3-mercaptopyruvic acid (BioDeep_00000405437)

Main id: BioDeep_00000004526

 

PANOMIX_OTCML-2023 BioNovoGene_Lab2019


代谢物信息卡片


3-mercaptopyruvic acid

化学式: C3H4O3S (119.9881)
中文名称: 巯基丙酮酸钠二水合物
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(C(=O)C(=O)O)S
InChI: InChI=1S/C3H4O3S/c4-2(1-7)3(5)6/h7H,1H2,(H,5,6)

描述信息

A 2-oxo monocarboxylic acid that is pyruvic acid substituted by a sulfanyl group at position 3.

同义名列表

2 个代谢物同义名

3-mercaptopyruvic acid; Mercaptopyruvate



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(4)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 CAT, CBS, CTH, DAO, GOT1, MPST, MST1, NOS3, PKM, RHOA, ROCK1, ROCK2, TXN
Peripheral membrane protein 3 DAO, ROCK1, ROCK2
Endoplasmic reticulum membrane 1 RHOA
Nucleus 8 CBS, GOT1, MST1, NOS3, PKM, RHOA, ROCK2, TXN
cytosol 12 CAT, CBS, CTH, DAO, GOT1, MST1, NOS3, PKM, RHOA, ROCK1, ROCK2, TXN
nuclear body 1 MST1
centrosome 1 ROCK2
nucleoplasm 3 MST1, NOS3, TXN
Cell membrane 5 DAO, RHOA, ROCK1, ROCK2, TRPA1
Lipid-anchor 1 RHOA
Cytoplasmic side 1 RHOA
Cleavage furrow 1 RHOA
lamellipodium 2 RHOA, ROCK1
ruffle membrane 1 RHOA
Multi-pass membrane protein 2 KCNA3, TRPA1
Golgi apparatus membrane 1 ROCK1
Synapse 1 MPST
cell cortex 1 RHOA
cell junction 1 RHOA
glutamatergic synapse 2 KCNA3, RHOA
Golgi apparatus 1 NOS3
Golgi membrane 3 INS, NOS3, ROCK1
mitochondrial inner membrane 1 SQOR
postsynapse 1 RHOA
presynaptic membrane 1 KCNA3
Cytoplasm, cytosol 1 DAO
Lysosome 1 IL4I1
acrosomal vesicle 1 IL4I1
endosome 1 RHOA
plasma membrane 8 CTH, DAO, KCNA3, NOS3, RHOA, ROCK1, ROCK2, TRPA1
presynaptic active zone 1 DAO
Membrane 5 CAT, CTH, KCNA3, ROCK1, TRPA1
axon 1 KCNA3
caveola 1 NOS3
extracellular exosome 8 CAT, CTH, DAO, GOT1, MPST, PKM, RHOA, TXN
extracellular space 4 DAO, INS, MST1, TST
perinuclear region of cytoplasm 2 KCNA3, NOS3
Schaffer collateral - CA1 synapse 1 ROCK1
bicellular tight junction 1 DAO
mitochondrion 6 CAT, CISD1, MPST, PKM, SQOR, TST
protein-containing complex 2 CAT, MST1
intracellular membrane-bounded organelle 1 CAT
Single-pass type I membrane protein 1 CTH
Secreted 4 DAO, IL4I1, INS, TXN
extracellular region 8 CAT, DAO, IL4I1, INS, MST1, PKM, ROCK1, TXN
cytoplasmic side of plasma membrane 1 RHOA
Mitochondrion outer membrane 1 CISD1
mitochondrial outer membrane 1 CISD1
Mitochondrion matrix 1 TST
mitochondrial matrix 3 CAT, MPST, TST
Extracellular side 1 DAO
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 ROCK2
Extracellular vesicle 1 PKM
dendritic spine 1 RHOA
midbody 1 RHOA
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
vesicle 2 PKM, RHOA
postsynaptic membrane 1 KCNA3
Cell projection, lamellipodium 2 RHOA, ROCK1
Membrane raft 1 KCNA3
Cytoplasm, cytoskeleton 1 ROCK1
focal adhesion 2 CAT, RHOA
Peroxisome 2 CAT, DAO
Peroxisome matrix 2 CAT, DAO
peroxisomal matrix 2 CAT, DAO
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 2 MST1, PKM
Cell projection, ruffle 1 ROCK1
ruffle 1 ROCK1
neuron projection 1 MPST
cilium 1 PKM
stereocilium bundle 1 TRPA1
cell projection 1 DAO
cell periphery 1 RHOA
cytoskeleton 4 NOS3, RHOA, ROCK1, ROCK2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome, centriole 1 ROCK1
centriole 1 ROCK1
cytoplasmic ribonucleoprotein granule 1 ROCK2
Secreted, extracellular space 1 DAO
Cytoplasmic vesicle, secretory vesicle, acrosome 1 IL4I1
Cytoplasm, cell cortex 1 RHOA
sperm midpiece 1 IL4I1
[Isoform 2]: Cell membrane 1 KCNA3
Endomembrane system 1 ROCK2
endosome lumen 1 INS
Cell projection, dendrite 1 RHOA
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 2 NOS3, ROCK1
voltage-gated potassium channel complex 1 KCNA3
ficolin-1-rich granule lumen 2 CAT, PKM
secretory granule lumen 4 CAT, INS, PKM, ROCK1
secretory granule membrane 1 RHOA
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
specific granule lumen 1 DAO
endocytic vesicle membrane 1 NOS3
transport vesicle 1 INS
Single-pass type III membrane protein 1 CISD1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 IL4I1
calyx of Held 1 KCNA3
Vacuole 1 MST1
Synapse, synaptosome 1 MPST
ficolin-1-rich granule membrane 1 RHOA
apical junction complex 1 RHOA
[Isoform 1]: Cell membrane 1 KCNA3
Rough endoplasmic reticulum 1 PKM
bleb 1 ROCK1
catalase complex 1 CAT
[Isoform M2]: Cytoplasm 1 PKM
[Isoform M1]: Cytoplasm 1 PKM
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
Cell projection, bleb 1 ROCK1


文献列表

  • Maher N Ibrahim, Abeer A Khalifa, Dalia A Hemead, Amira Ebrahim Alsemeh, Marwa A Habib. 1,25-Dihydroxycholecalciferol down-regulates 3-mercaptopyruvate sulfur transferase and caspase-3 in rat model of non-alcoholic fatty liver disease. Journal of molecular histology. 2023 Apr; 54(2):119-134. doi: 10.1007/s10735-023-10118-9. [PMID: 36930413]
  • Patrycja Bronowicka-Adamska, Anna Bentke, Małgorzata Lasota, Maria Wróbel. Effect of S-Allyl -L-Cysteine on MCF-7 Cell Line 3-Mercaptopyruvate Sulfurtransferase/Sulfane Sulfur System, Viability and Apoptosis. International journal of molecular sciences. 2020 Feb; 21(3):. doi: 10.3390/ijms21031090. [PMID: 32041330]
  • Michael Gröger, Martin Wepler, Ulrich Wachter, Tamara Merz, Oscar McCook, Sandra Kress, Britta Lukaschewski, Sebastian Hafner, Markus Huber-Lang, Enrico Calzia, Michael Georgieff, Noriyuki Nagahara, Csaba Szabó, Peter Radermacher, Clair Hartmann. The Effects of Genetic 3-Mercaptopyruvate Sulfurtransferase Deficiency in Murine Traumatic-Hemorrhagic Shock. Shock (Augusta, Ga.). 2019 04; 51(4):472-478. doi: 10.1097/shk.0000000000001165. [PMID: 29668565]
  • Norihiro Shibuya. [Production of H2S, H2Sn, and persulfide species (CysSSH and GSSH) by 3-mercaptopyruvate sulfurtransferase]. Nihon yakurigaku zasshi. Folia pharmacologica Japonica. 2018; 152(5):216-222. doi: 10.1254/fpj.152.216. [PMID: 30393252]
  • Saskia Höfler, Christin Lorenz, Tjorven Busch, Mascha Brinkkötter, Takayuki Tohge, Alisdair R Fernie, Hans-Peter Braun, Tatjana M Hildebrandt. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria. Physiologia plantarum. 2016 Jul; 157(3):352-66. doi: 10.1111/ppl.12454. [PMID: 27105581]
  • Yan Zhang, Jun Yang, Tao Wang, Shao-Gang Wang, Ji-Hong Liu, Chun-Ping Yin, Zhang-Qun Ye. Decreased Endogenous Hydrogen Sulfide Generation in Penile Tissues of Diabetic Rats with Erectile Dysfunction. The journal of sexual medicine. 2016 Mar; 13(3):350-60. doi: 10.1016/j.jsxm.2016.01.002. [PMID: 26853047]
  • Michael W Stutelberg, Joseph K Dzisam, Alexandre R Monteil, Ilona Petrikovics, Gerry R Boss, Steven E Patterson, Gary A Rockwood, Brian A Logue. Simultaneous determination of 3-mercaptopyruvate and cobinamide in plasma by liquid chromatography-tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2016 Jan; 1008(?):181-188. doi: 10.1016/j.jchromb.2015.11.027. [PMID: 26655110]
  • Ciro Coletta, Katalin Módis, Bartosz Szczesny, Attila Brunyánszki, Gábor Oláh, Ester C S Rios, Kazunori Yanagi, Akbar Ahmad, Andreas Papapetropoulos, Csaba Szabo. Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by DL-α-Lipoic Acid. Molecular medicine (Cambridge, Mass.). 2015 Feb; 21(?):1-14. doi: 10.2119/molmed.2015.00035. [PMID: 25715337]
  • Michael W Stutelberg, Chakravarthy V Vinnakota, Brendan L Mitchell, Alexandre R Monteil, Steven E Patterson, Brian A Logue. Determination of 3-mercaptopyruvate in rabbit plasma by high performance liquid chromatography tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2014 Feb; 949-950(?):94-8. doi: 10.1016/j.jchromb.2014.01.006. [PMID: 24480329]
  • Inga Kwiecień, Małgorzata Iciek, Lidia Włodek. Acceleration of anaerobic cysteine transformations to sulfane sulfur consequent to γ-glutamyl transpeptidase inhibition. TheScientificWorldJournal. 2012; 2012(?):253724. doi: 10.1100/2012/253724. [PMID: 22629124]
  • Yong-Sheng Ren, Sheng-Ying Wu, Xing-Jun Wang, Fang Yu, Jing Zhao, Chao-Shu Tang, Jing-Ping Ouyang, Bin Geng. Multiple hemodynamic effects of endogenous hydrogen sulfide on central nervous system in rats. Chinese medical journal. 2011 Nov; 124(21):3468-75. doi: . [PMID: 22340160]
  • Bridgette F Moody, John W Calvert. Emergent role of gasotransmitters in ischemia-reperfusion injury. Medical gas research. 2011 Apr; 1(1):3. doi: 10.1186/2045-9912-1-3. [PMID: 22146243]
  • Arjun Sengupta, Angika Basant, Soumita Ghosh, Shobhona Sharma, Haripalsingh M Sonawat. Liver Metabolic Alterations and Changes in Host Intercompartmental Metabolic Correlation during Progression of Malaria. Journal of parasitology research. 2011; 2011(?):901854. doi: 10.1155/2011/901854. [PMID: 21772982]
  • Jing Zhao, Li-ping Fang, Ge-yang Xu, Chao-shu Tang, Bin Geng. [Assay of endogenous hydrogen sulfide from erythrocytes]. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences. 2007 Oct; 39(5):449-52. doi: . [PMID: 17940557]
  • George Tsakraklides, Melinda Martin, Radhika Chalam, Mitchell C Tarczynski, Ahlert Schmidt, Thomas Leustek. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa. The Plant journal : for cell and molecular biology. 2002 Dec; 32(6):879-89. doi: 10.1046/j.1365-313x.2002.01477.x. [PMID: 12492831]
  • N Nagahara, T Ito, H Kitamura, T Nishino. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochemistry and cell biology. 1998 Sep; 110(3):243-50. doi: 10.1007/s004180050286. [PMID: 9749958]
  • D A Wing, S I Baskin. Modifiers of mercaptopyruvate sulfurtransferase catalyzed conversion of cyanide to thiocyanate in vitro. Journal of biochemical toxicology. 1992; 7(2):65-72. doi: 10.1002/jbt.2570070203. [PMID: 1404244]
  • H M Mousa, R H Davis. Alternative sulphur donors for detoxification of cyanide in the chicken. Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology. 1991; 99(3):309-15. doi: 10.1016/0742-8413(91)90247-q. [PMID: 1685401]
  • J Mårtensson, L Nilsson, B Sörbo. The decarboxylation of 3-mercaptopyruvate to 2-mercaptoacetate. FEBS letters. 1984 Oct; 176(2):334-6. doi: 10.1016/0014-5793(84)81191-6. [PMID: 6489522]
  • S Kiguchi. Metabolism of 3-mercaptopyruvate in rat tissues. Acta medica Okayama. 1983 Apr; 37(2):85-91. doi: 10.18926/amo/32415. [PMID: 6869067]
  • U Hannestad, J Mårtensson, R Sjödahl, B Sörbo. 3-mercaptolactate cysteine disulfiduria: biochemical studies on affected and unaffected members of a family. Biochemical medicine. 1981 Aug; 26(1):106-14. doi: 10.1016/0006-2944(81)90035-1. [PMID: 6945862]
  • R Jarabak. 3-Mercaptopyruvate sulfurtransferase. Methods in enzymology. 1981; 77(?):291-7. doi: 10.1016/s0076-6879(81)77040-x. [PMID: 6948992]
  • . . . . doi: . [PMID: 12437129]
  • . . . . doi: . [PMID: 17408957]
  • . . . . doi: . [PMID: 10601861]