3,4-Dihydroxyhydrocinnamic acid (BioDeep_00000396444)

Main id: BioDeep_00000003369

 

human metabolite PANOMIX_OTCML-2023 blood metabolite


代谢物信息卡片


InChI=1/C9H10O4/c10-7-3-1-6(5-8(7)11)2-4-9(12)13/h1,3,5,10-11H,2,4H2,(H,12,13

化学式: C9H10O4 (182.0579)
中文名称: 3,4-二羟苯基丙酸, 3,4-二羟基苯基丙酸, 二氢咖啡酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: c1(c(ccc(c1)CCC(=O)O)O)O
InChI: InChI=1S/C9H10O4/c10-7-3-1-6(5-8(7)11)2-4-9(12)13/h1,3,5,10-11H,2,4H2,(H,12,13)

描述信息

3,4-Dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid (DHCA), is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID: 15607645) and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract (PMID: 15693705). Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans (PMID: 16038718). Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure conveys the antioxidant effect in plasma and in erythrocytes (PMID: 11768243). 3,4-Dihydroxyhydrocinnamic acid is a microbial metabolite found in Bifidobacterium, Escherichia, Lactobacillus, and Clostridium (PMID: 28393285).
3,4-Dihydroxyhydrocinnamic acid (or Dihydrocaffeic acid, DHCA) is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID 15607645), and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract. (PMID 15693705) Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans. (PMID 16038718) Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure convey the antioxidant effect in plasma and in erythrocytes. (PMID 11768243) [HMDB]. 3-(3,4-Dihydroxyphenyl)propanoic acid is found in red beetroot, common beet, and olive.
3-(3,4-dihydroxyphenyl)propanoic acid is a monocarboxylic acid that is 3-phenylpropionic acid substituted by hydroxy groups at positions 3 and 4. Also known as dihydrocaffeic acid, it is a metabolite of caffeic acid and exhibits antioxidant activity. It has a role as an antioxidant and a human xenobiotic metabolite. It is functionally related to a 3-phenylpropionic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)propanoate.
3-(3,4-Dihydroxyphenyl)propionic acid is a natural product found in Liatris elegans, Polyscias murrayi, and other organisms with data available.
Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].
Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].

同义名列表

48 个代谢物同义名

InChI=1/C9H10O4/c10-7-3-1-6(5-8(7)11)2-4-9(12)13/h1,3,5,10-11H,2,4H2,(H,12,13; 3,4-dihydroxyphenylpropionic acid, potassium salt; 3,4-dihydroxy-(6CI,7CI,8CI)Hydrocinnamic acid; 3-10-00-01517 (Beilstein Handbook Reference); 3-[3,4-bis(oxidanyl)phenyl]propanoic acid; 3,4-dihydroxy-(6CI,7CI,8CI)Hydrocinnamate; 3,4-DIHYDROXY-.BETA.-PHENYLPROPIONIC ACID; 3,4-Dihydroxy-beta-phenylpropionic acid; 3-(3,4-Dihydroxyphenyl)propanoic acid #; 3-(3,4-dihydroxyphenyl) propionic acid; 3,4-Dihydroxyhydrocinnamic acid, 98\\%; Benzenepropanoic acid, 3,4-dihydroxy-; 3-(3,4-Dihydroxyphenyl)propanoic acid; 3-(3,4-Dihydroxyphenyl)propionic acid; BF0C7A6D-A5FC-4B39-819E-5ECC037C0C39; 3,4-Dihydroxy-β-phenylpropionic acid; 3,4-Dihydroxy-b-phenylpropionic acid; 3-(3,4-DIHYDROXYPHENYL)PROPIONICACID; 3,4-Dihydroxy-beta-phenylpropionate; 3,4-Dihydroxy-benzenepropanoic acid; 3,4-Dihydroxybenzenepropanoic acid; Hydrocinnamic acid, 3,4-dihydroxy-; 3,4-Dihydroxybenzenepropionic acid; 3,4-dihydroxyphenylpropionic acid; 3-(3,4-dihydroxyphenyl)propanoate; 3-(3,4-Dihydroxyphenyl)propionate; 3,4-Dihydroxydihydrocinnamic acid; 3,4-dihydroxyhydro cinnamic acid; 3,4-Dihydroxy-β-phenylpropionate; 3,4-Dihydroxy-b-phenylpropionate; Hydrocinnamic acid,4-dihydroxy-; 3,4-dihydroxyhydrocinnamic acid; 3,4-Dihydroxybenzenepropanoate; 3,4-Dihydroxybenzenepropionate; 3,4-Dihydroxydihydrocinnamate; 3,4-Dihydroxyphenylpropionate; 3,4-Dihydroxyphenylpropanoate; 3,4-dihydroxyhydrocinnamate; Dihydrocaffeic acid; Hydrocaffeic acid; Dihydrocaffeate; Dihydrocafeate; Hydrocaffeate; 3,4-HPA; HYKOP; DHC; 3,4-Dihydroxyphenylpropanoate; 3,4-Dihydroxyhydrocinnamic acid



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ATP2B2, CALCA, CAT, MMP3, NOS3, PFDN5, TYR, XDH
Peripheral membrane protein 1 CYP1B1
Endoplasmic reticulum membrane 1 CYP1B1
Nucleus 5 DNMT1, MMP3, NOS3, PFDN5, SOX9
cytosol 7 CAT, IL1B, LIPE, MMP3, NOS3, PFDN5, XDH
nucleoplasm 3 DNMT1, NOS3, SOX9
Cell membrane 4 ATP2B2, LIPE, SELP, TNF
Multi-pass membrane protein 1 ATP2B2
Synapse 2 ACAN, ATP2B2
cell surface 1 TNF
glutamatergic synapse 2 ACAN, ATP2B2
Golgi apparatus 1 NOS3
Golgi membrane 2 INS, NOS3
neuronal cell body 2 CALCA, TNF
Cytoplasm, cytosol 2 IL1B, LIPE
Lysosome 2 IL1B, TYR
plasma membrane 4 ATP2B2, NOS3, SELP, TNF
terminal bouton 1 CALCA
Membrane 5 ATP2B2, CAT, CYP1B1, LIPE, MMP13
apical plasma membrane 1 ATP2B2
basolateral plasma membrane 1 ATP2B2
caveola 3 ATP2B2, LIPE, NOS3
extracellular exosome 3 ATP2B2, CAT, SELP
extracellular space 11 ACAN, CALCA, IL1B, IL6, INS, MMP1, MMP13, MMP3, SELP, TNF, XDH
lysosomal lumen 1 ACAN
perinuclear region of cytoplasm 2 NOS3, TYR
mitochondrion 4 CAT, CYP1B1, DNMT1, MMP3
protein-containing complex 3 ATP2B2, CAT, SOX9
intracellular membrane-bounded organelle 4 ATP2B2, CAT, CYP1B1, TYR
Microsome membrane 1 CYP1B1
pericentric heterochromatin 1 DNMT1
Single-pass type I membrane protein 2 SELP, TYR
Secreted 7 CALCA, IL1B, IL6, INS, MMP13, MMP3, SELP
extracellular region 11 ACAN, CALCA, CAT, IL1B, IL6, INS, MMP1, MMP13, MMP3, SELP, TNF
hippocampal mossy fiber to CA3 synapse 1 CALCA
neuronal cell body membrane 1 ATP2B2
mitochondrial matrix 1 CAT
transcription regulator complex 1 SOX9
external side of plasma membrane 2 SELP, TNF
Secreted, extracellular space, extracellular matrix 3 ACAN, MMP1, MMP13
T-tubule 1 ATP2B2
Z disc 1 ATP2B2
Melanosome membrane 1 TYR
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
presynaptic active zone membrane 1 ATP2B2
Membrane raft 2 ATP2B2, TNF
focal adhesion 1 CAT
GABA-ergic synapse 2 ACAN, ATP2B2
extracellular matrix 3 MMP1, MMP13, MMP3
Peroxisome 2 CAT, XDH
basement membrane 1 ACAN
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 ACAN
secretory granule 1 IL1B
chromatin 1 SOX9
phagocytic cup 1 TNF
cytoskeleton 1 NOS3
Basolateral cell membrane 1 ATP2B2
sperm flagellum 1 ATP2B2
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
Cell projection, cilium, flagellum membrane 1 ATP2B2
female germ cell nucleus 1 DNMT1
Melanosome 1 TYR
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
replication fork 1 DNMT1
intermediate filament cytoskeleton 1 PFDN5
platelet dense granule membrane 1 SELP
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 2 ACAN, INS
endoplasmic reticulum lumen 2 IL6, INS
endocytic vesicle membrane 1 NOS3
transport vesicle 1 INS
Secreted, extracellular exosome 1 IL1B
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
postsynaptic density membrane 1 ATP2B2
perineuronal net 1 ACAN
neuronal dense core vesicle 1 CALCA
parallel fiber to Purkinje cell synapse 1 ATP2B2
prefoldin complex 1 PFDN5
platelet alpha granule membrane 1 SELP
sperm principal piece 1 ATP2B2
dendritic spine membrane 1 ATP2B2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
platelet dense granule lumen 1 SELP
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
perisynaptic extracellular matrix 1 ACAN
[Isoform WA]: Apical cell membrane 1 ATP2B2
[Isoform WB]: Apical cell membrane 1 ATP2B2
[Isoform XB]: Basolateral cell membrane 1 ATP2B2
[Isoform ZA]: Basolateral cell membrane 1 ATP2B2
[Isoform ZB]: Basolateral cell membrane 1 ATP2B2
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • David S Goldstein, Patti Sullivan, Abraham Corrales, Risa Isonaka, Janna Gelsomino, Jamie Cherup, Genessis Castillo, Courtney Holmes. Multiple catechols in human plasma after drinking caffeinated or decaffeinated coffee. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2021 Nov; 1185(?):122988. doi: 10.1016/j.jchromb.2021.122988. [PMID: 34731744]
  • Maizatul Hasyima Omar, Rocío González Barrio, Gema Pereira-Caro, Tahani Mazyad Almutairi, Alan Crozier. In vitro catabolism of 3',4'-dihydroxycinnamic acid by human colonic microbiota. International journal of food sciences and nutrition. 2021 Jun; 72(4):511-517. doi: 10.1080/09637486.2020.1850650. [PMID: 33238790]
  • Nils Mertens, Thomas Heymann, Marcus A Glomb. Oxidative Fragmentation of Aspalathin Leads to the Formation of Dihydrocaffeic Acid and the Related Lysine Amide Adduct. Journal of agricultural and food chemistry. 2020 Nov; 68(46):13111-13120. doi: 10.1021/acs.jafc.9b07689. [PMID: 32023062]
  • Shenli Wang, Beatriz Sarriá, Raquel Mateos, Luis Goya, Laura Bravo-Clemente. TNF-α-induced oxidative stress and endothelial dysfunction in EA.hy926 cells is prevented by mate and green coffee extracts, 5-caffeoylquinic acid and its microbial metabolite, dihydrocaffeic acid. International journal of food sciences and nutrition. 2019 May; 70(3):267-284. doi: 10.1080/09637486.2018.1505834. [PMID: 30185085]
  • Mariana M Oliveira, Bianca A Ratti, Regina G Daré, Sueli O Silva, Maria da Conceição T Truiti, Tânia Ueda-Nakamura, Rachel Auzély-Velty, Celso V Nakamura. Dihydrocaffeic Acid Prevents UVB-Induced Oxidative Stress Leading to the Inhibition of Apoptosis and MMP-1 Expression via p38 Signaling Pathway. Oxidative medicine and cellular longevity. 2019; 2019(?):2419096. doi: 10.1155/2019/2419096. [PMID: 30800206]
  • Gema Baeza, Eva-Maria Bachmair, Sharon Wood, Raquel Mateos, Laura Bravo, Baukje de Roos. The colonic metabolites dihydrocaffeic acid and dihydroferulic acid are more effective inhibitors of in vitro platelet activation than their phenolic precursors. Food & function. 2017 Mar; 8(3):1333-1342. doi: 10.1039/c6fo01404f. [PMID: 28229135]
  • Siyu Wang, Joon Hyuk Suh, Xi Zheng, Yu Wang, Chi-Tang Ho. Identification and Quantification of Potential Anti-inflammatory Hydroxycinnamic Acid Amides from Wolfberry. Journal of agricultural and food chemistry. 2017 Jan; 65(2):364-372. doi: 10.1021/acs.jafc.6b05136. [PMID: 28008757]
  • Pei Wang, Huadong Chen, Yingdong Zhu, Jennifer McBride, Junsheng Fu, Shengmin Sang. Oat avenanthramide-C (2c) is biotransformed by mice and the human microbiota into bioactive metabolites. The Journal of nutrition. 2015 Feb; 145(2):239-45. doi: 10.3945/jn.114.206508. [PMID: 25644343]
  • Felix Aladedunye, Roman Przybylski. Phosphatidylcholine and dihydrocaffeic acid amide mixture enhanced the thermo-oxidative stability of canola oil. Food chemistry. 2014 May; 150(?):494-9. doi: 10.1016/j.foodchem.2013.10.165. [PMID: 24360481]
  • Aya Fujimoto, Miyuki Inai, Toshiya Masuda. Chemical evidence for the synergistic effect of a cysteinyl thiol on the antioxidant activity of caffeic and dihydrocaffeic esters. Food chemistry. 2013 Jun; 138(2-3):1483-92. doi: 10.1016/j.foodchem.2012.11.073. [PMID: 23411271]
  • Seon-Yeong Kwak, Jin-Kyoung Yang, Hye-Ryung Choi, Kyung-Chan Park, Young-Bu Kim, Yoon-Sik Lee. Synthesis and dual biological effects of hydroxycinnamoyl phenylalanyl/prolyl hydroxamic acid derivatives as tyrosinase inhibitor and antioxidant. Bioorganic & medicinal chemistry letters. 2013 Feb; 23(4):1136-42. doi: 10.1016/j.bmcl.2012.10.107. [PMID: 23305921]
  • Toshiya Masuda, Miyuki Inai, Yukari Miura, Akiko Masuda, Satoshi Yamauchi. Effect of polyphenols on oxymyoglobin oxidation: prooxidant activity of polyphenols in vitro and inhibition by amino acids. Journal of agricultural and food chemistry. 2013 Feb; 61(5):1097-104. doi: 10.1021/jf304775x. [PMID: 23311772]
  • Kuan-Chung Chen, Su-Sen Chang, Fuu-Jen Tsai, Calvin Yu-Chian Chen. Han ethnicity-specific type 2 diabetic treatment from traditional Chinese medicine?. Journal of biomolecular structure & dynamics. 2013; 31(11):1219-35. doi: 10.1080/07391102.2012.732340. [PMID: 23146021]
  • Piotr Duchnowicz, Marlena Broncel, Anna Podsędek, Maria Koter-Michalak. Hypolipidemic and antioxidant effects of hydroxycinnamic acids, quercetin, and cyanidin 3-glucoside in hypercholesterolemic erythrocytes (in vitro study). European journal of nutrition. 2012 Jun; 51(4):435-43. doi: 10.1007/s00394-011-0227-y. [PMID: 21755326]
  • Kathleen Trautwein, Heinz Wilkes, Ralf Rabus. Proteogenomic evidence for β-oxidation of plant-derived 3-phenylpropanoids in "Aromatoleum aromaticum" EbN1. Proteomics. 2012 May; 12(9):1402-13. doi: 10.1002/pmic.201100279. [PMID: 22589189]
  • Raja S Payyavula, Duroy A Navarre, Joseph C Kuhl, Alberto Pantoja, Syamkumar S Pillai. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC plant biology. 2012 Mar; 12(?):39. doi: 10.1186/1471-2229-12-39. [PMID: 22429339]
  • Zuzana Kyselova. Toxicological aspects of the use of phenolic compounds in disease prevention. Interdisciplinary toxicology. 2011 Dec; 4(4):173-83. doi: 10.2478/v10102-011-0027-5. [PMID: 22319251]
  • Reina Aoki, Tatsurou Yagami, Hiroyuki Sasakura, Ken-Ichi Ogura, Yasuhiro Kajihara, Masakazu Ibi, Takeaki Miyamae, Fumio Nakamura, Taro Asakura, Yoshikatsu Kanai, Yoshimi Misu, Yuichi Iino, Marina Ezcurra, William R Schafer, Ikue Mori, Yoshio Goshima. A seven-transmembrane receptor that mediates avoidance response to dihydrocaffeic acid, a water-soluble repellent in Caenorhabditis elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011 Nov; 31(46):16603-10. doi: 10.1523/jneurosci.4018-11.2011. [PMID: 22090488]
  • Karine Redeuil, Candice Smarrito-Menozzi, Philippe Guy, Serge Rezzi, Fabiola Dionisi, Gary Williamson, Kornél Nagy, Mathieu Renouf. Identification of novel circulating coffee metabolites in human plasma by liquid chromatography-mass spectrometry. Journal of chromatography. A. 2011 Jul; 1218(29):4678-88. doi: 10.1016/j.chroma.2011.05.050. [PMID: 21676405]
  • Annett Braune, Michael Blaut. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environmental microbiology. 2011 Feb; 13(2):482-94. doi: 10.1111/j.1462-2920.2010.02352.x. [PMID: 20946528]
  • Dimitra Hadjipavlou-Litina, George E Magoulas, Stavros E Bariamis, Denis Drainas, Konstantinos Avgoustakis, Dionissios Papaioannou. Does conjugation of antioxidants improve their antioxidative/anti-inflammatory potential?. Bioorganic & medicinal chemistry. 2010 Dec; 18(23):8204-17. doi: 10.1016/j.bmc.2010.10.012. [PMID: 21041094]
  • Mathieu Renouf, Philippe Guy, Cynthia Marmet, Karin Longet, Anne-Lise Fraering, Julie Moulin, Denis Barron, Fabiola Dionisi, Christophe Cavin, Heike Steiling, Gary Williamson. Plasma appearance and correlation between coffee and green tea metabolites in human subjects. The British journal of nutrition. 2010 Dec; 104(11):1635-40. doi: 10.1017/s0007114510002709. [PMID: 20691128]
  • René Fumeaux, Candice Menozzi-Smarrito, Angelique Stalmach, Caroline Munari, Karin Kraehenbuehl, Heike Steiling, Alan Crozier, Gary Williamson, Denis Barron. First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption. Organic & biomolecular chemistry. 2010 Nov; 8(22):5199-211. doi: 10.1039/c0ob00137f. [PMID: 20842300]
  • Chi Chun Wong, Walter Meinl, Hans-Rudolf Glatt, Denis Barron, Angélique Stalmach, Heike Steiling, Alan Crozier, Gary Williamson. In vitro and in vivo conjugation of dietary hydroxycinnamic acids by UDP-glucuronosyltransferases and sulfotransferases in humans. The Journal of nutritional biochemistry. 2010 Nov; 21(11):1060-8. doi: 10.1016/j.jnutbio.2009.09.001. [PMID: 19954949]
  • Gary Williamson, Michael N Clifford. Colonic metabolites of berry polyphenols: the missing link to biological activity?. The British journal of nutrition. 2010 Oct; 104 Suppl 3(?):S48-66. doi: 10.1017/s0007114510003946. [PMID: 20955650]
  • Fernanda M F Roleira, Christophe Siquet, Elizabeta Orrù, E Manuela Garrido, Jorge Garrido, Nuno Milhazes, Gianni Podda, Fátima Paiva-Martins, Salette Reis, Rui A Carvalho, Elisiário J Tavares da Silva, Fernanda Borges. Lipophilic phenolic antioxidants: correlation between antioxidant profile, partition coefficients and redox properties. Bioorganic & medicinal chemistry. 2010 Aug; 18(16):5816-25. doi: 10.1016/j.bmc.2010.06.090. [PMID: 20650639]
  • Hye-Jin Kim, Seon-Min Jeon, Mi-Kyung Lee, Yun-Young Cho, Eun-Young Kwon, Jin Hee Lee, Myung-Sook Choi. Comparison of hesperetin and its metabolites for cholesterol-lowering and antioxidative efficacy in hypercholesterolemic hamsters. Journal of medicinal food. 2010 Aug; 13(4):808-14. doi: 10.1089/jmf.2009.1320. [PMID: 20553191]
  • Daniele Del Rio, Angelique Stalmach, Luca Calani, Alan Crozier. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Nutrients. 2010 08; 2(8):820-33. doi: 10.3390/nu2080820. [PMID: 22254058]
  • Sonia de Pascual-Teresa, Diego A Moreno, Cristina García-Viguera. Flavanols and anthocyanins in cardiovascular health: a review of current evidence. International journal of molecular sciences. 2010 Apr; 11(4):1679-703. doi: 10.3390/ijms11041679. [PMID: 20480037]
  • Philippe A Guy, Mathieu Renouf, Denis Barron, Christophe Cavin, Fabiola Dionisi, Sunil Kochhar, Serge Rezzi, Gary Williamson, Heike Steiling. Quantitative analysis of plasma caffeic and ferulic acid equivalents by liquid chromatography tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2009 Dec; 877(31):3965-74. doi: 10.1016/j.jchromb.2009.10.006. [PMID: 19879819]
  • Dimitra Hadjipavlou-Litina, Thomas Garnelis, Constantinos M Athanassopoulos, Dionissios Papaioannou. Kukoamine A analogs with lipoxygenase inhibitory activity. Journal of enzyme inhibition and medicinal chemistry. 2009 Oct; 24(5):1188-93. doi: 10.1080/14756360902779193. [PMID: 19772491]
  • Angélique Stalmach, William Mullen, Denis Barron, Kenichi Uchida, Takao Yokota, Christophe Cavin, Heike Steiling, Gary Williamson, Alan Crozier. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption. Drug metabolism and disposition: the biological fate of chemicals. 2009 Aug; 37(8):1749-58. doi: 10.1124/dmd.109.028019. [PMID: 19460943]
  • Akihisa Takasaki, Hiroshi Tamura, Ken Taniguchi, Hiromi Asada, Toshiaki Taketani, Aki Matsuoka, Yoshiaki Yamagata, Katsunori Shimamura, Hitoshi Morioka, Norihiro Sugino. Luteal blood flow and luteal function. Journal of ovarian research. 2009 Jan; 2(?):1. doi: 10.1186/1757-2215-2-1. [PMID: 19144154]
  • Richard S Lord, J Alexander Bralley. Clinical applications of urinary organic acids. Part 2. Dysbiosis markers. Alternative medicine review : a journal of clinical therapeutic. 2008 Dec; 13(4):292-306. doi: . [PMID: 19152477]
  • Brian Crow, Michael Bishop, Ekaterina Paliakov, Dean Norton, Joe George, J Alexander Bralley. Analysis of urinary aromatic acids by liquid chromatography tandem mass spectrometry. Biomedical chromatography : BMC. 2008 Dec; 22(12):1346-53. doi: 10.1002/bmc.1064. [PMID: 18655225]
  • Laure Poquet, Michael N Clifford, Gary Williamson. Effect of dihydrocaffeic acid on UV irradiation of human keratinocyte HaCaT cells. Archives of biochemistry and biophysics. 2008 Aug; 476(2):196-204. doi: 10.1016/j.abb.2008.01.019. [PMID: 18267100]
  • Laure Poquet, Michael N Clifford, Gary Williamson. Investigation of the metabolic fate of dihydrocaffeic acid. Biochemical pharmacology. 2008 Mar; 75(5):1218-29. doi: 10.1016/j.bcp.2007.11.009. [PMID: 18154874]
  • N K Ranjith, Ch Sasikala, Ch V Ramana. Catabolism of L-phenylalanine and L-tyrosine by Rhodobacter sphaeroides OU5 occurs through 3,4-dihydroxyphenylalanine. Research in microbiology. 2007 Jul; 158(6):506-11. doi: 10.1016/j.resmic.2007.04.008. [PMID: 17616348]
  • Nanzad Tsevegsuren, RuAngelie Edrada, Wenhan Lin, Rainer Ebel, Claudia Torre, Sofia Ortlepp, Victor Wray, Peter Proksch. Biologically active natural products from Mongolian medicinal plants Scorzonera divaricata and Scorzonera pseudodivaricata. Journal of natural products. 2007 Jun; 70(6):962-7. doi: 10.1021/np070013r. [PMID: 17542634]
  • Hanna-Leena Alakomi, Riitta Puupponen-Pimiä, Anna-Marja Aura, Ilkka M Helander, Liisa Nohynek, Kirsi-Marja Oksman-Caldentey, Maria Saarela. Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. Journal of agricultural and food chemistry. 2007 May; 55(10):3905-12. doi: 10.1021/jf070190y. [PMID: 17439151]
  • E Azzini, R Bugianesi, F Romano, D Di Venere, S Miccadei, A Durazzo, M S Foddai, G Catasta, V Linsalata, G Maiani. Absorption and metabolism of bioactive molecules after oral consumption of cooked edible heads of Cynara scolymus L. (cultivar Violetto di Provenza) in human subjects: a pilot study. The British journal of nutrition. 2007 May; 97(5):963-9. doi: 10.1017/s0007114507617218. [PMID: 17408528]
  • Jeffrey deGraft-Johnson, Krzysztof Kolodziejczyk, Maciej Krol, Piotr Nowak, Boguslaw Krol, Dariusz Nowak. Ferric-reducing ability power of selected plant polyphenols and their metabolites: implications for clinical studies on the antioxidant effects of fruits and vegetable consumption. Basic & clinical pharmacology & toxicology. 2007 May; 100(5):345-52. doi: 10.1111/j.1742-7843.2007.00056.x. [PMID: 17448122]
  • Yu Zhang, Xiaowei Tie, Bili Bao, Xiaoqin Wu, Ying Zhang. Metabolism of flavone C-glucosides and p-coumaric acid from antioxidant of bamboo leaves (AOB) in rats. The British journal of nutrition. 2007 Mar; 97(3):484-94. doi: 10.1017/s0007114507336830. [PMID: 17313710]
  • W Kim, L Y Khil, R Clark, S H Bok, E E Kim, S Lee, H S Jun, J W Yoon. Naphthalenemethyl ester derivative of dihydroxyhydrocinnamic acid, a component of cinnamon, increases glucose disposal by enhancing translocation of glucose transporter 4. Diabetologia. 2006 Oct; 49(10):2437-48. doi: 10.1007/s00125-006-0373-6. [PMID: 16896937]
  • Christophe Siquet, Fátima Paiva-Martins, José L F C Lima, Salette Reis, Fernanda Borges. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids--a structure-activity relationship study. Free radical research. 2006 Apr; 40(4):433-42. doi: 10.1080/10715760500540442. [PMID: 16517509]
  • Andrew M Jenner, Joseph Rafter, Barry Halliwell. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free radical biology & medicine. 2005 Mar; 38(6):763-72. doi: 10.1016/j.freeradbiomed.2004.11.020. [PMID: 15721987]
  • Annett Braune, Wolfram Engst, Michael Blaut. Degradation of neohesperidin dihydrochalcone by human intestinal bacteria. Journal of agricultural and food chemistry. 2005 Mar; 53(5):1782-90. doi: 10.1021/jf0484982. [PMID: 15740074]
  • Marjolaine Roche, Claire Dufour, Nathalie Mora, Olivier Dangles. Antioxidant activity of olive phenols: mechanistic investigation and characterization of oxidation products by mass spectrometry. Organic & biomolecular chemistry. 2005 Feb; 3(3):423-30. doi: 10.1039/b416101g. [PMID: 15678179]
  • S M Wittemer, M Ploch, T Windeck, S C Müller, B Drewelow, H Derendorf, M Veit. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2005 Jan; 12(1-2):28-38. doi: 10.1016/j.phymed.2003.11.002. [PMID: 15693705]
  • Junjun Huang, Tomas de Paulis, James M May. Antioxidant effects of dihydrocaffeic acid in human EA.hy926 endothelial cells. The Journal of nutritional biochemistry. 2004 Dec; 15(12):722-9. doi: 10.1016/j.jnutbio.2004.07.002. [PMID: 15607645]
  • Hae Kyung Kim, Tae-Sook Jeong, Mi-Kyung Lee, Yong Bok Park, Myung-Sook Choi. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clinica chimica acta; international journal of clinical chemistry. 2003 Jan; 327(1-2):129-37. doi: 10.1016/s0009-8981(02)00344-3. [PMID: 12482628]
  • J M Lekse, L Xia, J Stark, J D Morrow, J M May. Plant catechols prevent lipid peroxidation in human plasma and erythrocytes. Molecular and cellular biochemistry. 2001 Oct; 226(1-2):89-95. doi: 10.1023/a:1012741903996. [PMID: 11768243]
  • A P Herrmann, M Willems, H D Janke. Degradation of natural polyphenols by methanogenic consortia enriched from digested municipal sludge. Water research. 2001 Aug; 35(11):2575-82. doi: 10.1016/s0043-1354(00)00574-1. [PMID: 11456154]
  • R Debowska, A Podstolski. Properties of diphenolase from Vanilla planifolia (Andr.) shoot primordia cultured in vitro. Journal of agricultural and food chemistry. 2001 Jul; 49(7):3432-7. doi: 10.1021/jf001180z. [PMID: 11453787]
  • R F Boyer, H M Clark, A P LaRoche. Reduction and release of ferritin iron by plant phenolics. Journal of inorganic biochemistry. 1988 Mar; 32(3):171-81. doi: 10.1016/0162-0134(88)80025-4. [PMID: 3131480]
  • D S Goldstein, R Stull, S P Markey, E S Marks, H R Keiser. Dihydrocaffeic acid: a common contaminant in the liquid chromatographic-electrochemical measurement of plasma catecholamines in man. Journal of chromatography. 1984 Nov; 311(1):148-53. doi: 10.1016/s0378-4347(00)84701-5. [PMID: 6520156]
  • G Hocman. Human thyroxine-binding globulin. Isolation and chemical properties. II. Properties. The International journal of biochemistry. 1978; 9(5):295-8. doi: 10.1016/0020-711x(78)90100-3. [PMID: 27400]