Gene Association: VASP

UniProt Search: VASP (PROTEIN_CODING)
Function Description: vasodilator stimulated phosphoprotein

found 69 associated metabolites with current gene based on the text mining result from the pubmed database.

LDR cpd

(1S,4E,12S,13S)-5,10-dimethyl-8,14,16-trioxatetracyclo[10.2.2.01,13.07,11]hexadeca-4,7(11),9-trien-15-one

C15H16O4 (260.1049)


Linderane is a member of dioxanes. Linderane is a natural product found in Cryptocarya densiflora, Neolitsea villosa, and other organisms with data available. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1]. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1].

   

Ginsenoside Rg3

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O13 (784.4973)


(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. (20R)-Ginsenoside Rg3 is found in tea. (20R)-Ginsenoside Rg3 is isolated from Panax ginseng (ginseng). D000970 - Antineoplastic Agents 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression.

   

Ginsenoside Ro

(2S,3S,4S,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4-dihydroxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-2-carboxylic acid

C48H76O19 (956.4981)


Chikusetsusaponin-V is a triterpenoid saponin. It has a role as a metabolite. Ginsenoside Ro is a natural product found in Panax vietnamensis, Bassia indica, and other organisms with data available. See also: Asian Ginseng (part of). Ginsenoside Ro is found in tea. Ginsenoside Ro is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside Ro is found in tea. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS.

   

8-Prenylnaringenin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-8-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


Sophoraflavanone B is a trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. It has a role as a platelet aggregation inhibitor and a plant metabolite. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a sophoraflavanone B(1-). 8-Prenylnaringenin is a natural product found in Macaranga conifera, Macaranga denticulata, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens A trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. INTERNAL_ID 2299; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2299

   

Silicristin

(2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydro-4H-chromen-4-one

C25H22O10 (482.1213)


Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. Isolated from fruits of Silybum marianum (milk thistle). Silicristin is found in coffee and coffee products and green vegetables. Silicristin is found in coffee and coffee products. Silicristin is isolated from fruits of Silybum marianum (milk thistle). C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].

   

Adenosine diphosphate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.0294)


Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon. ADP belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. It is an ester of pyrophosphoric acid with the nucleotide adenine. Adenosine diphosphate is a nucleotide. ADP exists in all living species, ranging from bacteria to humans. In humans, ADP is involved in d4-gdi signaling pathway. ADP is the product of ATP dephosphorylation by ATPases. ADP is converted back to ATP by ATP synthases. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. Adenosine diphosphate, abbreviated ADP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. 5′-ADP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-64-0 (retrieved 2024-07-01) (CAS RN: 58-64-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.

   

Sildenafil

1-((3-(6,7-Dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo(4,3-D)pyrimidin-5-yl)-4-ethoxyphenyl)sulfonyl)-4-methylpiperazine citrate

C22H30N6O4S (474.2049)


Sildenafil is a drug used to treat male erectile dysfunction (impotence) and pulmonary arterial hypertension (PAH), developed by the pharmaceutical company Pfizer. It was initially studied for use in hypertension (high blood pressure) and angina pectoris (a form of ischaemic cardiovascular disease). Phase I clinical trials under the direction of Ian Osterloh suggested that the drug had little effect on angina, but that it could induce marked penile erections; Sildenafil is a potent and selective inhibitor of cGMP specific phosphodiesterase type 5 (PDE5) which is responsible for degradation of cGMP in the corpus cavernosum. The molecular structure of sildenafil is similar to that of cGMP and acts as a competitive binding agent of PDE5 in the corpus cavernosum, resulting in more cGMP and better erections. Without sexual stimulation, and therefore lack of activation of the NO/cGMP system, sildenafil should not cause an erection. Other drugs that operate by the same mechanism include tadalafil (Cialis) and vardenafil (Levitra); Sildenafil citrate, sold under the names Viagra, Revatio and generically under various other names, is a drug used to treat male erectile dysfunction (impotence) and pulmonary arterial hypertension (PAH), developed by the pharmaceutical company Pfizer. Viagra pills are blue and diamond-shaped with the words Pfizer on one side, and VGR xx (where xx stands for 25, 50 or 100, the dose of that pill in milligrams) on the other. Its primary competitors on the market are tadalafil (Cialis), and vardenafil (Levitra). Sildenafil is a drug used to treat male erectile dysfunction (impotence) and pulmonary arterial hypertension (PAH), developed by the pharmaceutical company Pfizer. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058986 - Phosphodiesterase 5 Inhibitors C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor > C2127 - cGMP Phosphodiesterase Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D000089162 - Genitourinary Agents > D064804 - Urological Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pantoprazole

6-(difluoromethoxy)-2-[(3,4-dimethoxypyridin-2-yl)methanesulfinyl]-1H-1,3-benzodiazole

C16H15F2N3O4S (383.0751)


Pantozol; Pantoprazole (brand names Pantopan in Italy; Protium; Protonix; Pantozol; Pantor; Pantoloc) is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained; Pantoprazole is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained. Pantoprazole is metabolized in the liver by the cytochrome P450 system. Metabolism mainly consists of demethylation by CYP2C19 followed by sulfation. Another metabolic pathway is oxidation by CYP3A4. Pantoprazole metabolites are not thought to have any pharmacological significance; Protium; Pantor; Pantoloc) is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained; Protonix; Pantoprazole (brand names Pantopan in Italy. Pantozol; Pantoprazole (brand names Pantopan in Italy; Protium; Protonix; Pantozol; Pantor; Pantoloc) is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained; Pantoprazole is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained. A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors CONFIDENCE standard compound; INTERNAL_ID 8336 CONFIDENCE standard compound; INTERNAL_ID 2274

   

Prostaglandin E1

7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]heptanoic acid

C20H34O5 (354.2406)


Prostaglandin E1 (PGE1) is a potent endogenous vasodilator agent that increases peripheral blood flow. It inhibits platelet aggregation and has many other biological effects such as bronchodilation, mediation of inflammation, and various protective functions. The protective action of PGE1 has been shown on both experimental animal models of liver injury and patients with fulminant viral hepatitis. PGE1-treated cirrhotic rats had less hepatosplenomegaly, lower serum alanine aminotransferase levels and portal pressures, and higher arterial pressure than placebo-treated cirrhotic rats. There are several mechanisms of PGE1 hepatic cytoprotection: inhibiting T-cell mediated cytotoxicity, enhancing DNA synthesis of the injured liver after partial hepatectomy by stimulating cyclic AMP production, increasing ATP level in hepatic tissue to accelerate the recovery of mitochondrial respiratory function after reperfusion, and stabilizing membrane microviscosity. PGE1 is a prostanoid. The term prostanoid collectively describes prostaglandins, prostacyclins, and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They are derived from C-20 polyunsaturated fatty acids, mainly dihomo-γ-linolenic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2) (PMID: 11819590, 16986207). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways. Prostaglandin E1 (Alprostadil) is a prostanoid receptor ligand, with Kis of 1.1 nM, 2.1 nM, 10 nM, 33 nM and 36 nM for mouse EP3, EP4, EP2, IP and EP1, respectively. Prostaglandin E1 induces vasodilation and inhibits platelet aggregation. Prostaglandin E1 can be used as a vasodilator for the research of peripheral vascular diseases[1][2][3].

   

Biperiden

1-{bicyclo[2.2.1]hept-5-en-2-yl}-1-phenyl-3-(piperidin-1-yl)propan-1-ol

C21H29NO (311.2249)


A muscarinic antagonist that has effects in both the central and peripheral nervous systems. It has been used in the treatment of arteriosclerotic, idiopathic, and postencephalitic parkinsonism. It has also been used to alleviate extrapyramidal symptoms induced by phenothiazine derivatives and reserpine. [PubChem] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

Ticlopidine

5-[(2-chlorophenyl)methyl]-4H,5H,6H,7H-thieno[3,2-c]pyridine

C14H14ClNS (263.0535)


Ticlopidine is an effective inhibitor of platelet aggregation. The drug has been found to significantly reduce infarction size in acute myocardial infarcts and is an effective antithrombotic agent in arteriovenous fistulas, aorto-coronary bypass grafts, ischemic heart disease, venous thrombosis, and arteriosclerosis. [PubChem] B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent > C190801 - P2Y12 Inhibitor D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3029 D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents

   

Prilocaine

N-(2-Methylphenyl)-2-(propylamino)propanamide

C13H20N2O (220.1576)


Prilocaine is only found in individuals that have used or taken this drug. It is a local anesthetic that is similar pharmacologically to lidocaine. Currently, it is used most often for infiltration anesthesia in dentistry. (From AMA Drug Evaluations Annual, 1992, p165)Prilocaine acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3141

   

Aspirin

2-Acetoxybenzenecarboxylic acid

C9H8O4 (180.0423)


Aspirin is only found in individuals who have consumed this drug. Aspirin or acetylsalicylic acid (acetosal) is a drug in the family of salicylates, often used as an analgesic (against minor pains and aches), antipyretic (against fever), and anti-inflammatory. It has also an anticoagulant effect and is used in long-term low-doses to prevent heart attacks and cancer. It was isolated from meadowsweet (Filipendula ulmaria, formerly classified as Spiraea ulmaria) by German researchers in 1839. While their extract was somewhat effective, it also caused digestive problems such as irritated stomach and diarrhoea, and even death when consumed in high doses. In 1853, a French chemist named Charles Frederic Gerhardt neutralized salicylic acid by buffering it with sodium (sodium salicylate) and acetyl chloride, creating acetosalicylic anhydride. Gerhardts product worked, but he had no desire to market it and abandoned his discovery. In 1897, researcher Arthur Eichengrun and Felix Hoffmann, a research assistant at Friedrich Bayer & Co. in Germany, derivatized one of the hydroxyl functional groups in salicylic acid with an acetyl group (forming the acetyl ester), which greatly reduced the negative effects. This was the first synthetic drug, not a copy of something that existed in nature, and the start of the pharmaceuticals industry. The name aspirin is composed of a- (from the acetyl group) -spir- (from the plant genus Spiraea) and -in (a common ending for drugs at the time). It has also been stated that the name originated by another means. As referring to AcetylSalicylic and pir in reference to one of the scientists who was able to isolate it in crystalline form, Raffaele Piria. Finally in due to the same reasons as stated above. Salicylic acid (which is a naturally occurring substance found in many plants) can be acetylated using acetic anhydride, yielding aspirin and acetic acid as a byproduct. It is a common experiment performed in organic chemistry labs, and generally tends to produce low yields due to the relative difficulty of its extraction from an aqueous state. The trick to getting the reaction to work is to acidify with phosphoric acid and heat the reagents under reflux with a boiling water bath for between 40 minutes and an hour. Aspirin acts as an inhibitor of cyclooxygenase which results in the inhibition of the biosynthesis of prostaglandins. Aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. (From Martindale, The Extra Pharmacopoeia, 30th ed, p5). B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors Constituent of Glycyrrhiza glabra variety typica (licorice) roots. Acetylsalicylic acid is found in herbs and spices. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor > C287 - Aspirin D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3578 D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Microcystin LR

Cyanoginosin-LR;MC-LR;Toxin T 17 (Microcystis aeruginosa)

C49H74N10O12 (994.5487)


CONFIDENCE standard compound; UCHEM_ID 2992; NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D009676 - Noxae > D002273 - Carcinogens > D052998 - Microcystins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins CONFIDENCE standard compound; EAWAG_UCHEM_ID 2992 D004791 - Enzyme Inhibitors

   

Estazolam

12-chloro-9-phenyl-2,4,5,8-tetraazatricyclo[8.4.0.0²,⁶]tetradeca-1(10),3,5,8,11,13-hexaene

C16H11ClN4 (294.0672)


Estazolam is only found in individuals that have used or taken this drug. It is a benzodiazepine with anticonvulsant, hypnotic, and muscle relaxant properties. It has been shown in some cases to be more potent than diazepam or nitrazepam. [PubChem]Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Thromboxane B2

(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoic acid

C20H34O6 (370.2355)


Thromboxanes. A stable, physiologically active compound formed in vivo from the prostaglandin endoperoxides. It is important in the platelet-release reaction (release of ADP and serotonin). -- Pubchem. Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Thromboxanes

   

19(S)-HETE

(5Z,8Z,11Z,14Z)-(19S)-19-Hydroxyeicosa-5,8,11,14-tetraenoic acid

C20H32O3 (320.2351)


19(S)-HETE is an intermediate in Arachidonic acid metabolism. 19(S)-HETE is converted from Arachidonic acid via the enzyme CYP2U and Unspecific. Monooxygenase. (EC:1.14.14.1). 19(S)-HETE is an intermediate in Arachidonic acid metabolism. 19(S)-HETE is converted from Arachidonic acid via the enzyme CYP2U and Unspecific

   

Omeprazole

6-methoxy-2-(((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)sulfinyl)-1-methyl-1H-benzo[d]imidazole

C17H19N3O3S (345.1147)


Omeprazole is a highly effective inhibitor of gastric acid secretion used in the therapy of stomach ulcers, dyspepsia, peptic ulcer disease , gastroesophageal reflux disease and Zollinger-Ellison syndrome. The drug inhibits the H(+)-K(+)-ATPase (H(+)-K(+)-exchanging ATPase) in the proton pump of Gastric Parietal Cells.--Pubchem. Omeprazole is one of the most widely prescribed drugs internationally and is available over the counter in some countries. Proton pump inhibitor, inhibits gastric acid secretion. Antiulcer agent. It is used in combination with Amoxicillin for eradication of Helicobacter pylori and for the treatment of gastroesophageal reflux disease (CCD) A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Omeprazole (H 16868), a proton pump inhibitor (PPI), is available for treatment of acid-related gastrointestinal disorders. Omeprazole shows competitive inhibition of CYP2C19 activity with a Ki of 2 to 6 μM[1]. Omeprazole also inhibits growth of Gram-positive and Gram-negative bacteria[2].Omeprazole is a potent brain penetrant neutral sphingomyelinase (N-SMase) inhibitor (exosome inhibitor)[3].

   

Rabeprazole

1H-Benzimidazole, 2-(((4-(3-methoxypropoxy)-3-methyl-2-pyridinyl)methyl)sulfinyl)-, sodium salt

C18H21N3O3S (359.1304)


Rabeprazole is a proton pump inhibitor sold (as its sodium salt) under the brand names Aciphex and Pariet (distributed by Janssen-Cilag); Rabeprazole is a proton pump inhibitor sold (as its sodium salt) and it is used in the treatment of gastric ulcers and GERD (or heartburn). It is taken once a day along with a full glass of water (preferable 30 min before breakfast). [HMDB] Rabeprazole is a proton pump inhibitor sold (as its sodium salt) under the brand names Aciphex and Pariet (distributed by Janssen-Cilag); Rabeprazole is a proton pump inhibitor sold (as its sodium salt) and it is used in the treatment of gastric ulcers and GERD (or heartburn). It is taken once a day along with a full glass of water (preferable 30 min before breakfast). A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors

   

Orciprenaline

5-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,3-diol

C11H17NO3 (211.1208)


Orciprenaline is only found in individuals that have used or taken this drug. It is a beta-adrenergic agonist used in the treatment of asthma and bronchospasms. [PubChem]Orciprenaline is a moderately selective beta(2)-adrenergic agonist that stimulates receptors of the smooth muscle in the lungs, uterus, and vasculature supplying skeletal muscle, with minimal or no effect on alpha-adrenergic receptors. Intracellularly, the actions of orciprenaline are mediated by cAMP, the production of which is augmented by beta stimulation. The drug is believed to work by activating adenylate cyclase, the enzyme responsible for producing the cellular mediator cAMP. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CB - Non-selective beta-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AB - Non-selective beta-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Guanosine monophosphate

{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O8P (363.058)


Guanosine monophosphate (GMP), also known as 5′-guanidylic acid or guanylic acid (conjugate base guanylate), is a nucleotide that is used as a monomer in RNA. It is an ester of phosphoric acid with the nucleoside guanosine. GMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase guanine; hence it is a ribonucleoside monophosphate. Guanosine monophosphate is commercially produced by microbial fermentation. Guanosine monophosphate, also known as guanylic acid or 5-GMP, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature. Guanosine monophosphate exists in all living species, ranging from bacteria to humans. Within humans, guanosine monophosphate participates in a number of enzymatic reactions. In particular, guanosine triphosphate and guanosine monophosphate can be biosynthesized from diguanosine tetraphosphate through its interaction with the enzyme bis(5-nucleosyl)-tetraphosphatase [asymmetrical]. In addition, guanosine monophosphate can be biosynthesized from guanosine diphosphate; which is mediated by the enzyme ectonucleoside triphosphate diphosphohydrolase 5. In humans, guanosine monophosphate is involved in the metabolic disorder called the lesch-nyhan syndrome (lns) pathway. Outside of the human body, guanosine monophosphate has been detected, but not quantified in several different foods, such as common cabbages, tea, winter squash, spearmints, and sugar apples. Guanosine-5-monophosphate, also known as 5-gmp or guanylic acid, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Guanosine-5-monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine-5-monophosphate can be found in a number of food items such as mustard spinach, swiss chard, watercress, and colorado pinyon, which makes guanosine-5-monophosphate a potential biomarker for the consumption of these food products. Guanosine-5-monophosphate can be found primarily in blood and saliva, as well as throughout most human tissues. Guanosine-5-monophosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine-5-monophosphate is involved in several metabolic pathways, some of which include clarithromycin action pathway, erythromycin action pathway, minocycline action pathway, and tetracycline action pathway. Guanosine-5-monophosphate is also involved in several metabolic disorders, some of which include gout or kelley-seegmiller syndrome, xanthine dehydrogenase deficiency (xanthinuria), aICA-Ribosiduria, and molybdenum cofactor deficiency. Guanosine monophosphate is known as E number reference E626.[7] In the form of its salts, such as disodium guanylate (E627), dipotassium guanylate (E628) and calcium guanylate (E629), are food additives used as flavor enhancers to provide the umami taste.[7] It is often used in synergy with disodium inosinate; the combination is known as disodium 5′-ribonucleotides. Disodium guanylate is often found in instant noodles, potato chips and snacks, savoury rice, tinned vegetables, cured meats, and packet soup. As it is a fairly expensive additive, it is usually not used independently of glutamic acid or monosodium glutamate (MSG), which also contribute umami. If inosinate and guanylate salts are present in a list of ingredients but MSG does not appear to be, the glutamic acid is likely provided as part of another ingredient, such as a processed soy protein complex (hydrolyzed soy protein), autolyzed yeast, or soy sauce. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway.

   

1,4-Cyclohexanedione

1,4-Cyclohexanedione

C6H8O2 (112.0524)


   

Cyclic GMP

9-[(4aR,6R,7R,7aS)-2,7-dihydroxy-2-oxo-hexahydro-2λ⁵-furo[3,2-d][1,3,2]dioxaphosphinin-6-yl]-2-amino-6,9-dihydro-1H-purin-6-one

C10H12N5O7P (345.0474)


Cyclic-gmp, also known as cgmp or guanosine 3,5-cyclic monophosphate, is a member of the class of compounds known as 3,5-cyclic purine nucleotides. 3,5-cyclic purine nucleotides are purine nucleotides in which the oxygen atoms linked to the C3 and C5 carbon atoms of the ribose moiety are both bonded the same phosphorus atom of the phosphate group. Cyclic-gmp is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Cyclic-gmp can be found in a number of food items such as common sage, jews ear, java plum, and pepper (c. chinense), which makes cyclic-gmp a potential biomarker for the consumption of these food products. Cyclic-gmp can be found primarily in blood and cerebrospinal fluid (CSF), as well as throughout most human tissues. Cyclic-gmp exists in all living species, ranging from bacteria to humans. Moreover, cyclic-gmp is found to be associated with headache. Guanosine cyclic 3,5-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3- and 5-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Phosphoserine

(S)-2-Amino-3-hydroxypropanoic acid 3-phosphoric acid

C3H8NO6P (185.0089)


The phosphoric acid ester of serine. As a constituent (residue) of proteins, its side chain can undergo O-linked glycosylation. This might be important in explaining some of the devastating consequences of diabetes. It is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. Phosphorylated serine residues are often referred to as phosphoserine. Serine proteases are a common type of protease. Serine, organic compound, one of the 20 amino acids commonly found in animal proteins. Only the L-stereoisomer appears in mammalian protein. It is not essential to the human diet, since it can be synthesized in the body from other metabolites, including glycine. Serine was first obtained from silk protein, a particularly rich source, in 1865. Its name is derived from the Latin for silk, sericum. Serines structure was established in 1902. [HMDB] Phosphoserine is the phosphoric acid ester of the amino acid serine. It is found in essentially all living organisms ranging from microbes to plants to mammals. Phosphoserine is a component of many proteins as the result of posttranslational modifications to the native protein’s serine residue(s). The phosphorylation of the hydroxyl functional group in serine to produce phosphoserine is catalyzed by various types of kinases. Serine is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. Free phosphoserine is found in many biofluids and likely arises from the proteolysis of proteins containing phosphoserine residues (PMID: 7693088). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P060 DL-O-Phosphoserine, a normal metabolite in human biofluid, is an ester of serine and phosphoric acid.

   

Amifostine

Ethanethiol, 2-((3-aminopropyl)amino)-, dihydrogen phosphate (ester), trihydrate

C5H15N2O3PS (214.0541)


Amifostine is only found in individuals that have used or taken this drug. It is a phosphorothioate proposed as a radiation-protective agent. It causes splenic vasodilation and may block autonomic ganglia. [PubChem]The thiol metabolite is responsible for most of the cytoprotective and radioprotective properties of amifostine. It is readily taken up by cells where it binds to and detoxifies reactive metabolites of platinum and alkylating agents as well as scavenges free radicals. Other possible effects include inhibition of apoptosis, alteration of gene expression and modification of enzyme activity. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AF - Detoxifying agents for antineoplastic treatment C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent D020011 - Protective Agents > D011837 - Radiation-Protective Agents KEIO_ID A170 Amifostine (WR2721) is a broad-spectrum cytoprotective agent and a radioprotector. Amifostine selectively protects normal tissues from damage caused by radiation and chemotherapy. Amifostine is potent hypoxia-inducible factor-α1 (HIF-α1) and p53 inducer. Amifostine protects cells from damage by scavenging oxygen-derived free radicals. Amifostine reduces renal toxicity and has antiangiogenic action[1][2][3][4].

   

Adenosine 3',5'-diphosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}phosphonic acid

C10H15N5O10P2 (427.0294)


Adenosine-3-5-diphosphate, also known as 3-phosphoadenylate or pap, is a member of the class of compounds known as purine ribonucleoside 3,5-bisphosphates. Purine ribonucleoside 3,5-bisphosphates are purine ribobucleotides with one phosphate group attached to 3 and 5 hydroxyl groups of the ribose moiety. Adenosine-3-5-diphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine-3-5-diphosphate can be found in a number of food items such as beech nut, canola, chickpea, and red algae, which makes adenosine-3-5-diphosphate a potential biomarker for the consumption of these food products. Adenosine-3-5-diphosphate can be found primarily in cellular cytoplasm, as well as in human brain and liver tissues. Adenosine-3-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine-3-5-diphosphate is involved in several metabolic pathways, some of which include acetaminophen metabolism pathway, tamoxifen action pathway, androgen and estrogen metabolism, and metachromatic leukodystrophy (MLD). Adenosine-3-5-diphosphate is also involved in several metabolic disorders, some of which include gaucher disease, krabbe disease, fabry disease, and 17-beta hydroxysteroid dehydrogenase III deficiency. Adenosine 3, 5-diphosphate or PAP is a nucleotide that is closely related to ADP. It has two phosphate groups attached to the 5 and 3 positions of the pentose sugar ribose (instead of pyrophosphoric acid at the 5 position, as found in ADP), and the nucleobase adenine. PAP is converted to PAPS by Sulfotransferase and then back to PAP after the sulfotransferase reaction. Sulfotransferase (STs) catalyze the transfer reaction of the sulfate group from the ubiquitous donor 3-phosphoadenosine 5-phosphosulfate (PAPS) to an acceptor group of numerous substrates. This reaction, often referred to as sulfuryl transfer, sulfation, or sulfonation, is widely observed from bacteria to humans and plays a key role in various biological processes such as cell communication, growth and development, and defense. PAP also appears to a role in bipolar depression. Phosphatases converting 3-phosphoadenosine 5-phosphate (PAP) into adenosine 5-phosphate are of fundamental importance in living cells as the accumulation of PAP is toxic to several cellular systems. These enzymes are lithium-sensitive and we have characterized a human PAP phosphatase as a potential target of lithium therapy.

   

Diadenosine tetraphosphate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphinic acid

C20H28N10O19P4 (836.0483)


Diadenosine tetraphosphate (AP4A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n=3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP4A is the only APnA that can induce a considerable increase in [Ca2+] in endothelial cells, indicating that its vasoactive effects are comparable to the known effects of arginine vasopressin, Angiotensin II, and ATP. AP4A is a ubiquitous ApnA is a signal molecule for DNA replication in mammalian cells. AP4A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP4A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 9187362, 16401072, 9694344, 9351706, 1953194). Diadenosine tetraphosphate (AP4A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n=3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

Thromboxane A2

(5Z,9α,11α,13E,15S)-9,11-Epoxy-15-hydroxythromboxa-5,13- dien-1-oic acid

C20H32O5 (352.225)


A thromboxane which is produced by activated platelets and has prothrombotic properties: it stimulates activation of new platelets as well as increases platelet aggregation.

   

11-Dehydro-thromboxane B2

(5E)-7-[(2R,3S,4S)-4-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils. Given its production in the allergic lung, antagonism of the 11-dehydro- thromboxane B2/CRTH2axis may be of therapeutic relevance. (PMID 14668348)

   

Nitroglycerin

1,3-bis(nitrooxy)propan-2-yl nitrate

C3H5N3O9 (227.0026)


Nitroglycerin is only found in individuals that have used or taken this drug. It is a volatile vasodilator which relieves angina pectoris by stimulating guanylate cyclase and lowering cytosolic calcium. [PubChem]Similar to other nitrites and organic nitrates, nitroglycerin is converted to nitric oxide (NO), an active intermediate compound which activates the enzyme guanylate cyclase. This stimulates the synthesis of cyclic guanosine 3,5-monophosphate (cGMP) which then activates a series of protein kinase-dependent phosphorylations in the smooth muscle cells, eventually resulting in the dephosphorylation of the myosin light chain of the smooth muscle fiber. The subsequent release of calcium ions results in the relaxation of the smooth muscle cells and vasodilation. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D053834 - Explosive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isosorbide Dinitrate

(3S,3aS,6R,6aS)-6-(nitrooxy)-hexahydrofuro[3,2-b]furan-3-yl nitrate

C6H8N2O8 (236.0281)


Isosorbide Dinitrate is only found in individuals that have used or taken this drug. It is a vasodilator used in the treatment of angina pectoris. Its actions are similar to nitroglycerin but with a slower onset of action. [PubChem]Similar to other nitrites and organic nitrates, isosorbide dinitrate is converted to nitric oxide (NO), an active intermediate compound which activates the enzyme guanylate cyclase (atrial natriuretic peptide receptor A). This stimulates the synthesis of cyclic guanosine 3,5-monophosphate (cGMP) which then activates a series of protein kinase-dependent phosphorylations in the smooth muscle cells, eventually resulting in the dephosphorylation of the myosin light chain of the smooth muscle fiber. The subsequent release of calcium ions results in the relaxation of the smooth muscle cells and vasodilation. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Isosorbide Mononitrate

(3R,3aS,6S,6aR)-6-hydroxy-hexahydrofuro[3,2-b]furan-3-yl nitrate

C6H9NO6 (191.043)


Isosorbide mononitrate (ISMN), sold under the names Imdur and Monoket, among others, is an organic nitrate used principally in the prophylactic treatment of angina pectoris (ischemic chest pain). ISMN is an active metabolite of isosorbide dinitrate and exerts qualitatively similar effects. Like other organic nitrates, ISMN acts as a prodrug for its active metabolite, nitric oxide, which mediates the therapeutic action of ISMN. Nitric oxide works on both arteries and veins, but predominantly veins. Nitric oxide functions by relaxing veins and reducing the central venous pressure, thereby causing venous pooling and a decrease in the venous return to the heart, thus decreasing cardiac preload (PMID: 31643263). The net effect when administering ISMN is therefore a reduced workload for the heart and an improvement in the oxygen supply/demand balance of the myocardium. ISMN is not subject to first pass metabolism in the human liver. Detectable metabolites include isosorbide, sorbitol, and 2-glucuronide of mononitrate, which are pharmacologically inactive (PMID: 1449102). Research on ISMN as a cervical ripener to reduce time at hospital to birth is supportive (PMID: 23983763). Isosorbide mononitrate is only found in individuals who have consumed or used this drug. C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Cucurbitacin C

(3E)-6-[5,13-Dihydroxy-1-(hydroxymethyl)-6,6,11,15-tetramethyl-17-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetic acid

C32H48O8 (560.3349)


Cucurbitacin C is found in cucumber. Cucurbitacin C is a constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber) Constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber). Cucurbitacin C is found in cucumber and fruits.

   

Paxilline

2H-1-Benzopyrano(5,6:6,7)indeno(1,2-b)indol-3(4bh)-one, 5,6,6a,7,12,12b,12c,13,14,14a-decahydro-4b-hydroxy-2-(1-hydroxy-1-methylethyl)-12b,12c-dimethyl-, (2-alpha,4b-beta,6a-alpha,12b-beta,12c-alpha,14a-beta)-

C27H33NO4 (435.2409)


Paxilline is an indole diterpene alkaloid with formula C27H33NO4 isolated from Penicillium paxilli. It is a potent inhibitor of large conductance Ca2(+)- and voltage-activated K(+) (BK)-type channels. It has a role as a mycotoxin, a Penicillium metabolite, an anticonvulsant, an Aspergillus metabolite, a potassium channel blocker, a genotoxin, a geroprotector and an EC 3.6.3.8 (Ca(2+)-transporting ATPase) inhibitor. It is an organic heterohexacyclic compound, a tertiary alcohol, a terpenoid indole alkaloid, an enone and a diterpene alkaloid. Paxilline is a natural product found in Penicillium thiersii, Aspergillus foveolatus, and other organisms with data available. Tremorgenic agent from Penicillium paxilli, Acremonium lorii, Emericella foveolata, Emericella desertorum and Emericella striata Paxilline is a potassium channel blocker. Paxilline is a toxic, tremorgenic indole alkaloid produced by Penicillium paxilli An indole diterpene alkaloid with formula C27H33NO4 isolated from Penicillium paxilli. It is a potent inhibitor of large conductance Ca2(+)- and voltage-activated K(+) (BK)-type channels. Tremorgenic agent from Penicillium paxilli, Acremonium lorii, Emericella foveolata, Emericella desertorum and Emericella striata D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators Paxilline is an indole alkaloid mycotoxin from Penicillium paxilli, acts as a potent BK channels inhibitor by an almost exclusively closed-channel block mechanism. Paxilline also inhibits the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) with IC50s between 5 μM and 50 μM for differing isoforms. Paxilline possesses significant anticonvulsant activity[1][2][3].

   

8-Br-cGMP

2-amino-8-bromo-9-(2,7-dihydroxy-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphorin-6-yl)-3H-purin-6-one

C10H11BrN5O7P (422.9579)


   

Latrunculin A

(4R)-4-[(1R,4E,8Z,10E,12S,15R,17R)-17-hydroxy-5,12-dimethyl-3-oxo-2,16-dioxabicyclo[13.3.1]nonadeca-4,8,10-trien-17-yl]-1,3-thiazolidin-2-one

C22H31NO5S (421.1923)


A bicyclic macrolide natural product consisting of a 16-membered bicyclic lactone attached to the rare 2-thiazolidinone moiety. It is obtained from the Red Sea sponge Latrunculia magnifica and from the Fiji Islands sponge Cacospongia mycofijiensis. Latrunculin A inhibits actin polymerisation, microfilament organsation and microfilament-mediated processes.

   

Thromboxane A2

7-[3-(3-Hydroxy-1-octenyl)-2,6-dioxabicyclo[3.1.1]hept-4-yl]-[1S-[1alpha,3alpha(1E,3R*),4beta(Z),5alpha]]-5-heptenoic acid

C20H32O5 (352.225)


Thromboxane A2 is an unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS).Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.

   

DL-O-Phosphoserine

DL-Serine, dihydrogen phosphoric acid (ester)

C3H8NO6P (185.0089)


DL-O-Phosphoserine, also known as DL-O-phosphorylserine or DL-O-serine phosphate, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Serine proteases are a common type of protease. DL-O-Phosphoserine exists in all living species, ranging from bacteria to humans. Serine is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. It is a normal metabolite found in human biofluids. (PMID 7693088, 7688003) DL-O-Phosphoserine, a normal metabolite in human biofluid, is an ester of serine and phosphoric acid.

   

pantoprazole

pantoprazole

C16H15F2N3O4S (383.0751)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors CONFIDENCE standard compound; EAWAG_UCHEM_ID 644

   

omeprazole

6-methoxy-2-(((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)sulfinyl)-1-methyl-1H-benzo[d]imidazole

C17H19N3O3S (345.1147)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 8334 CONFIDENCE standard compound; INTERNAL_ID 1113 Omeprazole (H 16868), a proton pump inhibitor (PPI), is available for treatment of acid-related gastrointestinal disorders. Omeprazole shows competitive inhibition of CYP2C19 activity with a Ki of 2 to 6 μM[1]. Omeprazole also inhibits growth of Gram-positive and Gram-negative bacteria[2].Omeprazole is a potent brain penetrant neutral sphingomyelinase (N-SMase) inhibitor (exosome inhibitor)[3].

   

Guanosine monophosphate

Guanosine-5-monophosphate disodium salt hydrate from Yeast

C10H14N5O8P (363.058)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.058 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway.

   

prilocaine

prilocaine

C13H20N2O (220.1576)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Adenosine diphosphate

Adenosine-5-diphosphate Di(monocyclohexylammonium)salt

C10H15N5O10P2 (427.0294)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.

   

aspirin

Acetylsaliycilic acid

C9H8O4 (180.0423)


B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor > C287 - Aspirin D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 112

   

pantoprazole

pantoprazole

C16H15F2N3O4S (383.0751)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors

   

rabeprazole

rabeprazole

C18H21N3O3S (359.1304)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors

   

ticlopidine

ticlopidine

C14H14ClNS (263.0535)


B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065689 - Cytochrome P-450 CYP2C19 Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent > C190801 - P2Y12 Inhibitor D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents

   

estazolam

estazolam

C16H11ClN4 (294.0672)


N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

biperiden

biperiden

C21H29NO (311.2249)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

sildenafil

Sildenafil - Dark Web Drugs

C22H30N6O4S (474.2049)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058986 - Phosphodiesterase 5 Inhibitors C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor > C2127 - cGMP Phosphodiesterase Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D000089162 - Genitourinary Agents > D064804 - Urological Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cyclic GMP

3,5-cyclic GMP

C10H12N5O7P (345.0474)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

FA 20:4;O4

4-(3-{[(1S,2S,3S)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]methyl}oxiran-2-yl)butanoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Thromboxane B2

9S,11,15S-trihydroxy-thromboxa-5Z,13E-dien-1-oic acid

C20H34O6 (370.2355)


A member of the class of thromboxanes B that is (5Z,13E)-thromboxa-5,13-dien-1-oic acid substituted by hydroxy groups at positions 9, 11 and 15.

   

cucurbitacin c

acetic acid [(E,5R)-5-[(3S,8S,9R,10R,13R,14S,16R,17R)-3,16-dihydroxy-9-(hydroxymethyl)-4,4,13,14-tetramethyl-11-oxo-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl]-5-hydroxy-1,1-dimethyl-4-oxohex-2-enyl] ester

C32H48O8 (560.3349)


   

Cucurbitacin C

[(E)-6-[3,16-dihydroxy-9-(hydroxymethyl)-4,4,13,14-tetramethyl-11-oxo-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl] acetate

C32H48O8 (560.3349)


Cucurbitacin C is found in cucumber. Cucurbitacin C is a constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber) Constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber). Cucurbitacin C is found in cucumber and fruits.

   

11-Dehydro-thromboxane B2

(E)-7-[4-Hydroxy-2-[(E)-3-hydroxyoct-1-enyl]-6-oxooxan-3-yl]hept-5-enoic acid

C20H32O6 (368.2199)


A thromboxane obtained by formal oxidation of the hemiacetal hydroxy function of thromboxane B2.

   
   

Saponin V

(2S,3S,4S,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4-dihydroxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-2-carboxylic acid

C48H76O19 (956.4981)


Chikusetsusaponin-V is a triterpenoid saponin. It has a role as a metabolite. Ginsenoside Ro is a natural product found in Panax vietnamensis, Bassia indica, and other organisms with data available. See also: Asian Ginseng (part of). A natural product found in Panax japonicus var. major. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS.

   

Silychristin

(2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydro-4H-chromen-4-one

C25H22O10 (482.1213)


A flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].

   

isosorbide dinitrate

isosorbide dinitrate

C6H8N2O8 (236.0281)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

microcystin-LR

microcystin-LR

C49H74N10O12 (994.5487)


A microcystin consisting of D-alanyl, L-leucyl, (3S)-3-methyl-D-beta-aspartyl,L-arginyl, 2S,3S,4E,6E,8S,9S)-3-amino-4,5,6,7-tetradehydro-9-methoxy-2,6,8-trimethyl-10-phenyldecanoyl, D-gamma-glutamyl, and 2,3-didehydro-N-methylalanyl residues joined into a 25-membered macrocycle. Produced by the cyanobacterium Microcystis aeruginosa, it is the most studied of the microcystins. D009676 - Noxae > D002273 - Carcinogens > D052998 - Microcystins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D004791 - Enzyme Inhibitors

   

amifostine

amifostine

C5H15N2O3PS (214.0541)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AF - Detoxifying agents for antineoplastic treatment C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine (WR2721) is a broad-spectrum cytoprotective agent and a radioprotector. Amifostine selectively protects normal tissues from damage caused by radiation and chemotherapy. Amifostine is potent hypoxia-inducible factor-α1 (HIF-α1) and p53 inducer. Amifostine protects cells from damage by scavenging oxygen-derived free radicals. Amifostine reduces renal toxicity and has antiangiogenic action[1][2][3][4].

   

Alprostadil

Prost-13-en-1-oic acid, 11,15-dihydroxy-9-oxo-, (11α,13E,15S)-

C20H34O5 (354.2406)


Prostaglandin E1. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=745-65-3 (retrieved 2024-07-09) (CAS RN: 745-65-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Prostaglandin E1 (Alprostadil) is a prostanoid receptor ligand, with Kis of 1.1 nM, 2.1 nM, 10 nM, 33 nM and 36 nM for mouse EP3, EP4, EP2, IP and EP1, respectively. Prostaglandin E1 induces vasodilation and inhibits platelet aggregation. Prostaglandin E1 can be used as a vasodilator for the research of peripheral vascular diseases[1][2][3].

   

nitroglycerin

1,2,3-Propanetriyl trinitrate

C3H5N3O9 (227.0026)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D053834 - Explosive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isosorbide Mononitrate

Isosorbide 5-mononitrate

C6H9NO6 (191.043)


C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

orciprenaline

metaproterenol

C11H17NO3 (211.1208)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CB - Non-selective beta-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AB - Non-selective beta-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents

   

Diadenosine tetraphosphate

p(1),p(4)-Bis(5-adenosyl) tetraphosphate

C20H28N10O19P4 (836.0483)


A diadenosyl tetraphosphate compound having the two 5-adenosyl residues attached at the P(1)- and P(4)-positions. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

Adenosine-3-5-diphosphate

Adenosine-3-5-diphosphate

C10H15N5O10P2 (427.0294)