20alpha-Hydroxycholesterol (BioDeep_00000005851)

 

Secondary id: BioDeep_00001868982

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(1S,2R,5S,10S,11S,14S,15S)-14-[(2R)-2-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

化学式: C27H46O2 (402.3498)
中文名称: 20Α-羟基胆固醇
谱图信息: 最多检出来源 Homo sapiens(otcml) 25.82%

分子结构信息

SMILES: CC(C)CCCC(C)(C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C)O
InChI: InChI=1S/C27H46O2/c1-18(2)7-6-14-27(5,29)24-11-10-22-21-9-8-19-17-20(28)12-15-25(19,3)23(21)13-16-26(22,24)4/h8,18,20-24,28-29H,6-7,9-17H2,1-5H3/t20-,21-,22-,23-,24-,25-,26-,27+/m0/s1

描述信息

20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. [HMDB]
20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6].
20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].

同义名列表

18 个代谢物同义名

(1S,2R,5S,10S,11S,14S,15S)-14-[(2R)-2-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol; 20-Hydroxycholesterol, 3H-labeled, (3beta,20 xi)-isomer; 20-Hydroxycholesterol, (3beta,20 xi)-isomer; (3beta,20R)-Cholest-5-ene-3,20-diol; (20S)-Cholest-5-ene-3 beta,20-diol; cholest-5-ene-3beta,20-diol; 20 alpha-Hydroxycholesterol; 20alpha-Hydroxy cholesterol; (20S)-20-Hydroxycholesterol; 20alpha-Hydroxycholesterol; 20(S)-Hydroxycholesterol; 20a-hydroxy cholesterol; 20a-Hydroxycholesterol; 20R-Hydroxycholesterol; 20Α-hydroxycholesterol; 20-Hydroxycholesterol; FT-0610913; 20alpha-Hydroxycholesterol



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

34 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(34)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ADIG, BGLAP, GLI1, HES1, NR1H3, POMC, PPARG, RUNX2, SMO, SP7
Peripheral membrane protein 2 CYP11A1, HSD17B6
Endoplasmic reticulum membrane 1 STAR
Mitochondrion membrane 1 CYP11A1
Nucleus 9 ADIG, CEBPA, GLI1, HES1, NR1H3, PPARG, RUNX2, SMO, SP7
cytosol 5 GLI1, NR1H3, PPARG, RUNX2, SMO
dendrite 2 BGLAP, SMO
nucleoplasm 7 CEBPA, GLI1, HES1, NR1H3, PPARG, RUNX2, SMO
RNA polymerase II transcription regulator complex 3 CEBPA, NR1H3, PPARG
Cell membrane 3 LHCGR, SMO, STAR
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 4 CACNA1I, LHCGR, SMO, TMEM97
cell surface 1 BMP2
Golgi apparatus 1 SMO
mitochondrial inner membrane 1 CYP11A1
Lysosome 1 TMEM97
endosome 1 LHCGR
plasma membrane 6 BMP2, CACNA1I, LHCGR, SMO, STAR, TMEM97
Membrane 4 ADIG, CACNA1I, CYP11A1, TMEM97
extracellular exosome 2 BMP3, SMO
Lumenal side 1 HSD17B6
endoplasmic reticulum 3 HSD17B6, SMO, TMEM97
extracellular space 5 BGLAP, BMP2, BMP3, LHCGR, POMC
perinuclear region of cytoplasm 1 PPARG
mitochondrion 3 CYP11A1, FDX1, STAR
protein-containing complex 1 HES1
intracellular membrane-bounded organelle 5 BMP2, CEBPA, HSD17B6, PPARG, SMO
Microsome membrane 1 HSD17B6
Single-pass type I membrane protein 1 STAR
Secreted 5 ADIG, BGLAP, BMP2, BMP3, POMC
extracellular region 5 ADIG, BGLAP, BMP2, BMP3, POMC
Single-pass membrane protein 1 ADIG
Mitochondrion matrix 1 FDX1
mitochondrial matrix 3 CYP11A1, FDX1, STAR
transcription regulator complex 2 CEBPA, RUNX2
Cell projection, cilium 1 SMO
centriolar satellite 1 LHCGR
ciliary membrane 1 SMO
Nucleus membrane 1 TMEM97
nuclear membrane 2 SMO, TMEM97
perikaryon 1 BGLAP
nucleolus 1 CEBPA
vesicle 1 BGLAP
Mitochondrion inner membrane 1 CYP11A1
mitochondrial intermembrane space 1 STAR
secretory granule 1 POMC
axoneme 1 GLI1
ciliary tip 2 GLI1, SMO
Late endosome 1 SMO
receptor complex 3 LHCGR, NR1H3, PPARG
ciliary base 1 GLI1
cilium 1 SMO
chromatin 6 CEBPA, HES1, NR1H3, PPARG, RUNX2, SP7
centriole 1 SMO
Endomembrane system 1 TMEM97
Lipid droplet 1 ADIG
secretory granule lumen 1 POMC
Golgi lumen 1 BGLAP
endoplasmic reticulum lumen 1 BGLAP
nuclear matrix 1 HES1
voltage-gated calcium channel complex 1 CACNA1I
endocytic vesicle membrane 1 SMO
rough endoplasmic reticulum membrane 1 TMEM97
[Isoform 2]: Cytoplasm 1 GLI1
9+0 non-motile cilium 1 SMO
endoplasmic reticulum-Golgi intermediate compartment 1 SMO
Rough endoplasmic reticulum 1 TMEM97
GLI-SUFU complex 1 GLI1
BMP receptor complex 1 BMP2
C/EBP complex 1 CEBPA
CHOP-C/EBP complex 1 CEBPA
[Isoform 4]: Nucleus, nucleolus 1 CEBPA


文献列表

  • Xu Xiao, Youngjae Kim, Beatriz Romartinez-Alonso, Kristupas Sirvydis, Daniel S Ory, John W R Schwabe, Michael E Jung, Peter Tontonoz. Selective Aster inhibitors distinguish vesicular and nonvesicular sterol transport mechanisms. Proceedings of the National Academy of Sciences of the United States of America. 2021 01; 118(2):. doi: 10.1073/pnas.2024149118. [PMID: 33376205]
  • Chitra Bhatia, Stephanie Oerum, James Bray, Kathryn L Kavanagh, Naeem Shafqat, Wyatt Yue, Udo Oppermann. Towards a systematic analysis of human short-chain dehydrogenases/reductases (SDR): Ligand identification and structure-activity relationships. Chemico-biological interactions. 2015 Jun; 234(?):114-25. doi: 10.1016/j.cbi.2014.12.013. [PMID: 25526675]
  • Thomas J Berrodin, Qi Shen, Elaine M Quinet, Matthew R Yudt, Leonard P Freedman, Sunil Nagpal. Identification of 5α, 6α-epoxycholesterol as a novel modulator of liver X receptor activity. Molecular pharmacology. 2010 Dec; 78(6):1046-58. doi: 10.1124/mol.110.065193. [PMID: 20837678]
  • Apolonia Novillo, Seung-Jae Won, Christine Li, Ian P Callard. Changes in Nuclear Receptor and Vitellogenin Gene Expression in Response to Steroids and Heavy Metal in Caenorhabditis elegans. Integrative and comparative biology. 2005 Jan; 45(1):61-71. doi: 10.1093/icb/45.1.61. [PMID: 21676746]
  • Parveen Abidi, Susan Leers-Sucheta, Salman Azhar. Suppression of steroidogenesis and activator protein-1 transcription factor activity in rat adrenals by vitamin E deficiency-induced chronic oxidative stress. The Journal of nutritional biochemistry. 2004 Apr; 15(4):210-9. doi: 10.1016/j.jnutbio.2003.11.007. [PMID: 15068814]
  • Hui Xia, Colvin M Redman. Oxysterols suppress constitutive fibrinogen expression. Thrombosis and haemostasis. 2003 Jul; 90(1):43-51. doi: 10.1055/s-0037-1613597. [PMID: 12876624]
  • X Fu, J G Menke, Y Chen, G Zhou, K L MacNaul, S D Wright, C P Sparrow, E G Lund. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. The Journal of biological chemistry. 2001 Oct; 276(42):38378-87. doi: 10.1074/jbc.m105805200. [PMID: 11504730]
  • S C Yang, K H Chen. The oxidation of cholesterol in the yolk of selective traditional Chinese egg products. Poultry science. 2001 Mar; 80(3):370-5. doi: 10.1093/ps/80.3.370. [PMID: 11261569]
  • B A Laffitte, J J Repa, S B Joseph, D C Wilpitz, H R Kast, D J Mangelsdorf, P Tontonoz. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proceedings of the National Academy of Sciences of the United States of America. 2001 Jan; 98(2):507-12. doi: 10.1073/pnas.98.2.507. [PMID: 11149950]
  • M Norlin, U Andersson, I Björkhem, K Wikvall. Oxysterol 7 alpha-hydroxylase activity by cholesterol 7 alpha-hydroxylase (CYP7A). The Journal of biological chemistry. 2000 Nov; 275(44):34046-53. doi: 10.1074/jbc.m002663200. [PMID: 10882719]
  • L Matthys, R Castello, A Zilz, E P Widmaier. Differential sensitivity to ACTH, but not stress, in two sources of outbred Sprague-Dawley rats. Neuroendocrinology. 1998 Jun; 67(6):403-11. doi: 10.1159/000054339. [PMID: 9662720]
  • J H Nielsen, C E Olsen, C Duedahl, L H Skibsted. Isolation and quantification of cholesterol oxides in dairy products by selected ion monitoring mass spectrometry. The Journal of dairy research. 1995 Feb; 62(1):101-13. doi: 10.1017/s0022029900033719. [PMID: 7738238]
  • K Z Liu, T E Cuddy, G N Pierce. Oxidative status of lipoproteins in coronary disease patients. American heart journal. 1992 Feb; 123(2):285-90. doi: 10.1016/0002-8703(92)90636-a. [PMID: 1736561]
  • J W Laskey, P V Phelps. Effect of cadmium and other metal cations on in vitro Leydig cell testosterone production. Toxicology and applied pharmacology. 1991 Apr; 108(2):296-306. doi: 10.1016/0041-008x(91)90119-y. [PMID: 1850171]
  • B C McNamara, C R Jefcoate. Heterogeneous pools of cholesterol side-chain cleavage activity in adrenal mitochondria from ACTH-treated rats: differential responses to different reducing precursors. Molecular and cellular endocrinology. 1990 Oct; 73(2-3):123-34. doi: 10.1016/0303-7207(90)90125-r. [PMID: 2176627]
  • H Guo, J H Calkins, M M Sigel, T Lin. Interleukin-2 is a potent inhibitor of Leydig cell steroidogenesis. Endocrinology. 1990 Sep; 127(3):1234-9. doi: 10.1210/endo-127-3-1234. [PMID: 2167211]
  • C Seillan. Oxysterol mediated changes in fatty acid distribution and lipid synthesis in cultured bovine aortic smooth muscle cells. Lipids. 1990 Mar; 25(3):172-6. doi: 10.1007/bf02544334. [PMID: 2110280]
  • M W Rooney, S Yachnin, O Kucuk, L J Lis, J W Kauffman. Oxygenated cholesterols synergistically immobilize acyl chains and enhance protein helical structure in human erythrocyte membranes. Biochimica et biophysica acta. 1985 Oct; 820(1):33-9. doi: 10.1016/0005-2736(85)90212-3. [PMID: 4052416]
  • P B Hoyer, G D Niswender. The regulation of steroidogenesis is different in the two types of ovine luteal cells. Canadian journal of physiology and pharmacology. 1985 Mar; 63(3):240-8. doi: 10.1139/y85-045. [PMID: 2985223]
  • M A Hattori, D R Aquilano, M L Dufau. An early steroidogenic defect in hormone-induced Leydig cell desensitization. Journal of steroid biochemistry. 1984 Sep; 21(3):265-77. doi: 10.1016/0022-4731(84)90279-6. [PMID: 6548538]
  • J Klimek, A P Schaap, T Kimura. The relationship between NADPH-dependent lipid peroxidation and degradation of cytochrome P-450 in adrenal cortex mitochondria. Biochemical and biophysical research communications. 1983 Jan; 110(2):559-66. doi: 10.1016/0006-291x(83)91186-5. [PMID: 6838538]
  • J L Duncan, L Buckingham. Resistance to streptolysin O in mammalian cells treated with oxygenated derivatives of cholesterol. Cholesterol content of resistant cells and recovery of streptolysin O sensitivity. Biochimica et biophysica acta. 1980 Dec; 603(2):278-87. doi: 10.1016/0005-2736(80)90374-0. [PMID: 7459354]
  • K SHIMIZU, S SHIMAO, M TANAKA. CONVERSION IN VITRO OF 20-ALPHA-HYDROXYCHOLESTEROL TO 17-ALPHA, 20-ALPHA-DIHYDROXYCHOLESTEROL BY HUMAN FETAL ADRENALS. Steroids. 1965; 75(?):SUPPL 1:85-93. doi: ". [PMID: 14283223]
  • K SHIMIZU, R I DORFMAN, M GUT. Isocaproic acid, a metabolite of 20 alpha-hydroxycholesterol. The Journal of biological chemistry. 1960 Jun; 235(?):PC25. doi: 10.1016/s0021-9258(19)76898-7. [PMID: 14446007]