Dimethyl trisulfide (BioDeep_00000000698)

 

Secondary id: BioDeep_00000865952

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


FLAMMABLE LIQUID, N.O.S. (DIMETHYL TRISULPHIDE)

化学式: C2H6S3 (125.9632)
中文名称: 二甲基三硫化物, 二甲基三硫
谱图信息: 最多检出来源 Homo sapiens(feces) 8.39%

分子结构信息

SMILES: CSSSC
InChI: InChI=1S/C2H6S3/c1-3-5-4-2/h1-2H3

描述信息

Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, and is involved in the unpalatable aroma of aged beer and stale Japanese sake. It is a decomposition product from bacterial decomposition, including from the early stages of human decomposition, and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). These flies are attracted to the odor of fetid meat and help pollinate this plant. DMTS contributes to the foul odor given off by the fungus Phallus impudicus, also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, and contributes to the odor of human feces. Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097) (Wikipedia).
Found in essential oil of hop (Humulus lupulus), garlic (Allium sativum), shallot (Allium cepa) and ramsons (Allium ursinum)and is also found in pineapple, raw cabbage, kohrabi, roasted filberts, roasted peanuts, edible mushrooms, brussel sprouts, fermented radish, Chinese cabbage, parsnips, scallop and squid. The major off-flavour principle of overcooked brassicas. Flavouring ingredient.
Dimethyl trisulfide is an organic trisulfide.
Dimethyl trisulfide is a natural product found in Psidium guajava, Allium chinense, and other organisms with data available.
dimethyltrisulfide is a metabolite found in or produced by Saccharomyces cerevisiae.
Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].
Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

同义名列表

45 个代谢物同义名

FLAMMABLE LIQUID, N.O.S. (DIMETHYL TRISULPHIDE); Dimethyl trisulfide, analytical standard; 1,3-Dimethyltrisulfane (ACD/Name 4.0); methylsulfanyldisulfanyl-methane; InChI=1/C2H6S3/c1-3-5-4-2/h1-2H; Dimethyl trisulfide, >=98\\%, FG; 2,3,4-Trithiapentane; NSC 97324; (Methyltrisulphanyl)methane; YWHLKYXPLRWGSE-UHFFFAOYSA-N; DIMETHYL TRISULFIDE [FHFI]; (methyltrisulfanyl)methane; (Methyldisulfanyl)methane; 1,3-Dimethyltrisulfane #; Methyldisulfanylmethane; 1,3-Dimethyltrisulfane; trisulfane, dimethyl-; (methyldithio)Methane; 2,3,4-Trithiapentane; Trisulfide, dimethyl; Dimethyl trisulphide; Dimethyl trisulfide; Dimethyltrisulphide; Dimethyl disulphide; Methyldithiomethane; 2,4-Trithiapentane; Dimethyl trisufide; dimethyltrisulfane; Disulfide dimethyl; DIMETHYLTRISULFIDE; Dimethyl disulfide; Dimethyldisulfide; Sulfa-hitech 0382; Methyl trisulfide; 2,3-Dithiabutane; Methyl disulfide; Methyldisulfide; UNII-3E691T3NL1; Sulfa-hitech; 3E691T3NL1; AI3-26172; CH3SSSCH3; DMTS; DMDS; Dimethyl trisulfide; Dimethyl trisulfide



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

35 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ALB, APIP, CYP2E1, HSPA1B, MRI1, PQBP1, PRNP, SLC9A1
Peripheral membrane protein 1 CYP2E1
Endoplasmic reticulum membrane 1 CYP2E1
Nucleus 6 ALB, HSPA1B, MPO, MRI1, PQBP1, TRIM33
cytosol 8 ALB, ANK1, APIP, HSPA1B, MRI1, PRNP, SST, TRDN
dendrite 1 PRNP
nuclear body 1 PQBP1
centrosome 2 ALB, HSPA1B
nucleoplasm 7 HSPA1B, MPO, MRI1, PQBP1, SLC9A1, TRDN, TRIM33
Cell membrane 4 PRNP, SLC9A1, TRDN, TRPA1
lamellipodium 1 SLC9A1
Cytoplasmic granule 1 PQBP1
Multi-pass membrane protein 2 SLC9A1, TRPA1
cell surface 2 PRNP, SLC9A1
Golgi apparatus 3 ALB, ATRN, PRNP
Golgi membrane 1 INS
mitochondrial inner membrane 1 CYP2E1
neuronal cell body 1 SST
postsynapse 1 PRNP
sarcolemma 1 ANK1
Lysosome 1 MPO
plasma membrane 7 ANK1, ATRN, PRNP, SLC9A1, SSTR4, TRDN, TRPA1
terminal bouton 1 PRNP
Membrane 5 ANK1, PRNP, SLC9A1, TRDN, TRPA1
apical plasma membrane 1 SLC9A1
basolateral plasma membrane 2 ANK1, SLC9A1
extracellular exosome 6 ALB, ATRN, HSPA1B, MPO, PRNP, SLC9A1
endoplasmic reticulum 4 ALB, HSPA1B, PRNP, TRDN
extracellular space 6 ALB, ATRN, INS, MPO, SST, TST
perinuclear region of cytoplasm 2 HSPA1B, SLC9A1
intercalated disc 1 SLC9A1
mitochondrion 4 HSPA1B, PRNP, SLC9A1, TST
protein-containing complex 2 ALB, HSPA1B
intracellular membrane-bounded organelle 3 CYP2E1, MPO, PRNP
Microsome membrane 1 CYP2E1
postsynaptic density 1 PRNP
Single-pass type I membrane protein 1 ATRN
Secreted 4 ALB, INS, PRB1, SST
extracellular region 6 ALB, HSPA1B, INS, MPO, PRB1, SST
cytoplasmic side of plasma membrane 1 ANK1
Mitochondrion outer membrane 1 PRNP
Single-pass membrane protein 1 PRNP
mitochondrial outer membrane 1 PRNP
[Isoform 2]: Secreted 1 ATRN
Mitochondrion matrix 1 TST
mitochondrial matrix 1 TST
anchoring junction 1 ALB
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 HSPA1B
nuclear membrane 1 PRNP
external side of plasma membrane 1 PRNP
T-tubule 1 SLC9A1
Z disc 1 ANK1
Single-pass type II membrane protein 1 TRDN
vesicle 1 HSPA1B
postsynaptic membrane 1 ANK1
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 2 PRNP, SLC9A1
Cytoplasm, cytoskeleton 1 ANK1
focal adhesion 2 HSPA1B, SLC9A1
axolemma 1 ANK1
GABA-ergic synapse 1 SST
sarcoplasmic reticulum 2 ANK1, TRDN
secretory granule 1 MPO
nuclear speck 2 HSPA1B, PQBP1
neuron projection 2 ANK1, SSTR4
ciliary basal body 1 ALB
chromatin 1 TRIM33
stereocilium bundle 1 TRPA1
cell projection 1 MRI1
cytoskeleton 1 ANK1
centriole 2 ALB, HSPA1B
spindle pole 1 ALB
blood microparticle 2 ALB, HSPA1B
Basolateral cell membrane 1 SLC9A1
Lipid-anchor, GPI-anchor 1 PRNP
[Isoform 3]: Secreted 1 ATRN
fibrillar center 1 MRI1
endosome lumen 1 INS
M band 1 ANK1
cytoplasmic stress granule 1 PQBP1
Nucleus speckle 1 PQBP1
side of membrane 1 PRNP
azurophil granule 1 MPO
ficolin-1-rich granule lumen 1 HSPA1B
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 ALB, INS
platelet alpha granule lumen 1 ALB
extrinsic component of membrane 1 PRNP
transport vesicle 1 INS
azurophil granule lumen 1 MPO
Sarcoplasmic reticulum membrane 1 TRDN
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
neuronal dense core vesicle 1 SST
aggresome 1 HSPA1B
Sarcoplasmic reticulum lumen 1 TRDN
junctional sarcoplasmic reticulum membrane 1 TRDN
phagocytic vesicle lumen 1 MPO
ribonucleoprotein complex 1 HSPA1B
[Isoform 1]: Cell membrane 1 ATRN
neuronal ribonucleoprotein granule 1 PQBP1
spectrin-associated cytoskeleton 1 ANK1
ankyrin-1 complex 1 ANK1
inclusion body 2 HSPA1B, PRNP
[Isoform Mu18]: Sarcoplasmic reticulum 1 ANK1
[Isoform Mu19]: Sarcoplasmic reticulum 1 ANK1
[Isoform Mu20]: Sarcoplasmic reticulum 1 ANK1
cation-transporting ATPase complex 1 SLC9A1
ciliary transition fiber 1 ALB
junctional membrane complex 1 TRDN


文献列表

  • Qi Zhou, Chang Zheng, Fang Wei, Yini Yang. Flavor precursors identification and thermal degradation mechanisms of glucoerucin in fragrant rapeseed oil. Food chemistry. 2023 Sep; 435(?):137484. doi: 10.1016/j.foodchem.2023.137484. [PMID: 37778265]
  • An-Dong Gong, Yin-Yu Lei, Wei-Jie He, Yu-Cai Liao, Ling Ma, Tian-Tian Zhang, Jing-Bo Zhang. The Inhibitory Effect of Pseudomonas stutzeri YM6 on Aspergillus flavus Growth and Aflatoxins Production by the Production of Volatile Dimethyl Trisulfide. Toxins. 2022 11; 14(11):. doi: 10.3390/toxins14110788. [PMID: 36422962]
  • Seiya Nagai, Masaki Yoshida, Yuta Takigawa, Seiji Torii, Ichiro Koshiishi. Botanical sulfane sulfur donors inhibit ferroptotic cell death caused by the depletion of cysteine. Food chemistry. 2021 May; 343(?):128511. doi: 10.1016/j.foodchem.2020.128511. [PMID: 33168263]
  • Subrata Bhadra, Vikhyat S Bebarta, Tara B Hendry-Hofer, Dennean S Lippner, Jessica N Winborn, Gary A Rockwood, Brian A Logue. Analysis of the Soil Fumigant, Dimethyl Disulfide, in Swine Blood by Dynamic Headspace Gas Chromatography-Mass Spectroscopy. Journal of chromatography. A. 2021 Feb; 1638(?):461856. doi: 10.1016/j.chroma.2020.461856. [PMID: 33485031]
  • Lihua Tang, Jianyou Mo, Tangxun Guo, Suiping Huang, Qili Li, Ping Ning, Tom Hsiang. In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango. World journal of microbiology & biotechnology. 2019 Dec; 36(1):4. doi: 10.1007/s11274-019-2781-z. [PMID: 31832786]
  • Cencen Yu, Chenfei Shi, Ming Ji, Xiaoguang Xu, Zhongqian Zhang, Jie Ma, Guoxiang Wang. Taste and odor compounds associated with aquatic plants in Taihu Lake: distribution and producing potential. Environmental science and pollution research international. 2019 Nov; 26(33):34510-34520. doi: 10.1007/s11356-019-06188-6. [PMID: 31643015]
  • Y Jo, B G Carter, D M Barbano, M A Drake. Identification of the source of volatile sulfur compounds produced in milk during thermal processing. Journal of dairy science. 2019 Oct; 102(10):8658-8669. doi: 10.3168/jds.2019-16607. [PMID: 31351718]
  • Yoshihiro Tamada, Misato Tokui, Nobuo Yamashita, Takafumi Kubodera, Takahiro Akashi. Analyzing the relationship between the inorganic element profile of sake dilution water and dimethyl trisulfide formation using multi-element profiling. Journal of bioscience and bioengineering. 2019 Jun; 127(6):710-713. doi: 10.1016/j.jbiosc.2018.11.013. [PMID: 30598402]
  • Lóránd Kiss, Anna Duke, Kristof Kovacs, Tibor Barcza, Márton Kiss, Ilona Petrikovics, David E Thompson. Sealing Effects on the Storage Stability of the Cyanide Antidotal Candidate, Dimethyl Trisulfide. Drugs in R&D. 2018 Mar; 18(1):45-49. doi: 10.1007/s40268-017-0220-x. [PMID: 29214385]
  • Gao Chen, Wei-Chang Gong, Jia Ge, Johann Schinnerl, Bin Wang, Wei-Bang Sun. Variation in floral characters, particularly floral scent, in sapromyophilous Stemona species. Journal of integrative plant biology. 2017 Nov; 59(11):825-839. doi: 10.1111/jipb.12580. [PMID: 28836349]
  • Kristof Kovacs, Prashanth K Jayanna, Anna Duke, Brittany Winner, Melaeni Negrito, Siva Angalakurthi, Jorn C C Yu, Petra Füredi, Krisztina Ludányi, Peter Sipos, Gary A Rockwood, Ilona Petrikovics. A Lipid Base Formulation for Intramuscular Administration of a Novel Sulfur Donor for Cyanide Antagonism. Current drug delivery. 2016; 13(8):1351-1357. doi: 10.2174/1567201813666160321115851. [PMID: 26996369]
  • Bekka S Brodie, Tamara Babcock, Regine Gries, Arlan Benn, Gerhard Gries. Acquired Smell? Mature Females of the Common Green Bottle Fly Shift Semiochemical Preferences from Feces Feeding Sites to Carrion Oviposition Sites. Journal of chemical ecology. 2016 Jan; 42(1):40-50. doi: 10.1007/s10886-015-0658-7. [PMID: 26637207]
  • John A Byers. Earwigs (Labidura riparia) mimic rotting-flesh odor to deceive vertebrate predators. Die Naturwissenschaften. 2015 Aug; 102(7-8):38. doi: 10.1007/s00114-015-1288-1. [PMID: 26071006]
  • Robin D Couch, Allyson Dailey, Fatima Zaidi, Karl Navarro, Christopher B Forsyth, Ece Mutlu, Phillip A Engen, Ali Keshavarzian. Alcohol induced alterations to the human fecal VOC metabolome. PloS one. 2015; 10(3):e0119362. doi: 10.1371/journal.pone.0119362. [PMID: 25751150]
  • Simona Casiglia, Maurizio Bruno, Federica Senatore, Felice Senatore. Composition of the Essential Oil of Allium neapolitanum Cirillo Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts. Journal of oleo science. 2015; 64(12):1315-20. doi: 10.5650/jos.ess15188. [PMID: 26632947]
  • Simone Meinardi, Kyu-Bok Jin, Barbara Barletta, Donald R Blake, Nosratola D Vaziri. Exhaled breath and fecal volatile organic biomarkers of chronic kidney disease. Biochimica et biophysica acta. 2013 Mar; 1830(3):2531-7. doi: 10.1016/j.bbagen.2012.12.006. [PMID: 23274524]
  • Pawel Mochalski, Karin Krapf, Clemens Ager, Helmut Wiesenhofer, Agapios Agapiou, Milt Statheropoulos, Dietmar Fuchs, Ernst Ellmerer, Boguslaw Buszewski, Anton Amann. Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings. Toxicology mechanisms and methods. 2012 Sep; 22(7):502-11. doi: 10.3109/15376516.2012.682664. [PMID: 22482743]
  • Sunčica Kocić-Tanackov, Gordana Dimić, Jelena Lević, Ilija Tanackov, Aleksandra Tepić, Biserka Vujičić, Jelica Gvozdanović-Varga. Effects of onion (Allium cepa L.) and garlic (Allium sativum L.) essential oils on the Aspergillus versicolor growth and sterigmatocystin production. Journal of food science. 2012 May; 77(5):M278-84. doi: 10.1111/j.1750-3841.2012.02662.x. [PMID: 22497489]
  • Ill-Min Chung, Hong-Keun Song, Min-A Yeo, Hyung-In Moon. Composition and immunotoxicity activity of major essential oils from stems of Allium victorialis L. var. platyphyllum Makino against Aedes aegypti L. Immunopharmacology and immunotoxicology. 2011 Sep; 33(3):480-3. doi: 10.3109/08923973.2010.539615. [PMID: 21162628]
  • Neslihan Akdeniz, Jacek A Koziel, Hee-Kwon Ahn, Thomas D Glanville, Benjamin P Crawford. Field scale evaluation of volatile organic compound production inside biosecure swine mortality composts. Waste management (New York, N.Y.). 2010 Oct; 30(10):1981-8. doi: 10.1016/j.wasman.2010.05.022. [PMID: 20646921]
  • Nicole M van Dam, Bao-Li Qiu, Cornelis A Hordijk, Louise E M Vet, Jeroen J Jansen. Identification of biologically relevant compounds in aboveground and belowground induced volatile blends. Journal of chemical ecology. 2010 Sep; 36(9):1006-16. doi: 10.1007/s10886-010-9844-9. [PMID: 20737198]
  • Mika Shirasu, Kouki Fujioka, Satoshi Kakishima, Shunji Nagai, Yasuko Tomizawa, Hirokazu Tsukaya, Jin Murata, Yoshinobu Manome, Kazushige Touhara. Chemical identity of a rotting animal-like odor emitted from the inflorescence of the titan arum (Amorphophallus titanum). Bioscience, biotechnology, and biochemistry. 2010; 74(12):2550-4. doi: 10.1271/bbb.100692. [PMID: 21150089]
  • M S Brewer. Irradiation effects on meat flavor: A review. Meat science. 2009 Jan; 81(1):1-14. doi: 10.1016/j.meatsci.2008.07.011. [PMID: 22063956]
  • Małgorzata A Majcher, Henryk H Jeleń. Effect of cysteine and cystine addition on sensory profile and potent odorants of extruded potato snacks. Journal of agricultural and food chemistry. 2007 Jul; 55(14):5754-60. doi: 10.1021/jf0703147. [PMID: 17567142]
  • C Chavez, C D Coufal, J B Carey, R E Lacey, R C Beier, J A Zahn. The impact of supplemental dietary methionine sources on volatile compound concentrations in broiler excreta. Poultry science. 2004 Jun; 83(6):901-10. doi: 10.1093/ps/83.6.901. [PMID: 15206616]
  • A Babu, A Hern, S Dorn. Sources of semiochemicals mediating host finding in Callosobruchus chinensis (Coleoptera: Bruchidae). Bulletin of entomological research. 2003 Jun; 93(3):187-92. doi: 10.1079/ber2003231. [PMID: 12762860]
  • P D Franzmann, A Heitz, L R Zappia, J E Wajon, K Xanthis. The formation of malodorous dimethyl oligosulphides in treated groundwater: the role of biofilms and potential precursors. Water research. 2001 May; 35(7):1730-8. doi: 10.1016/s0043-1354(00)00425-5. [PMID: 11329675]
  • G Preti, L Clark, B J Cowart, R S Feldman, L D Lowry, E Weber, I M Young. Non-oral etiologies of oral malodor and altered chemosensation. Journal of periodontology. 1992 Sep; 63(9):790-6. doi: 10.1902/jop.1992.63.9.790. [PMID: 1474481]
  • J G Moore, L D Jessop, D N Osborne. Gas-chromatographic and mass-spectrometric analysis of the odor of human feces. Gastroenterology. 1987 Dec; 93(6):1321-9. doi: 10.1016/0016-5085(87)90262-9. [PMID: 3678751]