuo Wang, ChuanQiang Xu, YuFeng Liu, Tao Xu, Yi He, YiQing Cui, ChangHua Tan, TianLai Li, MingFang Qi. Galactinol Regulates JA Biosynthesis to Enhance Tomato Cold Tolerance. Journal of agricultural and food chemistry. 2024 Jan; ?(?):. doi: 10.1021/acs.jafc.3c08710. [PMID: 38286812]
  • Yongheng Zhang, Yezi Xiao, Yingao Zhang, Yuan Dong, Yingqing Liu, Lu Liu, Siqing Wan, Jingyuan He, Youben Yu. Accumulation of Galactinol and ABA Is Involved in Exogenous EBR-Induced Drought Tolerance in Tea Plants. Journal of agricultural and food chemistry. 2022 Oct; 70(41):13391-13403. doi: 10.1021/acs.jafc.2c04892. [PMID: 36218024]
  • Huilin Zhang, Zheng Sun, Shan Feng, Junwei Zhang, Fan Zhang, Wenen Wang, Huirong Hu, Wei Zhang, Manzhu Bao. The C2H2-type zinc finger protein PhZFP1 regulates cold stress tolerance by modulating galactinol synthesis in Petunia hybrida. Journal of experimental botany. 2022 10; 73(18):6434-6448. doi: 10.1093/jxb/erac274. [PMID: 35726094]
  • Tao Li, Yumin Zhang, Ying Liu, Xudong Li, Guanglong Hao, Qinghui Han, Lynnette M A Dirk, A Bruce Downie, Yong-Ling Ruan, Jianmin Wang, Guoying Wang, Tianyong Zhao. Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and Arabidopsis plants. The Journal of biological chemistry. 2020 06; 295(23):8064-8077. doi: 10.1074/jbc.ra120.013948. [PMID: 32366461]
  • YuDong Liu, Li Zhang, SiDa Meng, YuFeng Liu, XiaOmeng Zhao, ChunPeng Pang, HuiDong Zhang, Tao Xu, Yi He, MingFang Qi, Tianlai Li. Expression of galactinol synthase from Ammopiptanthus nanus in tomato improves tolerance to cold stress. Journal of experimental botany. 2020 01; 71(1):435-449. doi: 10.1093/jxb/erz450. [PMID: 31616940]
  • Li Hua Cui, Mi Young Byun, Hyeong Geun Oh, Sung Jin Kim, Jungeun Lee, Hyun Park, Hyoungseok Lee, Woo Taek Kim. Poaceae Type II Galactinol Synthase 2 from Antarctic Flowering Plant Deschampsia antarctica and Rice Improves Cold and Drought Tolerance by Accumulation of Raffinose Family Oligosaccharides in Transgenic Rice Plants. Plant & cell physiology. 2020 Jan; 61(1):88-104. doi: 10.1093/pcp/pcz180. [PMID: 31513272]
  • Yin Jing, Sirui Lang, Dongmei Wang, Hua Xue, Xiao-Feng Wang. Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds. Journal of plant physiology. 2018 Nov; 230(?):109-121. doi: 10.1016/j.jplph.2018.10.011. [PMID: 30368031]
  • Thibault Meyer, Armelle Vigouroux, Magali Aumont-Nicaise, Gilles Comte, Ludovic Vial, Céline Lavire, Solange Moréra. The plant defense signal galactinol is specifically used as a nutrient by the bacterial pathogen Agrobacterium fabrum. The Journal of biological chemistry. 2018 05; 293(21):7930-7941. doi: 10.1074/jbc.ra118.001856. [PMID: 29602905]
  • Vítor da Silveira Falavigna, Diogo Denardi Porto, Yohanna Evelyn Miotto, Henrique Pessoa Dos Santos, Paulo Ricardo Dias de Oliveira, Márcia Margis-Pinheiro, Giancarlo Pasquali, Luís Fernando Revers. Evolutionary diversification of galactinol synthases in Rosaceae: adaptive roles of galactinol and raffinose during apple bud dormancy. Journal of experimental botany. 2018 02; 69(5):1247-1259. doi: 10.1093/jxb/erx451. [PMID: 29373762]
  • Prafull Salvi, Nitin Uttam Kamble, Manoj Majee. Stress-Inducible Galactinol Synthase of Chickpea (CaGolS) is Implicated in Heat and Oxidative Stress Tolerance Through Reducing Stress-Induced Excessive Reactive Oxygen Species Accumulation. Plant & cell physiology. 2018 Jan; 59(1):155-166. doi: 10.1093/pcp/pcx170. [PMID: 29121266]
  • Udhaya Kannan, Roopam Sharma, Yogendra Khedikar, Manu P Gangola, Seedhabadee Ganeshan, Monica Båga, Ravindra N Chibbar. Differential expression of two galactinol synthase isoforms LcGolS1 and LcGolS2 in developing lentil (Lens culinaris Medik. cv CDC Redberry) seeds. Plant physiology and biochemistry : PPB. 2016 Nov; 108(?):422-433. doi: 10.1016/j.plaphy.2016.08.004. [PMID: 27552180]
  • Prafull Salvi, Saurabh Chandra Saxena, Bhanu Prakash Petla, Nitin Uttam Kamble, Harmeet Kaur, Pooja Verma, Venkateswara Rao, Shraboni Ghosh, Manoj Majee. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation. Scientific reports. 2016 10; 6(?):35088. doi: 10.1038/srep35088. [PMID: 27725707]
  • Chieun Song, Woo Sik Chung, Chae Oh Lim. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis. Molecules and cells. 2016 Jun; 39(6):477-83. doi: 10.14348/molcells.2016.0027. [PMID: 27109422]
  • Deborah de Souza Vidigal, Leo Willems, Jeroen van Arkel, Bas J W Dekkers, Henk W M Hilhorst, Leónie Bentsink. Galactinol as marker for seed longevity. Plant science : an international journal of experimental plant biology. 2016 May; 246(?):112-118. doi: 10.1016/j.plantsci.2016.02.015. [PMID: 26993241]
  • Paz Zúñiga-González, Gustavo E Zúñiga, Marisol Pizarro, Angélica Casanova-Katny. Soluble carbohydrate content variation in Sanionia uncinata and Polytrichastrum alpinum, two Antarctic mosses with contrasting desiccation capacities. Biological research. 2016 Jan; 49(?):6. doi: 10.1186/s40659-015-0058-z. [PMID: 26823072]
  • Genoa L H Barchet, Rebecca Dauwe, Robert D Guy, William R Schroeder, Raju Y Soolanayakanahally, Malcolm M Campbell, Shawn D Mansfield. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling. Tree physiology. 2014 Nov; 34(11):1203-19. doi: 10.1093/treephys/tpt080. [PMID: 24178982]
  • Jie Zhou, Yang Yang, Juan Yu, Like Wang, Xiang Yu, Misato Ohtani, Miyako Kusano, Kazuki Saito, Taku Demura, Qiang Zhuge. Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses. Journal of plant research. 2014 Mar; 127(2):347-58. doi: 10.1007/s10265-013-0597-8. [PMID: 24190064]
  • Chunliu Zhuo, Ting Wang, Shaoyun Lu, Yaqing Zhao, Xiaoguang Li, Zhenfei Guo. A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiologia plantarum. 2013 Sep; 149(1):67-78. doi: 10.1111/ppl.12019. [PMID: 23253102]
  • Juqing Kang, Huiting Zhang, Tianshu Sun, Yihao Shi, Jianqiao Wang, Baocai Zhang, Zhiheng Wang, Yihua Zhou, Hongya Gu. Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China. The New phytologist. 2013 Sep; 199(4):1069-1080. doi: 10.1111/nph.12335. [PMID: 23721132]
  • Zhibin Sun, Xingyun Qi, Zenglan Wang, Pinghua Li, Chunxia Wu, Hui Zhang, Yanxiu Zhao. Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant physiology and biochemistry : PPB. 2013 Aug; 69(?):82-9. doi: 10.1016/j.plaphy.2013.04.009. [PMID: 23728391]
  • Alieta Eyles, Elizabeth A Pinkard, Noel W Davies, Ross Corkrey, Keith Churchill, Anthony P O'Grady, Peter Sands, Caroline Mohammed. Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings. Journal of experimental botany. 2013 Apr; 64(6):1625-36. doi: 10.1093/jxb/ert017. [PMID: 23382548]
  • Katherine B Hagely, Debra Palmquist, Kristin D Bilyeu. Classification of distinct seed carbohydrate profiles in soybean. Journal of agricultural and food chemistry. 2013 Feb; 61(5):1105-11. doi: 10.1021/jf303985q. [PMID: 23317449]
  • Mei-Liang Zhou, Qian Zhang, Ming Zhou, Zhan-Min Sun, Xue-Mei Zhu, Ji-Rong Shao, Yi-Xiong Tang, Yan-Min Wu. Genome-wide identification of genes involved in raffinose metabolism in Maize. Glycobiology. 2012 Dec; 22(12):1775-85. doi: 10.1093/glycob/cws121. [PMID: 22879458]
  • Jérémy Pillet, Aurélie Egert, Philippe Pieri, Fatma Lecourieux, Christian Kappel, Justine Charon, Eric Gomès, Felix Keller, Serge Delrot, David Lecourieux. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant & cell physiology. 2012 Oct; 53(10):1776-92. doi: 10.1093/pcp/pcs121. [PMID: 22952249]
  • Verónica A Lombardo, Sonia Osorio, Julia Borsani, Martin A Lauxmann, Claudia A Bustamante, Claudio O Budde, Carlos S Andreo, María V Lara, Alisdair R Fernie, María F Drincovich. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant physiology. 2011 Dec; 157(4):1696-710. doi: 10.1104/pp.111.186064. [PMID: 22021422]
  • Yun Kang, Yuanhong Han, Ivone Torres-Jerez, Mingyi Wang, Yuhong Tang, Maria Monteros, Michael Udvardi. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. The Plant journal : for cell and molecular biology. 2011 Dec; 68(5):871-89. doi: 10.1111/j.1365-313x.2011.04738.x. [PMID: 21838776]
  • Yushi Ishibashi, Haruka Yamaguchi, Takashi Yuasa, Mari Iwaya-Inoue, Susumu Arima, Shao-Hui Zheng. Hydrogen peroxide spraying alleviates drought stress in soybean plants. Journal of plant physiology. 2011 Sep; 168(13):1562-7. doi: 10.1016/j.jplph.2011.02.003. [PMID: 21377755]
  • Ryan N Philippe, Steven G Ralph, Shawn D Mansfield, Jörg Bohlmann. Transcriptome profiles of hybrid poplar (Populus trichocarpa × deltoides) reveal rapid changes in undamaged, systemic sink leaves after simulated feeding by forest tent caterpillar (Malacosoma disstria). The New phytologist. 2010 Nov; 188(3):787-802. doi: 10.1111/j.1469-8137.2010.03392.x. [PMID: 20955416]
  • Mi Seong Kim, Song Mi Cho, Eun Young Kang, Yang Ju Im, Hoon Hwangbo, Young Cheol Kim, Choong-Min Ryu, Kwang Yeol Yang, Gap Chae Chung, Baik Ho Cho. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Molecular plant-microbe interactions : MPMI. 2008 Dec; 21(12):1643-53. doi: 10.1094/mpmi-21-12-1643. [PMID: 18986260]
  • Ayako Nishizawa, Yukinori Yabuta, Shigeru Shigeoka. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant physiology. 2008 Jul; 147(3):1251-63. doi: 10.1104/pp.108.122465. [PMID: 18502973]
  • Minmin Miao, Xiaofeng Xu, Xuehao Chen, Linbao Xue, Beisheng Cao. Cucumber carbohydrate metabolism and translocation under chilling night temperature. Journal of plant physiology. 2007 May; 164(5):621-8. doi: 10.1016/j.jplph.2006.02.005. [PMID: 16616970]
  • Yun Kang, William H Outlaw, Giordano B Fiore, Kimberly A Riddle. Guard cell apoplastic photosynthate accumulation corresponds to a phloem-loading mechanism. Journal of experimental botany. 2007; 58(15-16):4061-70. doi: 10.1093/jxb/erm262. [PMID: 18182421]
  • Matthew A Hannah, Ellen Zuther, Kerstin Buchel, Arnd G Heyer. Transport and metabolism of raffinose family oligosaccharides in transgenic potato. Journal of experimental botany. 2006; 57(14):3801-11. doi: 10.1093/jxb/erl152. [PMID: 17050641]
  • Nariaki Wakiuchi, Ryohei Shiomi, Hajime Tamaki. Production of galactinol from sucrose by plant enzymes. Bioscience, biotechnology, and biochemistry. 2003 Jul; 67(7):1465-71. doi: 10.1271/bbb.67.1465. [PMID: 12913288]
  • Brian G Ayre, Felix Keller, Robert Turgeon. Symplastic continuity between companion cells and the translocation stream: long-distance transport is controlled by retention and retrieval mechanisms in the phloem. Plant physiology. 2003 Apr; 131(4):1518-28. doi: 10.1104/pp.012054. [PMID: 12692312]
  • William D Hitz, Thomas J Carlson, Phil S Kerr, Scott A Sebastian. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant physiology. 2002 Feb; 128(2):650-60. doi: 10.1104/pp.010585. [PMID: 11842168]
  • Teruaki Taji, Chieko Ohsumi, Satoshi Iuchi, Motoaki Seki, Mie Kasuga, Masatomo Kobayashi, Kazuko Yamaguchi-Shinozaki, Kazuo Shinozaki. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. 2002 Feb; 29(4):417-26. doi: 10.1046/j.0960-7412.2001.01227.x. [PMID: 11846875]
  • T Peterbauer, L B Lahuta, A Blöchl, J Mucha, D A Jones, C L Hedley, R J Gòrecki, A Richter. Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant physiology. 2001 Dec; 127(4):1764-72. doi: . [PMID: 11743119]
  • K G Nickerson, J Liao, E A Kabat. A monoclonal IgM kappa from a blood group B individual with specificity for alpha-galactosyl epitopes on partially hydrolyzed blood group B substance. Carbohydrate research. 1993 May; 243(2):345-57. doi: 10.1016/0008-6215(93)87038-t. [PMID: 7688662]
  • . . . . doi: . [PMID: 12244450]
  • . . . . doi: . [PMID: 10334866]