Taurolithocholate 3-sulfate (BioDeep_00000001698)
Secondary id: BioDeep_00001868517
human metabolite Endogenous blood metabolite Bile acids
代谢物信息卡片
化学式: C26H45NO8S2 (563.2586)
中文名称: 牛磺石胆酸-3-硫酸钠盐
谱图信息:
最多检出来源 Homo sapiens(blood) 41.28%
Last reviewed on 2024-09-13.
Cite this Page
Taurolithocholate 3-sulfate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/taurolithocholate_3-sulfate (retrieved
2024-12-26) (BioDeep RN: BioDeep_00000001698). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(CCC(=O)NCCS(=O)(=O)O)C1CCC2C1(CCC3C2CCC4C3(CCC(C4)OS(=O)(=O)O)C)C
InChI: InChI=1S/C26H45NO8S2/c1-17(4-9-24(28)27-14-15-36(29,30)31)21-7-8-22-20-6-5-18-16-19(35-37(32,33)34)10-12-25(18,2)23(20)11-13-26(21,22)3/h17-23H,4-16H2,1-3H3,(H,27,28)(H,29,30,31)(H,32,33,34)/t17-,18-,19-,20+,21-,22+,23+,25+,26-/m1/s1
描述信息
Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).
Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB]
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts
D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
KEIO_ID T072
同义名列表
39 个代谢物同义名
2-[[(4R)-4-[(3R,5R,10S,13R,17R)-10,13-dimethyl-3-sulfooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid; 2-[(4R)-4-[(1S,2S,5R,7R,10R,11S,14R,15R)-2,15-dimethyl-5-(sulfooxy)tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid; 2-[(4R)-4-[(1S,2S,5R,7R,10R,11S,14R,15R)-2,15-dimethyl-5-(sulfooxy)tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]ethanesulfonic acid; (3alpha-Sulphato-5beta-cholan-24-oyl)-2-aminoethanesulphonic acid; (3alpha-Sulfato-5beta-cholan-24-oyl)-2-aminoethanesulfonic acid; (3alpha-Sulphato-5beta-cholan-24-oyl)-2-aminoethanesulphonate; (3alpha-Sulfato-5beta-cholan-24-oyl)-2-aminoethanesulfonate; (3a-Sulphato-5b-cholan-24-oyl)-2-aminoethanesulphonic acid; (3Α-sulphato-5β-cholan-24-oyl)-2-aminoethanesulphonic acid; (3Α-sulfato-5β-cholan-24-oyl)-2-aminoethanesulfonic acid; (3a-Sulfato-5b-cholan-24-oyl)-2-aminoethanesulfonic acid; (3a-Sulphato-5b-cholan-24-oyl)-2-aminoethanesulphonate; (3Α-sulphato-5β-cholan-24-oyl)-2-aminoethanesulphonate; (3Α-sulfato-5β-cholan-24-oyl)-2-aminoethanesulfonate; (3a-Sulfato-5b-cholan-24-oyl)-2-aminoethanesulfonate; Taurolithocholic acid 3-sulphuric acid; Taurolithocholic acid 3-sulfuric acid; Taurolithocholic acid sulphuric acid; Taurolithocholic acid sulfuric acid; 3alpha-Sulphatolithocholyltaurine; 3alpha-Sulfatolithocholyltaurine; Taurolithocholic acid 3-sulphate; Taurolithocholic acid 3-sulfate; Taurolithocholic acid sulphate; Taurolithocholic acid sulfate; 3a-Sulphatolithocholyltaurine; 3Α-sulphatolithocholyltaurine; Taurolithocholate 3-sulphate; 3a-Sulfatolithocholyltaurine; 3Α-sulfatolithocholyltaurine; Taurolithocholate 3-sulfate; Taurolithocholate sulphate; Taurolithocholate sulfate; Taurolithocholic acid; SLCT-3-Sulphuric acid; SLCT-3-Sulfuric acid; SLCT-3-Sulphate; SLCT-3-Sulfate; TLC-S
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:17864
- KEGG: C03642
- PubChem: 4378624
- PubChem: 440071
- HMDB: HMDB0002580
- Metlin: METLIN6716
- ChEMBL: CHEMBL270493
- MetaCyc: TAUROLITHOCHOLATE-SULFATE
- foodb: FDB023028
- chemspider: 389078
- MoNA: KO001953
- PMhub: MS000001003
- PubChem: 6424
- LipidMAPS: LMST05020003
- 3DMET: B01678
- NIKKAJI: J682.199E
- RefMet: Taurolithocholic acid 3-sulfate
- CAS: 64936-83-0
分类词条
相关代谢途径
Reactome(7)
BioCyc(0)
PlantCyc(0)
代谢反应
36 个相关的代谢反应过程信息。
Reactome(36)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Cytosolic sulfonation of small molecules:
H2O + PAP ⟶ AMP + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Cytosolic sulfonation of small molecules:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Cytosolic sulfonation of small molecules:
H2O + PNPB ⟶ BUT + PNP
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Francesca De Faveri, Michael Chvanov, Svetlana Voronina, Danielle Moore, Liam Pollock, Lee Haynes, Muhammad Awais, Alison J Beckett, Ulrike Mayer, Robert Sutton, David N Criddle, Ian A Prior, Tom Wileman, Alexei V Tepikin. LAP-like non-canonical autophagy and evolution of endocytic vacuoles in pancreatic acinar cells.
Autophagy.
2020 07; 16(7):1314-1331. doi:
10.1080/15548627.2019.1679514
. [PMID: 31651224] - Fengfeng Mao, Teng Liu, Xinfeng Hou, Hanqing Zhao, Wenhui He, Cong Li, Zhiyi Jing, Jianhua Sui, Fengchao Wang, Xiaohui Liu, Jun Han, Christoph H Borchers, Jian-She Wang, Wenhui Li. Increased sulfation of bile acids in mice and human subjects with sodium taurocholate cotransporting polypeptide deficiency.
The Journal of biological chemistry.
2019 08; 294(31):11853-11862. doi:
10.1074/jbc.ra118.007179
. [PMID: 31201272] - Issey Takehara, Nobuaki Watanabe, Daiki Mori, Osamu Ando, Hiroyuki Kusuhara. Effect of Rifampicin on the Plasma Concentrations of Bile Acid-O-Sulfates in Monkeys and Human Liver-Transplanted Chimeric Mice With or Without Bile Flow Diversion.
Journal of pharmaceutical sciences.
2019 08; 108(8):2756-2764. doi:
10.1016/j.xphs.2019.03.021
. [PMID: 30905707] - Thomas R Kolodecik, Anamika M Reed, Kimie Date, Christine A Shugrue, Vikhil Patel, Shang-Lin Chung, Gary V Desir, Fred S Gorelick. The serum protein renalase reduces injury in experimental pancreatitis.
The Journal of biological chemistry.
2017 12; 292(51):21047-21059. doi:
10.1074/jbc.m117.789776
. [PMID: 29042438] - Shishuai Meng, Hao Wang, Dongbo Xue, Weihui Zhang. Screening and validation of differentially expressed extracellular miRNAs in acute pancreatitis.
Molecular medicine reports.
2017 Nov; 16(5):6412-6418. doi:
10.3892/mmr.2017.7374
. [PMID: 28849189] - Wei Huang, Andrea C Haynes, Rajarshi Mukherjee, Li Wen, Diane Latawiec, Alexei V Tepikin, David N Criddle, Rab K Prinjha, Nicholas Smithers, Robert Sutton. Selective inhibition of BET proteins reduces pancreatic damage and systemic inflammation in bile acid- and fatty acid ethyl ester- but not caerulein-induced acute pancreatitis.
Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.].
2017 Sep; 17(5):689-697. doi:
10.1016/j.pan.2017.06.005
. [PMID: 28648518] - Wei Huang, Matthew C Cane, Rajarshi Mukherjee, Peter Szatmary, Xiaoying Zhang, Victoria Elliott, Yulin Ouyang, Michael Chvanov, Diane Latawiec, Li Wen, David M Booth, Andrea C Haynes, Ole H Petersen, Alexei V Tepikin, David N Criddle, Robert Sutton. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release.
Gut.
2017 02; 66(2):301-313. doi:
10.1136/gutjnl-2015-309363
. [PMID: 26642860] - Wei Huang, Nicole Cash, Li Wen, Peter Szatmary, Rajarshi Mukherjee, Jane Armstrong, Michael Chvanov, Alexei V Tepikin, Michael P Murphy, Robert Sutton, David N Criddle. Effects of the mitochondria-targeted antioxidant mitoquinone in murine acute pancreatitis.
Mediators of inflammation.
2015; 2015(?):901780. doi:
10.1155/2015/901780
. [PMID: 25878403] - Julia V Gerasimenko, Sarah E Flowerdew, Svetlana G Voronina, Tatiana K Sukhomlin, Alexei V Tepikin, Ole H Petersen, Oleg V Gerasimenko. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors.
The Journal of biological chemistry.
2006 Dec; 281(52):40154-63. doi:
10.1074/jbc.m606402200
. [PMID: 17074764] - Paul Linsdell. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
The Journal of biological chemistry.
2005 Mar; 280(10):8945-50. doi:
10.1074/jbc.m414354200
. [PMID: 15634668] - Dirk Graf, Roland Reinehr, Anna Kordelia Kurz, Richard Fischer, Dieter Häussinger. Inhibition of taurolithocholate 3-sulfate-induced apoptosis by cyclic AMP in rat hepatocytes involves protein kinase A-dependent and -independent mechanisms.
Archives of biochemistry and biophysics.
2003 Jul; 415(1):34-42. doi:
10.1016/s0003-9861(03)00224-8
. [PMID: 12801510] - Dirk Graf, Anna Kordelia Kurz, Roland Reinehr, Richard Fischer, Gerald Kircheis, Dieter Häussinger. Prevention of bile acid-induced apoptosis by betaine in rat liver.
Hepatology (Baltimore, Md.).
2002 Oct; 36(4 Pt 1):829-39. doi:
10.1053/jhep.2002.35536
. [PMID: 12297830] - Dirk Graf, Anna Kordelia Kurz, Richard Fischer, Roland Reinehr, Dieter Häussinger. Taurolithocholic acid-3 sulfate induces CD95 trafficking and apoptosis in a c-Jun N-terminal kinase-dependent manner.
Gastroenterology.
2002 May; 122(5):1411-27. doi:
10.1053/gast.2002.32976
. [PMID: 11984527] - Makoto Sasaki, Hiroshi Suzuki, Kousei Ito, Takaaki Abe, Yuichi Sugiyama. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and Multidrug resistance-associated protein 2 (MRP2/ABCC2).
The Journal of biological chemistry.
2002 Feb; 277(8):6497-503. doi:
10.1074/jbc.m109081200
. [PMID: 11748225] - U Bolder, W E Thasler, A F Hofmann, K W Jauch. [Hepatocellular transport of bile acids and organic anions in infection and SIRS--evidence for different mechanisms for regulating membrane transport proteins].
Langenbecks Archiv fur Chirurgie. Supplement. Kongressband. Deutsche Gesellschaft fur Chirurgie. Kongress.
1998; 115(Suppl I):391-6. doi:
NULL
. [PMID: 14518282] - H J Verkade, M A de Bruijn, M A Brink, H Talsma, R J Vonk, F Kuipers, A K Groen. Interactions between organic anions, micelles and vesicles in model bile systems.
The Biochemical journal.
1996 Dec; 320 ( Pt 3)(?):917-23. doi:
10.1042/bj3200917
. [PMID: 9003381] - A Dietrich, W Dieminger, S MacNelly, W Gerok, G Kurz. Synthesis and applicability of a photolabile 7,7-azi analogue of 3-sulfated taurine-conjugated bile salts.
Journal of lipid research.
1995 Aug; 36(8):1729-44. doi:
. [PMID: 7595094]
- A Dietrich, W Dieminger, K Fuchte, G H Stoll, E Schlitz, W Gerok, G Kurz. Functional significance of interaction of H-FABP with sulfated and nonsulfated taurine-conjugated bile salts in rat liver.
Journal of lipid research.
1995 Aug; 36(8):1745-55. doi:
"
. [PMID: 7595095]