Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). Liquiritin is found in herbs and spices. Liquiritin is isolated from Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
Vincamine
Vincamine is a vinca alkaloid, an alkaloid ester, an organic heteropentacyclic compound, a methyl ester and a hemiaminal. It has a role as an antihypertensive agent, a vasodilator agent and a metabolite. It is functionally related to an eburnamenine. Vincamine is a monoterpenoid indole alkaloid obtained from the leaves of *Vinca minor* with a vasodilatory property. Studies indicate that vincamine increases the regional cerebral blood flow. Vincamine is a natural product found in Vinca difformis, Vinca major, and other organisms with data available. A major alkaloid of Vinca minor L., Apocynaceae. It has been used therapeutically as a vasodilator and antihypertensive agent, particularly in cerebrovascular disorders. Vincamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1617-90-9 (retrieved 2024-07-01) (CAS RN: 1617-90-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].
Escin
Aescin is a triterpenoid saponin. escin Ib is a natural product found in Aesculus chinensis, Aesculus hippocastanum, and other organisms with data available. See also: Horse Chestnut (part of). D002317 - Cardiovascular Agents escin Ia is a natural product found in Aesculus chinensis and Aesculus hippocastanum with data available. See also: Horse Chestnut (part of). Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2].
Isomangiferin
Isomangiferin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7 and a 1,5-anhydro-D-glucitol moiety at position 1. It has a role as an anti-HSV-1 agent and a plant metabolite. It is a member of xanthones, a C-glycosyl compound and a polyphenol. Isomangiferin is a natural product found in Cystopteris moupinensis, Cystopteris montana, and other organisms with data available. Isomangiferin is found in fruits. Isomangiferin is a constituent of Mangifera indica (mango) Constituent of Mangifera indica (mango). Isomangiferin is found in fruits. Isomangiferin, a natural product, is reported to have antiviral activity. Isomangiferin, a natural product, is reported to have antiviral activity.
L-Valine
L-valine is the L-enantiomer of valine. It has a role as a nutraceutical, a micronutrient, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a valine and a L-alpha-amino acid. It is a conjugate base of a L-valinium. It is a conjugate acid of a L-valinate. It is an enantiomer of a D-valine. It is a tautomer of a L-valine zwitterion.
Valine is a branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
L-Valine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Valine is an aliphatic and extremely hydrophobic essential amino acid in humans related to leucine, Valine is found in many proteins, mostly in the interior of globular proteins helping to determine three-dimensional structure. A glycogenic amino acid, valine maintains mental vigor, muscle coordination, and emotional calm. Valine is obtained from soy, cheese, fish, meats and vegetables. Valine supplements are used for muscle growth, tissue repair, and energy. (NCI04)
Valine (abbreviated as Val or V) is an -amino acid with the chemical formula HO2CCH(NH2)CH(CH3)2. It is named after the plant valerian. L-Valine is one of 20 proteinogenic amino acids. Its codons are GUU, GUC, GUA, and GUG. This essential amino acid is classified as nonpolar. Along with leucine and isoleucine, valine is a branched-chain amino acid. Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic amino acids (AAA) tyrosine, tryptophan and phenylalanine, as well as methionine are increased in these conditions. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. All the BCAA probably compete with AAA for absorption into the brain. Supplemental BCAA with vitamin B6 and zinc help normalize the BCAA:AAA ratio. In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine is hydrophobic, the hemoglobin does not fold correctly. Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins.
A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and ...
Valine (Val) or L-valine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-valine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Valine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Valine was first isolated from casein in 1901 by Hermann Emil Fischer. The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of valine in the roots of the plant. Valine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-valine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain α-ketoacid dehydrogenase complex. This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. Valine, like other branched-chain amino acids, is associated with insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans (PMID: 25287287). Mice fed a valine deprivation diet for one day have improved insulin sensitivity and feeding of a valine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in reduced adiposity and improved insulin sensitivity (PMID: 29266268). In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine ...
L-valine, also known as (2s)-2-amino-3-methylbutanoic acid or L-(+)-alpha-aminoisovaleric acid, belongs to valine and derivatives class of compounds. Those are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-valine is soluble (in water) and a moderately acidic compound (based on its pKa). L-valine can be found in watermelon, which makes L-valine a potential biomarker for the consumption of this food product. L-valine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), breast milk, urine, and blood, as well as in human epidermis and fibroblasts tissues. L-valine exists in all living species, ranging from bacteria to humans. In humans, L-valine is involved in several metabolic pathways, some of which include streptomycin action pathway, tetracycline action pathway, methacycline action pathway, and kanamycin action pathway. L-valine is also involved in several metabolic disorders, some of which include methylmalonic aciduria due to cobalamin-related disorders, 3-methylglutaconic aciduria type III, isovaleric aciduria, and methylmalonic aciduria. Moreover, L-valine is found to be associated with schizophrenia, alzheimers disease, paraquat poisoning, and hypervalinemia. L-valine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Valine (abbreviated as Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. In the genetic code it is encoded by all codons starting with GU, namely GUU, GUC, GUA, and GUG (Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological pr...
L-Valine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7004-03-7 (retrieved 2024-06-29) (CAS RN: 72-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Valine (Valine) is a new nonlinear semiorganic material[1].
L-Valine (Valine) is a new nonlinear semiorganic material[1].
Protopine
Protopine is a dibenzazecine alkaloid isolated from Fumaria vaillantii. It has a role as a plant metabolite. Protopine is a natural product found in Corydalis heterocarpa var. japonica, Fumaria capreolata, and other organisms with data available. Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic [HMDB] Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. Protopine is an alkaloid occurring in opium poppy,[2] Corydalis tubers[3] and other plants of the family papaveraceae, like Fumaria officinalis.[4] Protopine is metabolically derived from the benzylisoquinoline alkaloid (S)-Reticuline through a progressive series of five enzymatic transformations: 1) berberine bridge enzyme to (S)-Scoulerine; 2) (S)-cheilanthifoline synthase/CYP719A25 to (S)-Cheilanthifoline; 3) (S)-stylopine synthase/CYP719A20 to (S)-Stylopine; 4) (S)-tetrahydroprotoberberine N-methyltransferase to (S)-cis-N-Methylstylopine; and ultimately, 5) N-methylstylopine hydroxylase to protopine.[5] It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic.[6][7] Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].
Lupenone
Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
Neochlorogenic acid
Constituent of coffee and many other plants. First isolated from peaches (Prunus persica). trans-Neochlorogenic acid is found in coffee and coffee products, fruits, and pear. [Raw Data] CBA73_Neochlorogenic-_neg_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_20eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_40eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_20eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_40eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_30eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_30eV.txt Neochlorogenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=906-33-2 (retrieved 2024-07-17) (CAS RN: 906-33-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.
Phillyrin
Forsythin is a lignan and a glycoside. Phillyrin is a natural product found in Forsythia suspensa, Phillyrea latifolia, and other organisms with data available. Annotation level-1 2-[4-[3-(3,4-Dimethoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-2-methoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Pteris semipinnata with data available. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2]. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2].
Tropoflavin
7,8-dihydroxyflavone is a dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. It has a role as a plant metabolite, a tropomyosin-related kinase B receptor agonist, an antidepressant, an antioxidant and an antineoplastic agent. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].
Verbenalin
Verbenalin, also known as cornin (glycoside) or cornin iridoid, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, verbenalin is considered to be an isoprenoid lipid molecule. Verbenalin is soluble (in water) and a very weakly acidic compound (based on its pKa). Verbenalin is a bitter tasting compound found in common verbena, which makes verbenalin a potential biomarker for the consumption of this food product. Verbenalin is a chemical compound, classified as an iridoid glucoside, that is found in Verbena officinalis. It is one of the sleep-promoting (soporific) components in Verbena officinalis . Verbenalin is a terpene glycoside. Verbenalin is a natural product found in Symplocos glauca, Cornus kousa, and other organisms with data available. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2]. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2].
Kaempferol_3-O-rutinoside
Kaempferol-3-rutinoside is a kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. It has a role as a metabolite, a radical scavenger and a plant metabolite. It is a rutinoside, a trihydroxyflavone, a disaccharide derivative and a kaempferol O-glucoside. Nicotiflorin is a natural product found in Visnea mocanera, Eupatorium cannabinum, and other organisms with data available. See also: Cocoa (part of). A kaempferol O-glucoside that is kaempferol attached to a rutinosyl [6-deoxy-alpha-L-mannosyl-(1->6)-beta-D-glucosyl] residue at position 3 via a glycosidic linkage. It has been isolated from the leaves of Solanum campaniforme. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.
Rutaecarpine
Rutecarpine is a member of beta-carbolines. Rutaecarpine is a natural product found in Bouchardatia neurococca, Zanthoxylum dimorphophyllum, and other organisms with data available. Rutaecarpine belongs to the family of Pyridopyrimidines. These are compounds containing a pyridopyrimidine, which consists of a pyridine fused to a pyrimidine. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Rutaecarpine, an alkaloid of Evodia rutaecarpa, is an inhibitor of COX-2 with an IC50 value of 0.28 μM. Rutaecarpine, an alkaloid of Evodia rutaecarpa, is an inhibitor of COX-2 with an IC50 value of 0.28 μM.
LDR cpd
Linderane is a member of dioxanes. Linderane is a natural product found in Cryptocarya densiflora, Neolitsea villosa, and other organisms with data available. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1]. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1].
Rutin
Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].
Notopterol
Notopterol is a furanocoumarin. Notopterol is a natural product found in Hansenia forbesii and Hansenia weberbaueriana with data available. Notopterol is a coumarin extracted from N. incisum. Notopterol induces apoptosis and has antipyretic, analgesic and anti-inflammatory effects. Notopterol is used for acute myeloid leukemia (AML)[1]. Notopterol is a coumarin extracted from N. incisum. Notopterol induces apoptosis and has antipyretic, analgesic and anti-inflammatory effects. Notopterol is used for acute myeloid leukemia (AML)[1].
Genipin
Genipin 1-beta-gentiobioside is a terpene glycoside. Genipin 1-gentiobioside is a natural product found in Gardenia jasminoides and Genipa americana with data available. Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities. Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities.
Linonin
Linonin, also known as 7,16-dioxo-7,16-dideoxylimondiol or evodin, is a member of the class of compounds known as limonoids. Limonoids are highly oxygenated, modified terpenoids with a prototypical structure either containing or derived from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. All naturally occurring citrus limonoids contain a furan ring attached to the D-ring, at C-17, as well as oxygen containing functional groups at C-3, C-4, C-7, C-16 and C-17. Linonin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Linonin can be found in lemon, which makes linonin a potential biomarker for the consumption of this food product. Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.
Ginsenoside Ro
Chikusetsusaponin-V is a triterpenoid saponin. It has a role as a metabolite. Ginsenoside Ro is a natural product found in Panax vietnamensis, Bassia indica, and other organisms with data available. See also: Asian Ginseng (part of). Ginsenoside Ro is found in tea. Ginsenoside Ro is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside Ro is found in tea. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS.
Kaempferitrin
Kaempferol 3,7-di-O-alpha-L-rhamnoside is a glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. It has a role as a bone density conservation agent, a hypoglycemic agent, an immunomodulator, an anti-inflammatory agent, an antineoplastic agent, a plant metabolite, an apoptosis inducer and an antidepressant. It is an alpha-L-rhamnoside, a monosaccharide derivative, a dihydroxyflavone, a glycosyloxyflavone and a polyphenol. It is functionally related to a kaempferol. Kaempferitrin is a natural product found in Ficus septica, Cleome amblyocarpa, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). A glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. Kaempferitrin is found in linden. Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.
codonolactone
Atractylenolide III is a naphthofuran. It has a role as a metabolite. Atractylenolide III is a natural product found in Codonopsis canescens, Codonopsis subglobosa, and other organisms with data available. A natural product found in Atractylodes lancea. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
Curcumenol
Curcumenol is a sesquiterpenoid. (3S,3aS,6R,8aS)-3,8-Dimethyl-5-(propan-2-ylidene)-2,3,4,5,6,8a-hexahydro-1H-3a,6-epoxyazulen-6-ol is a natural product found in Curcuma longa and Curcuma phaeocaulis with data available. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors 4-Epicurcumenol is a constituent of rhizomes of Curcuma zedoaria (zedoary). Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2]. Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2].
Poncirin
(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. Isolated from Citrus subspecies Poncirin is found in many foods, some of which are citrus, grapefruit, lemon, and grapefruit/pummelo hybrid. Acquisition and generation of the data is financially supported in part by CREST/JST. Poncirin is found in citrus. Poncirin is isolated from Citrus specie Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].
alpha-Allocryptopine
Alpha-allocryptopine, also known as alpha-fagarine or beta-homochelidonine, is a member of the class of compounds known as protopine alkaloids. Protopine alkaloids are alkaloids with a structure based on a tricyclic protopine formed by oxidative ring fission of protoberberine N-metho salts. Alpha-allocryptopine is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Alpha-allocryptopine can be found in barley, which makes alpha-allocryptopine a potential biomarker for the consumption of this food product. Allocryptopine is a dibenzazecine alkaloid, an organic heterotetracyclic compound, a tertiary amino compound, a cyclic ketone, a cyclic acetal and an aromatic ether. Allocryptopine is a natural product found in Zanthoxylum beecheyanum, Berberis integerrima, and other organisms with data available. See also: Sanguinaria canadensis root (part of). KEIO_ID A137; [MS2] KO008812 KEIO_ID A137; [MS3] KO008813 KEIO_ID A137 Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2]. Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].
Cyasteron
Cyasterone is a steroid lactone, a 21-hydroxy steroid, a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 6-oxo steroid and a phytoecdysteroid. Cyasterone is a natural product found in Ajuga decumbens, Ajuga iva, and other organisms with data available. Cyasterone, a natural EGFR inhibitor, mainly isolated from Ajuga decumbens Thunb (Labiatae). Cyasterone manifests anti-proliferation effect by induced apoptosis and cell cycle arrests. Cyasterone may serves as a therapeutic anti-tumor agent against human tumors[1]. Cyasterone, a natural EGFR inhibitor, mainly isolated from Ajuga decumbens Thunb (Labiatae). Cyasterone manifests anti-proliferation effect by induced apoptosis and cell cycle arrests. Cyasterone may serves as a therapeutic anti-tumor agent against human tumors[1].
Asterolide
Atractylenolide II is a sesquiterpene lactone. Atractylenolide II is a natural product found in Chloranthus henryi, Atractylodes macrocephala, and other organisms with data available. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2]. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].
Asperuloside
Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].
Irisfloretin
Irisflorentin is a member of 4-methoxyisoflavones. Irisflorentin is a natural product found in Iris tectorum, Iris leptophylla, and other organisms with data available. Irisflorentin, a naturally occurring isoflavone, is an abundant active constituent in Belamcanda chinensis. Irisflorentin markedly reduces the transcriptional and translational levels of inducible nitric oxide synthase (iNOS) as well as the production of NO. Anti-inflammatory activity[1]. Irisflorentin, a naturally occurring isoflavone, is an abundant active constituent in Belamcanda chinensis. Irisflorentin markedly reduces the transcriptional and translational levels of inducible nitric oxide synthase (iNOS) as well as the production of NO. Anti-inflammatory activity[1].
Phellodendrine
Phellodendrine is an alkaloid. Phellodendrine is a natural product found in Phellodendron chinense, Phellodendron chinense var. glabriusculum, and other organisms with data available.
Obacunone
Constituent of Citrus subspecies, Fortunella margarita (oval kumquat) and Casimiroa edulis (Mexican apple). Obacunone is found in many foods, some of which are pomes, sweet orange, lemon, and fruits. Obacunone is found in fruits. Obacunone is a constituent of Citrus species, Fortunella margarita (oval kumquat) and Casimiroa edulis (Mexican apple) Obacunone is a limonoid. Obacunone is a natural product found in Limonia acidissima, Citrus latipes, and other organisms with data available. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1]. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1].
Bryodulcosigenin
Bryodulcosigenin is a cucurbitacin. (3S,8S,9R,10R,13R,14S,17R)-17-[(2R)-5,6-dihydroxy-6-methylheptan-2-yl]-3-hydroxy-4,4,9,13,14-pentamethyl-1,2,3,7,8,10,12,15,16,17-decahydrocyclopenta[a]phenanthren-11-one is a natural product found in Apis cerana with data available. Bryodulcosigenin is an extract of the roots of Bryoniadioica with anti-inflammatory effect[1]. Bryodulcosigenin is an extract of the roots of Bryoniadioica with anti-inflammatory effect[1].
Gentianine
Gentianine, also known as 4-(2-hydroxyethyl)-5-vinylnicotinate g-lactone, is a member of the class of compounds known as pyranopyridines. Pyranopyridines are polycyclic aromatic compounds containing a pyran ring fused to a pyridine ring. Gentianine is soluble (in water) and a strong basic compound (based on its pKa). Gentianine is a bitter tasting compound found in fenugreek, which makes gentianine a potential biomarker for the consumption of this food product. Gentianine is a pyranopyridine, a lactone and a pyridine alkaloid. Gentianine is a natural product found in Strychnos angolensis, Strychnos xantha, and other organisms with data available. See also: Fenugreek seed (part of); Centaurium erythraea whole (part of).
Atractylon
Atractylone is a sesquiterpenoid. Atractylon is a natural product found in Eugenia uniflora, Prumnopitys andina, and other organisms with data available.
Beta-eudesmol
Beta-eudesmol is a carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). It has a role as a volatile oil component. It is a carbobicyclic compound, a tertiary alcohol and a eudesmane sesquiterpenoid. beta-Eudesmol is a natural product found in Rhododendron calostrotum, Rhododendron lepidotum, and other organisms with data available. See also: Arctium lappa Root (part of); Cannabis sativa subsp. indica top (part of); Pterocarpus marsupium wood (part of). A carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].
Sclareol
Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). Constituent of Salvia sclarea (clary sage). Sclareol is found in many foods, some of which are common thyme, herbs and spices, tea, and nutmeg. Sclareol is found in alcoholic beverages. Sclareol is a constituent of Salvia sclarea (clary sage) Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].
Sinapine
Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. IPB_RECORD: 244; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
denudatine
Denudatine is a diterpenoid. It derives from a hydride of an atisane. CID 441729 is a natural product found in Aconitum kusnezoffii and Aconitum carmichaelii with data available.
Daphnoretin
Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2]. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2].
Monotropein
Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). Monotropein is found in bilberry. Monotropein is a constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Monotropein is a food flavouring agent. Monotropein is a stabiliser Constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Food flavouring agent. Stabiliser. Monotropein is found in bilberry. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
Campesterol
Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
Euphol
Euphol is a triterpenoid. Euphol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Euphorbia subspecies (CCD). Euphol is found in many foods, some of which are cucumber, soy bean, shea tree, and tea. Euphol is found in cucumber. Euphol is a constituent of Euphorbia species (CCD) Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1].
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
1-Triacontanol
Triacontan-1-ol, also known as myricyl alcohol or triacontanyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, triacontan-1-ol is considered to be a fatty alcohol lipid molecule. Triacontan-1-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Triacontan-1-ol can be found in a number of food items such as coriander, common grape, tea, and cabbage, which makes triacontan-1-ol a potential biomarker for the consumption of these food products.
Gossypetin
Gossypetin is a hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions. It has a role as a plant metabolite. It is a 7-hydroxyflavonol and a hexahydroxyflavone. It is a conjugate acid of a gossypetin-3-olate and a gossypetin(1-). Gossypetin is a natural product found in Sedum brevifolium, Rhododendron stenophyllum, and other organisms with data available. See also: Primula veris flower (part of); Larrea tridentata whole (part of). A hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions.
(-)-3-Isothujone
(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].
Soyasaponin II
Soyasaponin II is a triterpenoid saponin. Soyasaponin II is a natural product found in Hedysarum polybotrys, Wisteria brachybotrys, and other organisms with data available. Soyasaponin II is found in pulses. Soyasaponin II is a constituent of soya bean Glycine max
Cis-Hydroxyproline
Cis 4-hydroxyproline, also known as L-allo-hydroxyproline or (2s,4s)-4-hydroxy-2-pyrrolidinecarboxylic acid, belongs to proline and derivatives class of compounds. Those are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Cis 4-hydroxyproline is soluble (in water) and a moderately acidic compound (based on its pKa). Cis 4-hydroxyproline can be found in a number of food items such as green bell pepper, wheat, nanking cherry, and oat, which makes cis 4-hydroxyproline a potential biomarker for the consumption of these food products. Cis-4-hydroxy-L-proline is l-Proline in which a hydrogen at the 4-position of the pyrrolidine ring is substituted by a hydroxy group (S-configuration). It has a role as a metabolite. It is a non-proteinogenic L-alpha-amino acid and a 4-hydroxyproline. It is a tautomer of a cis-4-hydroxy-L-proline zwitterion. A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation. cis-4-Hydroxyproline is classified as a proline derivative. It is considered to be a soluble (in water), acidic compound. cis-4-Hydroxyproline can be found in numerous foods such as dills, green zucchinis, saskatoon berries, and Japanese pumpkins. L-Proline in which a hydrogen at the 4-position of the pyrrolidine ring is substituted by a hydroxy group (S-configuration). [Spectral] 4-Hydroxy-L-proline (exact mass = 131.05824) and L-Threonine (exact mass = 119.05824) and Taurine (exact mass = 125.01466) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. KEIO_ID H004 cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.
Khellin
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2]. Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2].
Tannic acid
A gallotannin obtained by acylation of the five hydroxy groups of D-glucose by 3,4-dihydroxy-5-[(3,4,5-trihydroxybenzoyl)oxy]benzoic acid (a gallic acid dimer). Same as: D01959 Tannic acid is a light yellow to tan solid with a faint odor. Sinks and mixes with water. (USCG, 1999) Chinese gallotannin is a tannin. Tannic acid is a natural product found in Achillea millefolium, Calluna vulgaris, and other organisms with data available. Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM. Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM.
Cedorol
Cedrol, also known as alpha-cedrol or (+)-cedrol, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, cedrol is considered to be an isoprenoid lipid molecule. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol can be found in ginger, which makes cedrol a potential biomarker for the consumption of this food product. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].
Nigakinone
Nigakinone is a member of beta-carbolines. Nigakinone is a natural product found in Picrasma quassioides, Quassia amara, and Picrasma excelsa with data available.
(-)-Menthone
(-)-menthone, also known as P-menthan-3-one or (2s,5r)-2-isopropyl-5-methylcyclohexanone, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (-)-menthone is considered to be an isoprenoid lipid molecule (-)-menthone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (-)-menthone is a fresh, green, and minty tasting compound and can be found in a number of food items such as lemon, kai-lan, babassu palm, and linden, which makes (-)-menthone a potential biomarker for the consumption of these food products (-)-menthone exists in all eukaryotes, ranging from yeast to humans. (-)-Menthone, also known as (1R,4S)-menthone or L-menthone, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. (-)-Menthone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (-)-menthone is considered to be an isoprenoid lipid molecule. (-)-menthone is a menthone that is cyclohexanone substituted by a methyl and an isopropyl group at positions 5 and 2 respectively (the 2S,5R-stereoisomer). It is an enantiomer of a (+)-menthone. Menthone is a natural product found in Xylopia aromatica, Hedeoma multiflora, and other organisms with data available. Menthone is a metabolite found in or produced by Saccharomyces cerevisiae. A menthone that is cyclohexanone substituted by a methyl and an isopropyl group at positions 5 and 2 respectively (the 2S,5R-stereoisomer). (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\\% and 94.92\\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\% and 94.92\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\% and 94.92\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\% and 94.92\\\%. [2] Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2]. Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2].
Isopimaric acid
Isopimaric acid is a diterpenoid, a carbotricyclic compound and a monocarboxylic acid. It is a conjugate acid of an isopimarate. It derives from a hydride of an isopimara-7,15-diene. Isopimaric acid is a natural product found in Pinus brutia var. eldarica, Halocarpus bidwillii, and other organisms with data available. Isopimaric acid is isolated from Pinus palustris (pitch pine). D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.
Canthin-6-one
Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].
CleomiscosinA
Cleomiscosin A is an organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. It has a role as a metabolite and an anti-inflammatory agent. It is a delta-lactone, an aromatic ether, an organic heterotricyclic compound, a member of phenols and a primary alcohol. Cleomiscosin A is a natural product found in Hibiscus syriacus, Artemisia minor, and other organisms with data available. An organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2]. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2].
Glycyrol
Glycyrol is a member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 1 and 9, a methoxy group at position 3 and a prenyl group at position 2 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a member of coumestans, a polyphenol, a delta-lactone and an aromatic ether. It is functionally related to a coumestan. Glycyrol is a natural product found in Glycyrrhiza, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). A member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 1 and 9, a methoxy group at position 3 and a prenyl group at position 2 respectively. Glycyrol is found in root vegetables. Glycyrol is isolated from Glycyrrhiza sp. root (licorice Isolated from Glycyrrhiza species root (licorice). Glycyrol is found in root vegetables. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2]. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2].
Saponarin
7-O-(beta-D-glucosyl)isovitexin is a C-glycosyl compound that is isovitexin in which the hydroxyl hydrogen at position 7 is replaced by a beta-D-glucosyl residue. It has a role as a metabolite. It is a C-glycosyl compound, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an isovitexin. Saponarin is a natural product found in Hibiscus syriacus, Moraea sisyrinchium, and other organisms with data available. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3]. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3].
Astilbin
Neoastilbin is a flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a monosaccharide derivative, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to a (-)-taxifolin. It is an enantiomer of an astilbin. Neoastilbin is a natural product found in Neolitsea sericea, Dimorphandra mollis, and other organisms with data available. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neosmitilbin is?isolated from?Garcinia?mangostana. Neosmitilbin is?isolated from?Garcinia?mangostana.
3-HPT
(E)-4-(3,5-Dimethoxystyryl)benzene-1,2-diol is a natural product found in Sphaerophysa salsula with data available. 3'-Hydroxypterostilbene is a Pterostilbene (HY-N0828) analogue. 3'-Hydroxypterostilbene inhibits the growth of COLO 205, HCT-116 and HT-29 cells with IC50s of 9.0, 40.2 and 70.9 μM, respectively. 3'-Hydroxypterostilbene significantly down-regulates PI3K/Akt and MAPKs signaling pathways and effectively inhibits the growth of human colon cancer cells by inducing apoptosis and autophagy. 3'-Hydroxypterostilbene can be used for the research of cancer[1].
chrysoplenol D
3,4,5-trihydroxy-3,6,7-trimethoxyflavone is a trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. It has a role as an antineoplastic agent and a metabolite. It is a trihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetagetin. Chrysosplenol D is a natural product found in Psiadia viscosa, Chrysosplenium oppositifolium, and other organisms with data available. See also: Vitex negundo fruit (part of). Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4]. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4].
Cirsimaritin
Cirsimaritin, also known as 4,5-dihydroxy-6,7-dimethoxyflavone or scrophulein, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsimaritin is considered to be a flavonoid lipid molecule. Cirsimaritin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsimaritin can be found in a number of food items such as italian oregano, lemon verbena, winter savory, and rosemary, which makes cirsimaritin a potential biomarker for the consumption of these food products.
Okanin
Okanin is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 3, 4, 2, 3, and 4 respectively. It has a role as a plant metabolite. It is a member of chalcones and a benzenetriol. It is functionally related to a trans-chalcone. Okanin is a natural product found in Acacia implexa, Acacia concurrens, and other organisms with data available. A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 3, 4, 2, 3, and 4 respectively. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways[1]. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways[1].
alpha-Methylene-gamma-butyrolactone
Alpha-methylene gamma-butyrolactone is a butan-4-olide having a methylene group at the 3-position. It has a role as a gastrointestinal drug and an anti-ulcer drug. alpha-Methylene-gamma-butyrolactone is a natural product found in Tulipa agenensis, Tulipa humilis, and other organisms with data available. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].
Octanal
Octanal, also known as 1-caprylaldehyde or aldehyde C-8, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, octanal is considered to be a fatty aldehyde lipid molecule. A saturated fatty aldehyde formally arising from reduction of the carboxy group of caprylic acid (octanoic acid). Octanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Octanal exists in all eukaryotes, ranging from yeast to humans. Octanal is an aldehydic, citrus, and fat tasting compound. Octanal is commonly found in high concentrations in limes, caraway, and mandarin orange (clementine, tangerine) and in lower concentrations in wild carrots and carrots. Octanal has also been detected, but not quantified in several different foods, such as cherry tomato, brussel sprouts, alaska wild rhubarbs, sweet marjorams, and sunflowers. N-octylaldehyde is a colorless liquids with a strong fruity odor. Less dense than water and insoluble in water. Flash points 125 °F. Used in making perfumes and flavorings. Octanal is a saturated fatty aldehyde formally arising from reduction of the carboxy group of caprylic acid (octanoic acid). It has a role as a plant metabolite. It is a saturated fatty aldehyde, a n-alkanal and a medium-chain fatty aldehyde. Octanal is a natural product found in Eupatorium cannabinum, Thymus zygioides, and other organisms with data available. Octanal is a metabolite found in or produced by Saccharomyces cerevisiae. Isolated from various plant oils especies Citrus subspeciesand is also present in kumquat peel oil, cardamom, coriander, caraway and other herbs. Flavouring agent, used in artificial citrus formulations A saturated fatty aldehyde formally arising from reduction of the carboxy group of caprylic acid (octanoic acid). A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents Octanal is an aromatic aldehyde, with antioxidant and antimicrobial activities. Octanal shows cytotoxicity against Hela cells[1]. Octanal is an aromatic aldehyde, with antioxidant and antimicrobial activities. Octanal shows cytotoxicity against Hela cells[1].
(-)-Homoeriodictyol
Homoeriodictyol is a trihydroxyflavanone that consists of 3-methoxyflavanone in which the three hydroxy substituents are located at positions 4, 5, and 7. It has a role as a metabolite and a flavouring agent. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-methoxyflavanones and a member of 4-hydroxyflavanones. It is functionally related to an eriodictyol. Homoeriodictyol is a natural product found in Smilax corbularia, Limonium aureum, and other organisms with data available. Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1]. Homoeriodictyol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=446-71-9 (retrieved 2024-09-19) (CAS RN: 446-71-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Verbascose
Verbascose is a pentasaccharide that is stachiose which has an additional unit of alpha-D-galactopyranose attached by a 1->6 glycosidic linkage to the terminal galactosyl residue. It is a pentasaccharide and a raffinose family oligosaccharide. It is functionally related to a stachyose. Verbascose is a natural product found in Vigna radiata, Cajanus cajan, and other organisms with data available. Verbascose is a member of the class of compounds known as oligosaccharides. Oligosaccharides are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Verbascose is soluble (in water) and a very weakly acidic compound (based on its pKa). Verbascose can be synthesized from stachyose. Verbascose can also be synthesized into ajugose. Verbascose can be found in a number of food items such as sesbania flower, silver linden, wild carrot, and burbot, which makes verbascose a potential biomarker for the consumption of these food products.
(R)-Carvone
Carvone, with R and S isomers, also known as carvol or limonen-6-one, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m-menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Carvone is a neutral compound. Carvone is a naturally occurring organic compound found in many essential oils but is most abundant in the oils from caraway seeds (Carum carvi), spearmint (Mentha spicata), and dill (PMID:27427817). Carvone is a volatile terpenoid found in cannabis plants (PMID:6991645 ). Carvone is occasionally found as a component of biological fluids in normal individuals. Both carvones (R, S) are used in the food and flavor industry (http//doi:10.1016/j.foodchem.2005.01.003). R-carvone is also used in air freshening products and in essential oils used in aromatherapy and alternative medicine. Caraway was used for medicinal purposes by the ancient Romans, but carvone was probably not isolated as a pure compound until Varrentrapp obtained it in 1841 (PMID:5556886 , 2477620 ). Carvone may help in the management of diseases (PMID:30374904) and had been considered as an adjuvant for treatment of cancer patients (PMID:30087792) and patients with epilepsy (PMID:31239862). It also has been successfully used as a biopesticide (PMID:30250476). (-)-carvone is a carvone having (R) configuration. It is an enantiomer of a (+)-carvone. (-)-Carvone is a natural product found in Poiretia latifolia, Licaria triandra, and other organisms with data available. See also: Myrrh (part of); Spearmint Oil (part of). Constituent of spearmint (Mentha crispa) costmary, kuromoji and other oils. Flavouring ingredient A carvone having (R) configuration. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2].
2-Methoxy-4-vinylphenol
2-methoxy-4-vinylphenol is a member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. It has a role as a pheromone, a flavouring agent and a plant metabolite. 2-Methoxy-4-vinylphenol is a natural product found in Coffea, Coffea arabica, and other organisms with data available. 4-Vinylguaiacol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Moringa oleifera leaf oil (part of). 2-Methoxy-4-vinylphenol is an aromatic substance used as a flavoring agent. It is one of the compounds responsible for the natural aroma of buckwheat. A member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. Responsible for off-flavour of old fruit in stored orange juice 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].
alpha-Terpinene
Alpha-Terpinene is one of four isomers of terpinene (the other three being beta terpinene, gamma terpenine, and delta terpinine or terpimolene) that differ in the position of carbon-carbon double bonds. Alpha-Terpinene belongs to the class of organic compounds known as menthane monoterpenes. These are monoterpenes with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpinene is a naturally occurring monoterpene found in allspice, cardamom, and marjoram. alpha-Terpinene is a constituent of many essential oils with oil from Litsea ceylanica being is a major source (20\\\\%) of it. alpha-Terpinene has been found in Citrus, Eucalyptus and Juniperus species, and cannabis plants (PMID:6991645 ). ±-Terpinene is a flavouring agent and is produced industrially by acid-catalyzed rearrangement of ±-pinene. It has perfume and flavoring properties but is mainly used to confer a pleasant odor to industrial fluids. Alpha-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. It has a role as a volatile oil component and a plant metabolite. It is a monoterpene and a cyclohexadiene. alpha-Terpinene is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. One of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. Alpha-terpinene, also known as 1-isopropyl-4-methyl-1,3-cyclohexadiene or 1-methyl-4-(1-methylethyl)-1,3-cyclohexadiene, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, alpha-terpinene is considered to be an isoprenoid lipid molecule. Alpha-terpinene is a camphoraceous, citrus, and herbal tasting compound and can be found in a number of food items such as summer savory, cabbage, pot marjoram, and wild celery, which makes alpha-terpinene a potential biomarker for the consumption of these food products. Alpha-terpinene can be found primarily in saliva. Alpha-terpinene exists in all eukaryotes, ranging from yeast to humans. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].
24,25-Dihydrolanosterol
24,25-dihydrolanosterol is a 3beta-sterol formed from lanosterol by reduction across the C-24-C-25 double bond. It has a role as a human metabolite and a mouse metabolite. It is a 3beta-sterol and a tetracyclic triterpenoid. It is functionally related to a lanosterol. 24,25-Dihydrolanosterol is a natural product found in Euphorbia sapinii, Heterobasidion annosum, and other organisms with data available. 24,25-dihydrolanosterol is a metabolite found in or produced by Saccharomyces cerevisiae. 24,25-Dihydrolanosterol is involved in the biosynthesis of steriods. 24,25-Dihydrolanosterol is reversibly converted to lanosterol by delta24-sterol reductase [EC:1.3.1.72]. A 3beta-sterol formed from lanosterol by reduction across the C-24-C-25 double bond. 24,25-Dihydrolanosterol (Lanostenol) is a component of the seeds of red pepper (Capsicum annuum)[1].
Chelidonic acid
Chelidonic acid, also known as 4-oxo-4h-pyran-2,6-dicarboxylic acid or chelidonate, belongs to pyranones and derivatives class of compounds. Those are compounds containing a pyran ring which bears a ketone. Chelidonic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Chelidonic acid can be found in corn, which makes chelidonic acid a potential biomarker for the consumption of this food product. Chelidonic acid is a heterocyclic organic acid with a pyran skeleton . Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2]. Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2].
Flusilazole
Flusilazole is an organosilicon compound that is dimethylsilane in which the hydrogens attached to the silicon are replaced by p-fluorophenyl groups and a hydrogen attached to one of the methyl groups is replaced by a 1H-1,2,4-triazol-1-yl group. It is a broad-sepctrum fungicide used to protect a variety of crops. It has a role as a xenobiotic, an environmental contaminant, an EC 1.14.13.70 (sterol 14alpha-demethylase) inhibitor and an antifungal agrochemical. It is a member of monofluorobenzenes, a member of triazoles, an organosilicon compound, a conazole fungicide and a triazole fungicide. CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9550; ORIGINAL_PRECURSOR_SCAN_NO 9549 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9630; ORIGINAL_PRECURSOR_SCAN_NO 9627 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9444; ORIGINAL_PRECURSOR_SCAN_NO 9441 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9499; ORIGINAL_PRECURSOR_SCAN_NO 9497 CONFIDENCE standard compound; INTERNAL_ID 555; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9537; ORIGINAL_PRECURSOR_SCAN_NO 9535 Highly potent broad-spectrum fungicide. Controls broad spectrum of diseases on economically important crops. Flusilazole is found in cereals and cereal products. Flusilazole is found in cereals and cereal products. Highly potent broad-spectrum fungicide. Controls broad spectrum of diseases on economically important crops. CONFIDENCE standard compound; INTERNAL_ID 4011 CONFIDENCE standard compound; INTERNAL_ID 2564 CONFIDENCE standard compound; INTERNAL_ID 8385 D016573 - Agrochemicals D010575 - Pesticides
10-Hydroxydecanoic acid
10-hydroxycapric acid is a 10-carbon, omega-hydroxy fatty acid, shown to be the preferred hydroxylation product (together with the 9-OH isomer) of capric acid in biosystems, and used as a standard in lipid assays; reported to have cytotoxic effects. It is a straight-chain saturated fatty acid and an omega-hydroxy-medium-chain fatty acid. It is functionally related to a decanoic acid. It is a conjugate acid of a 10-hydroxycaprate. 10-Hydroxydecanoic acid, also known as 10-OH-capric acid or 10-OH-caprate, belongs to the class of organic compounds known as medium-chain hydroxy acids and derivatives. These are hydroxy acids with a 6 to 12 carbon atoms long side chain. Based on a literature review a significant number of articles have been published on 10-Hydroxydecanoic acid. This compound has been identified in human blood as reported by (PMID: 31557052 ). 10-hydroxydecanoic acid is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically 10-Hydroxydecanoic acid is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources. 10-Hydroxydecanoic acid (NSC 15139) is a saturated fatty acid of 10-hydroxy-trans-2-decenoic acid from royal jelly, with anti-inflammatory activity[1].
Acetyl-N-formyl-5-methoxykynurenamine
Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration, with AFMK found in some patients exceeding the concentration of melatonin normally found in serum. (PMID: 16150112) [HMDB] Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration. AFMK was also found in some patients to exceed the concentration of melatonin normally found in serum (PMID: 16150112).
Argininosuccinic acid disodium
Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the argininosuccinate lyase enzyme can lead to argininosuccinate lyase deficiency, which is an inborn error of metabolism. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (argininosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the arginosuccinate lyase enzyme can lead to arginosuccinate lyase deficiency. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (arginosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. [HMDB] KEIO_ID A039; [MS2] KO008844 KEIO_ID A039
Asparagine
Asparagine (Asn) or L-asparagine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Asparagine is found in all organisms ranging from bacteria to plants to animals. In humans, asparagine is not an essential amino acid, which means that it can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. The precursor to asparagine is oxaloacetate. Oxaloacetate is converted to aspartate using a transaminase enzyme. This enzyme transfers the amino group from glutamate to oxaloacetate producing alpha-ketoglutarate and aspartate. The enzyme asparagine synthetase produces asparagine, AMP, glutamate, and pyrophosphate from aspartate, glutamine, and ATP. In the asparagine synthetase reaction, ATP is used to activate aspartate, forming beta-aspartyl-AMP. Glutamine donates an ammonium group which reacts with beta-aspartyl-AMP to form asparagine and free AMP. Since the asparagine side chain can make efficient hydrogen bond interactions with the peptide backbone, asparagines are often found near the beginning and end of alpha-helices, and in turn motifs in beta sheets. Its role can be thought as "capping" the hydrogen bond interactions which would otherwise need to be satisfied by the polypeptide backbone. Asparagine also provides key sites for N-linked glycosylation, a modification of the protein chain that is characterized by the addition of carbohydrate chains. A reaction between asparagine and reducing sugars or reactive carbonyls produces acrylamide (acrylic amide) in food when heated to sufficient temperature (i.e. baking). These occur primarily in baked goods such as French fries, potato chips, and roasted coffee. Asparagine was first isolated in 1806 from asparagus juice --hence its name. Asparagine was the first amino acid to be isolated. The smell observed in the urine of some individuals after the consumption of asparagus is attributed to a byproduct of the metabolic breakdown of asparagine, asparagine-amino-succinic-acid monoamide. However, some scientists disagree and implicate other substances in the smell, especially methanethiol. [Spectral] L-Asparagine (exact mass = 132.05349) and L-Aspartate (exact mass = 133.03751) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. One of the nonessential amino acids. Dietary supplement, nutrient. Widely distributed in the plant kingdom. Isolated from asparagus, beetroot, peas, beans, etc. (-)-Asparagine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-47-3 (retrieved 2024-07-15) (CAS RN: 70-47-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. L-Asparagine ((-)-Asparagine) is a non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue.
Aconitate [cis or trans]
cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Mesaconic acid
Mesaconic acid, also known as 2-methylfumarate or citronic acid, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Mesaconic acid is a dicarboxylic butenoic acid, with a methyl group in position 2 and the double bound between carbons 2 and 3. Mesaconic acid was first studied for its physical properties in 1874 by Jacobus van ‘t Hoff (https://web.archive.org/web/20051117102410/http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/Van\\%27t-Hoff-1874.html). It is now known to be involved in the biosynthesis of vitamin B12 and it is also a competitor inhibitor of the reduction of fumarate. Mesaconic acid is one of several isomeric carboxylic acids obtained from citric acid. Is used as a fire retardant, recent studies revealed this acid is a competitive inhibitor of fumarate reduction. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D003879 - Dermatologic Agents
ST 24:4;O5
C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D01693
Indole-3-lactic acid
Indolelactic acid (CAS: 1821-52-9) is a tryptophan metabolite found in human plasma, serum, and urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical fetal plasma than in maternal plasma in the protein-bound form (PMID 2361979, 1400722, 3597614, 11060358, 1400722). Indolelactic acid is also a microbial metabolite; urinary indole-3-lactate is produced by Clostridium sporogenes (PMID: 29168502). Indolelactic acid is a tryptophan metabolite found in human plasma and serum and normal urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical foetal plasma than in maternal plasma in the protein-bound form. (PMID 2361979, 1400722, 3597614, 11060358, 1400722) [HMDB] Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
Saccharopine
Saccharopine is an intermediate in the degradation of lysine, formed by the condensation of lysine and alpha-ketoglutarate. The saccharopine pathway is the main route for lysine degradation in mammals, and its first two reactions are catalyzed by enzymatic activities known as lysine-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH), which reside on a single bifunctional polypeptide (LOR/SDH) (EC 1.5.1.8). The reactions involved with saccharopine dehydrogenases have very strict substrate specificity for L-lysine, 2-oxoglutarate, and NADPH. LOR/SDH has been detected in a number of mammalian tissues, mainly in the liver and kidney, contributing not only to the general nitrogen balance in the organism but also to the controlled conversion of lysine into ketone bodies. A tetrameric form has also been observed in human liver and placenta. LOR activity has also been detected in brain mitochondria during embryonic development, and this opens up the question of whether or not lysine degradation has any functional significance during brain development. As a result, there is now a new focus on the nutritional requirements for lysine in gestation and infancy. Finally, LOR and/or SDH deficiencies seem to be involved in a human autosomal genetic disorder known as familial hyperlysinemia, which is characterized by serious defects in the functioning of the nervous system and characterized by a deficiency in lysine-ketoglutarate reductase, saccharopine dehydrogenase, and saccharopine oxidoreductase activities. Saccharopinuria (high amounts of saccharopine in the urine) and saccharopinemia (an excess of saccharopine in the blood) are conditions present in some inherited disorders of lysine degradation (PMID: 463877, 10567240, 10772957, 4809305). If present in sufficiently high levels, saccharopine can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Saccharopine is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). Many affected children with organic acidemias experience intellectual disability or delayed development. Amino acid from Saccharomyces cerevisiae and Neurospora crassaand is also found in mushrooms and seeds
Parathion
Parathion is a highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. [HMDB] C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Picolinic acid
Picolinic acid is a metabolite of the tryptophan catabolism. Picolinic acid is produced under inflammatory conditions and a costimulus with interferon-gamma (IFNgamma) of macrophage (Mphi) effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two chemokines/cytokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. IFNgamma and picolinic acid have reciprocal effects on the production of MIPs chemokines and the expression of their receptor. The concerted action of IFNgamma and picolinic acid on MIP-1alpha/beta chemokine/receptor system is likely to be of pathophysiological significance and to represent an important regulatory mechanism for leukocyte recruitment and distribution into damaged tissues during inflammatory responses. Picolinic acid has an effect on the production of L-arginine-derived reactive nitrogen intermediates in macrophages, by augmenting IFN-gamma-induced NO2- production, and acts synergistically with IFN-gamma in activating macrophages. Children with acrodermatitis enteropathica (AE) are treated with oral zinc dipicolinate (zinc-PA). The concentration of picolinic acid in the plasma of asymptomatic children with AE was significantly less than that of normal children. However, oral treatment with PA alone is ineffective. The results support the hypothesis that the genetic defect in AE is in the tryptophan pathway, although the role of PA in zinc metabolism remains to be defined. (PMID:15206716, 8473748, 1701787, 6694049). Picolinic acid is a metabolite of the tryptophan catabolism. Picolinic acid is produced under inflammatory conditions and a costimulus with interferon-gamma (IFNgamma) of macrophage (Mphi) effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two chemokines/cytokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. IFNgamma and picolinic acid have reciprocal effects on the production of MIPs chemokines and the expression of their receptor. The concerted action of IFNgamma and picolinic acid on MIP-1alpha/beta chemokine/receptor system is likely to be of pathophysiological significance and to represent an important regulatory mechanism for leukocyte recruitment and distribution into damaged tissues during inflammatory responses. Picolinic acid has an effect on the production of L-arginine-derived reactive nitrogen intermediates in macrophages, by augmenting IFN-gamma-induced NO2- production, and acts synergistically with IFN-gamma in activating macrophages. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents [Raw Data] CBA16_Picolinic-acid_pos_10eV_1-8_01_816.txt [Raw Data] CBA16_Picolinic-acid_pos_20eV_1-8_01_817.txt KEIO_ID P045 Picolinic acid (PCL 016) is a topical antiviral agent, which inhibits adenovirus replication in rabbits.
Salsolinol
(r)-salsolinol, also known as salsolinol, (+-)-isomer or 1-methyl-6,7-dihydroxytetrahydroisoquinoline, is a member of the class of compounds known as tetrahydroisoquinolines. Tetrahydroisoquinolines are tetrahydrogenated isoquinoline derivatives (r)-salsolinol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (r)-salsolinol can be found in cocoa and cocoa products and fruits, which makes (r)-salsolinol a potential biomarker for the consumption of these food products (r)-salsolinol can be found primarily in blood, cerebrospinal fluid (CSF), and feces. Moreover, (r)-salsolinol is found to be associated with hypertension, multiple system atrophy, and parkinsons disease. Salsolinol belongs to the family of Isoquinolines. These are aromatic polycyclic compounds containing an isoquinoline moiety, which consists of a benzene ring fused to a pyridine ring and forming benzo[c]pyridine. Salsolinol is a biomarker for the consumption of bananas.
Purpurin
CONFIDENCE standard compound; INTERNAL_ID 760; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4870; ORIGINAL_PRECURSOR_SCAN_NO 4868 CONFIDENCE standard compound; INTERNAL_ID 760; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4850 CONFIDENCE standard compound; INTERNAL_ID 760; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4850; ORIGINAL_PRECURSOR_SCAN_NO 4849 CONFIDENCE standard compound; INTERNAL_ID 760; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4850; ORIGINAL_PRECURSOR_SCAN_NO 4848 CONFIDENCE standard compound; INTERNAL_ID 760; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4861; ORIGINAL_PRECURSOR_SCAN_NO 4860 CONFIDENCE standard compound; INTERNAL_ID 760; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4843; ORIGINAL_PRECURSOR_SCAN_NO 4841 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8372 D004396 - Coloring Agents Purpurin is a natural anthraquinone compound from Rubia cordifolia L.. Purpurin has antidepressant-like effects[1]. Purpurin is a natural anthraquinone compound from Rubia cordifolia L.. Purpurin has antidepressant-like effects[1].
Geranylgeranyl-PP
Geranylgeranyl pyrophosphate, also known as geranylgeranyl-PP or GGPP, is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. This compound belongs to the family of acyclic diterpenes. These are diterpenes (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, GGPP is considered to be an isoprenoid lipid molecule. GGPP is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Geranylgeranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. [HMDB]. Geranylgeranyl-PP is found in many foods, some of which are burdock, longan, calabash, and cloves.
Anserine
Anserine (beta-alanyl-N-3-methylhistidine) is a dipeptide containing beta-alanine and 3-methylhistidine. It is a derivative of carnosine, which had been methylated. The methyl group of anserine is added to carnosine by the enzyme S-adenosylmethionine: carnosine N-methyltransferase (PMID: 29484990). The enzyme is closely related to histamine N-methyltransferase and appears to be present in a majority of anserine-producing species (PMID: 23705015). Anserine is a generally a more metabolically stable derivative of carnosine. Anserine can be found in the skeletal muscle and brain of certain mammals (rabbits, cattle), migratory fish and birds. This dipeptide is normally absent from human tissues and body fluids, and its appearance there is usually an artifact of diet. Anserine can also arise from serum carnosinase deficiency. (OMIM 212200). Anserine was first discovered in goose muscle in 1929, and was named after this extraction (anser is Latin for goose). Anserine, which is water-soluble, is found at high levels in the muscles of different non-human vertebrates, with poultry, rabbit, tuna, plaice, and salmon having generally higher contents than other marine foods, beef, or pork (PMID: 31908682). An increase of urinary anserine excretion has been found in humans after the consumption of chicken, rabbit, and tuna and has been associated with intake of chicken, salmon, and, to a lesser extent, beef (PMID: 31908682). Anserine can undergo cleavage to give rise to 3-methylhistidine.(3-MH). The dipeptide balenine, common in some whales, cleaves to form 1-methylhistidine (1-MH) (PMID: 31908682). There is considerable confusion with regard to the nomenclature of the methylated nitrogen atoms on the imidazole ring of histidine and other histidine-containing peptides such as anserine. In particular, older literature (mostly prior to the year 2000) designated anserine (N-pi methylated) as beta-alanyl-N1-methyl-histidine, whereas according to standard IUPAC nomenclature, anserine is correctly named as beta-alanyl-N3-methyl-histidine. As a result, many papers published prior to the year 2000 incorrectly identified 1MH as a specific marker for dietary consumption of certain foods or various pathophysiological effects when they really were referring to 3MH or vice versa (PMID: 24137022). In particular balenine (a whale or snake-specific dipeptide with 1MH) was often confused with anserine (the poultry dipeptide with 3MH). An animal model study of Alzheimers disease using mice found that treatment with anserine reduced memory loss (PMID: 28974740). Anserine reduced glial inflammatory activity (particularly of astrocyte). The study also found that anserine-treated mice had greater pericyte surface area. The greater area of pericytes was commensurate with improved memory. The anserine-treated mice overall performed better on a spatial memory test (Morris Water Maze) (PMID: 28974740). A human study on 84 elderly subjects showed that subjects who took anserine and carnosine supplements for one year showed increased blood flow in the prefrontal cortex on MRI (PMID: 29896423). Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C275 - Antioxidant KEIO_ID A140; [MS2] KO008819 KEIO_ID A140; [MS3] KO008820 KEIO_ID A140 Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2]. Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2].
Flufenamic acid
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AG - Fenamates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3021 D000893 - Anti-Inflammatory Agents Flufenamic acid is a non-steroidal anti-inflammatory agent, inhibits cyclooxygenase (COX), activates AMPK, and also modulates ion channels, blocking chloride channels and L-type Ca2+ channels, modulating non-selective cation channels (NSC), activating K+ channels. Flufenamic acid binds to the central pocket of TEAD2 YBD and inhibits both TEAD function and TEAD-YAP-dependent processes, such as cell migration and proliferation.
Perillic acid
Perillic acid, also known as perillate, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Perillic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Perillic acid is an intermediate in the Limonene and pinene degradation pathway. (KEGG); Its measurement in urine is used to monitor cancer patients receiving oral Limonene (a farnesyl transferase inhibitor that has shown antitumor properties)(PubMed ID 8723738 ). Perillic acid is found in cardamom. C471 - Enzyme Inhibitor > C2020 - Farnesyl Transferase Inhibitor
Deoxyguanosine
Deoxyguanosine, also known as dG, belongs to the class of organic compounds known as purine 2-deoxyribonucleosides. Purine 2-deoxyribonucleosides are compounds consisting of a purine linked to a ribose which lacks a hydroxyl group at position 2‚Äô. Deoxyguanosine is a nucleoside consisting of the base guanine and the sugar deoxyribose. Deoxyguanosine is one of the four deoxyribonucleosides that make up DNA. Deoxyguanosine exists in all living species, ranging from bacteria to plants to humans. Deoxyguanosine participates in a number of enzymatic reactions. In particular, deoxyguanosine can be biosynthesized from 2-deoxyguanosine 5-monophosphate through the enzyme known as cytosolic purine 5-nucleotidase. In addition, deoxyguanosine can be converted into 2-deoxyguanosine 5-monophosphate (dGMP); which is mediated by the enzyme deoxyguanosine kinase. Deoxyguanosine is involved in the rare, inherited metabolic disorder called the purine nucleoside phosphorylase deficiency (PNP deficiency). In particular PNP deficiency is characterized by elevated levels of dGTP (deoxyguanosine triphosphate). PNP accounts for approximately 4\\\\% of patients with severe combined immunodeficiency (PMID: 1931007). PNP-deficient patients suffer from recurrent infections, usually beginning in the first year of life. Two thirds of patients have evidence of neurologic disorders with spasticity, developmental delay and mental retardation. Deoxyguanosine can be converted to 8-hydroxy-deoxyguanosine (8-OHdG) due to hydroxyl radical attack at the C8 of guanine. 8-hydroxy-deoxyguanosine is a sensitive marker of the DNA damage This damage, if left unrepaired, has been proposed to contribute to mutagenicity and cancer promotion. Isolated from plants, e.g. Phaseolus vulgaris (kidney bean) COVID info from COVID-19 Disease Map KEIO_ID D057; [MS2] KO008942 KEIO_ID D057 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-Deoxyguanosine (Deoxyguanosine) is a purine nucleoside with a variety of biological activities. 2’-Deoxyguanosine can induce DNA division in mouse thymus cells. 2’-Deoxyguanosine is a potent cell division inhibitor in plant cells[1][2][3]. 2'-Deoxyguanosine (Deoxyguanosine) is deoxyguanosine.
Taurolithocholate 3-sulfate
Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids KEIO_ID T072
11,12-Epoxyeicosatrienoic acid
11,12-Epoxyeicosatrienoic acid (CAS: 81276-02-0) is an epoxyeicosatrienoic acid (EET). Induction of CYP2C8 in native coronary artery endothelial cells by beta-naphthoflavone enhances the formation of 11,12-epoxyeicosatrienoic acid, as well as endothelium-derived hyperpolarizing factor-mediated hyperpolarization and relaxation. Transfection of coronary arteries with CYP2C8 antisense oligonucleotides resulted in decreased levels of CYP2C and attenuated the endothelium-derived hyperpolarizing factor-mediated vascular responses. Thus, a CYP-epoxygenase product is an essential component of the endothelium-derived hyperpolarizing factor-mediated relaxation in the porcine coronary artery, and CYP2C8 fulfills the criteria for the coronary endothelium-derived hyperpolarization factor synthase. The role of EETs in the regulation of the cerebral circulation has become more important since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence has shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes (PMID: 17494091, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554). EETs function as autocrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted into natural EETs by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid into four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been shown to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and the brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs into dihydroxyeicosatrienoic acids. 11,12-EpETrE or 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid is an epoxyeicosatrienoic acid or an EET derived from arachadonic acid. EETs function as autacrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted to natural epoxyeicosatrienoic acids (EETs) by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid to four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been show to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have antiinflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs to dihydroxyeicosatrienoic acids. [HMDB] D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Bisphenol F
4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1]. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1].
Dibutyl succinate
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
Bisoprolol
Bisoprolol is a cardioselective β1-adrenergic blocking agent used for secondary prevention of myocardial infarction (MI), heart failure, angina pectoris and mild to moderate hypertension. Bisoprolol is structurally similar to metoprolol, acebutolol and atenolol in that it has two substituents in the para position of the benzene ring. The β1-selectivity of these agents is thought to be due in part to the large substituents in the para position. At lower doses (less than 20 mg daily), bisoprolol selectively blocks cardiac β1-adrenergic receptors with little activity against β2-adrenergic receptors of the lungs and vascular smooth muscle. Receptor selectivity decreases with daily doses of 20 mg or greater. Unlike propranolol and pindolol, bisoprolol does not exhibit membrane-stabilizing or sympathomimetic activity. Bisoprolol possesses a single chiral centre and is administered as a racemic mixture. Only l-bisoprolol exhibits significant β-blocking activity. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3013 CONFIDENCE standard compound; INTERNAL_ID 8595 CONFIDENCE standard compound; INTERNAL_ID 2677
Cannabinol
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
Ceftriaxone
Ceftriaxone is only found in individuals that have used or taken this drug. It is a broad-spectrum cephalosporin antibiotic with a very long half-life and high penetrability to meninges, eyes and inner ears. [PubChem]Ceftriaxone works by inhibiting the mucopeptide synthesis in the bacterial cell wall. The beta-lactam moiety of Ceftriaxone binds to carboxypeptidases, endopeptidases, and transpeptidases in the bacterial cytoplasmic membrane. These enzymes are involved in cell-wall synthesis and cell division. By binding to these enzymes, Ceftriaxone results in the formation of of defective cell walls and cell death. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Felbamate
Felbamate is an anticonvulsant drug used in the treatment of epilepsy. It is used to treat partial seizures (with and without generalization) in adults and partial and generalized seizures associated with Lennox-Gastaut syndrome in children. It has a weak inhibitory effect on GABA receptor binding sites. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics Felbamate (W-554) is a potent nonsedative anticonvulsant whose clinical effect may be related to the inhibition of N-methyl-D-aspartate (NMDA).
Gelsemin
Gelsemine, an alkaloid from the Chinese herb Gelsemium elegans, is effective in mitigating chronic pain. Antinociceptive effects. Gelsemine, an alkaloid from the Chinese herb Gelsemium elegans, is effective in mitigating chronic pain. Antinociceptive effects.
Methotrimeprazine
Methotrimeprazine is only found in individuals that have used or taken this drug. It is a phenothiazine with pharmacological activity similar to that of both chlorpromazine and promethazine. It has the histamine-antagonist properties of the antihistamines together with central nervous system effects resembling those of chlorpromazine. (From Martindale, The Extra Pharmacopoeia, 30th ed, p604)Methotrimeprazines antipsychotic effect is largely due to its antagonism of dopamine receptors in the brain. In addition, its binding to 5HT2 receptors may also play a role. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics KEIO_ID M099; [MS2] KO009123 KEIO_ID M099 Levomepromazine (Methotrimeprazine) is an orally available neuroleptic agent, which is commonly used to relieve nausea and vomiting in palliative care settings. Levomepromazine has antagonist actions at multiple neurotransmitter receptor sites, including dopaminergic, cholinergic, serotonin and histamine receptors[1].
Methoxyfenozide
CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9207; ORIGINAL_PRECURSOR_SCAN_NO 9204 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4782; ORIGINAL_PRECURSOR_SCAN_NO 4777 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4744; ORIGINAL_PRECURSOR_SCAN_NO 4743 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9204; ORIGINAL_PRECURSOR_SCAN_NO 9202 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9198; ORIGINAL_PRECURSOR_SCAN_NO 9195 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4851; ORIGINAL_PRECURSOR_SCAN_NO 4847 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4749; ORIGINAL_PRECURSOR_SCAN_NO 4745 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4763; ORIGINAL_PRECURSOR_SCAN_NO 4760 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9185; ORIGINAL_PRECURSOR_SCAN_NO 9184 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4756; ORIGINAL_PRECURSOR_SCAN_NO 4754 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9149; ORIGINAL_PRECURSOR_SCAN_NO 9146 CONFIDENCE standard compound; INTERNAL_ID 278; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9175; ORIGINAL_PRECURSOR_SCAN_NO 9172 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
9-Hydroxyphenanthrene
This compound belongs to the family of Phenanthrenes and Derivatives. These are polycyclic compounds containing a phenanthrene moiety, which is a tricyclic aromatic compound with three non-linearly fused benzene. D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors
Phosalone
CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9787; ORIGINAL_PRECURSOR_SCAN_NO 9783 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9765; ORIGINAL_PRECURSOR_SCAN_NO 9762 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9731; ORIGINAL_PRECURSOR_SCAN_NO 9728 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9703; ORIGINAL_PRECURSOR_SCAN_NO 9702 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9750; ORIGINAL_PRECURSOR_SCAN_NO 9747 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9781; ORIGINAL_PRECURSOR_SCAN_NO 9778 Phosalone is an organophosphate chemical commonly used as an insecticide and acaricide. It is developed by Rhone-Poulenc in France but EU eliminated it from pesticide registration on December 2006. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Tris(2-chloroethyl) phosphate
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1032 CONFIDENCE standard compound; INTERNAL_ID 8252 CONFIDENCE standard compound; INTERNAL_ID 8790 CONFIDENCE standard compound; INTERNAL_ID 2463 D005411 - Flame Retardants
Thiophanate-methyl
CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7987; ORIGINAL_PRECURSOR_SCAN_NO 7982 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7998; ORIGINAL_PRECURSOR_SCAN_NO 7997 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3833; ORIGINAL_PRECURSOR_SCAN_NO 3831 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3865; ORIGINAL_PRECURSOR_SCAN_NO 3862 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3858; ORIGINAL_PRECURSOR_SCAN_NO 3857 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7945; ORIGINAL_PRECURSOR_SCAN_NO 7943 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3838; ORIGINAL_PRECURSOR_SCAN_NO 3835 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3837; ORIGINAL_PRECURSOR_SCAN_NO 3832 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3853; ORIGINAL_PRECURSOR_SCAN_NO 3849 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8013; ORIGINAL_PRECURSOR_SCAN_NO 8011 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7980; ORIGINAL_PRECURSOR_SCAN_NO 7977 CONFIDENCE standard compound; INTERNAL_ID 805; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7934; ORIGINAL_PRECURSOR_SCAN_NO 7932 D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics CONFIDENCE standard compound; INTERNAL_ID 2620 D016573 - Agrochemicals D010575 - Pesticides
Penciclovir
Penciclovir is only found in individuals that have used or taken this drug. It is a guanine analogue antiviral drug used for the treatment of various herpesvirus infections. It is a nucleoside analogue which exhibits low toxicity and good selectivity. [Wikipedia]Penciclovir has in vitro activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). In cells infected with HSV-1 or HSV-2, viral thymidine kinase phosphorylates penciclovir to a monophosphate form. The monophosphate form of the drug is then converted to penciclovir triphosphate by cellular kinases. The intracellular triphosphate of penciclovir is retained in vitro inside HSV-infected cells for 10-20 hours, compared with 0.7-1 hour for acyclovir. in vitro studies show that penciclovir triphosphate selectively inhibits viral DNA polymerase by competing with deoxyguanosine triphosphate. Inhibition of DNA synthesis of virus-infected cells inhibits viral replication. In cells not infected with HSV, DNA synthesis is unaltered. Resistant mutants of HSV can occur from qualitative changes in viral thymidine kinase or DNA polymerase. The most commonly encountered acyclovir-resistant mutants that are deficient in viral thymidine kinase are also resistant to penciclovir. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3288 KEIO_ID P157; [MS2] KO009149 KEIO_ID P157 Penciclovir (VSA 671) is a potent and selective anti-herpesvirus agent with EC50 values of 0.5, 0.8 μg/ml for HSV-1 (HFEM), HSV-2 (MS), respectively. Penciclovir shows anti-herpesvirus activity with no-toxic. Penciclovir preventes mortality in mouse[1][2].
(-)-Maackiain
(-)-maackiain is the (-)-enantiomer of maackiain. It is an enantiomer of a (+)-maackiain. Maackiain is a natural product found in Tephrosia virginiana, Leptolobium bijugum, and other organisms with data available. (-)-Maackiain. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2035-15-6 (retrieved 2024-07-09) (CAS RN: 2035-15-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].
Morin
Morin is a pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. It has a role as an antioxidant, a metabolite, an antihypertensive agent, a hepatoprotective agent, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent, an antibacterial agent, an EC 5.99.1.2 (DNA topoisomerase) inhibitor and an angiogenesis modulating agent. It is a pentahydroxyflavone and a 7-hydroxyflavonol. Morin is a natural product found in Lotus ucrainicus, Psidium guajava, and other organisms with data available. Constituent of various woods, e.g. Morus alba (white mulberry). First isol. in 1830. Morin is found in many foods, some of which are blackcurrant, european cranberry, bilberry, and fruits. Morin is found in bilberry. Morin is a constituent of various woods, e.g. Morus alba (white mulberry). First isolated in 1830 A pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].
Deoxynivalenol
Deoxynivalenol is found in cereals and cereal products. Deoxynivalenol is produced by Fusarium graminearum and Fusarium roseum, responsible for headblight in cereals Vomitoxin, also known as deoxynivalenol (DON), is a type B trichothecene, an epoxy-sesquiterpeneoid. This mycotoxin occurs predominantly in grains such as wheat, barley, oats, rye, and maize, and less often in rice, sorghum, and triticale. The occurrence of deoxynivalenol is associated primarily with Fusarium graminearum (Gibberella zeae) and F. culmorum, both of which are important plant pathogens which cause Fusarium head blight in wheat and Gibberella ear rot in maize. Deoxynivalenol is a direct relationship between the incidence of Fusarium head blight and contamination of wheat with deoxynivalenol has been established. The incidence of Fusarium head blight is strongly associated with moisture at the time of flowering (anthesis), and the timing of rainfall, rather than the amount, is the most critical factor. Furthermore, deoxynivalenol contents are significantly affected by the susceptibility of cultivars towards Fusarium species, previous crop, tillage practices, and fungicide us Production by Fusarium graminearum and Fusarium roseum, responsible for headblight in cereals D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Natamycin
Natamycin is only found in individuals that have used or taken this drug. It is an amphoteric macrolide antifungal antibiotic from Streptomyces natalensis or S. chattanoogensis. It is used for a variety of fungal infections, mainly topically. [PubChem]Like other polyene antibiotics, Natamycin inhibits fungal growth by binding to sterols. Specifically, Natamycin binds to ergosterol in the plasma membrane, preventing ergosterol-dependent fusion of vacuoles, as well as membrane fusion and fission. This differs from the mechanism of most other polyene antibiotics, which tend to work by altering fungal membrane permeability instead. Primarily used as a surface treatment to prevent growth of yeasts and moulds, especies on cheese. Permitted agent in USA for surface treatment of cheeses as mould-inhibitor. No reported allergic reactions and it has GRAS status G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].
Geranial
Geranial, also known as 3,7-dimethyl-2,6-octadienal, citral or lemonal, belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Thus, citral is considered to be an isoprenoid lipid. Two different isomers of 3,7-dimethyl-2,6-octadienal exist. The E-isomer or trans-isomer is known as geranial or citral A. The Z-isomer or cis-isomer is known as neral or citral B. 3,7-dimethyl-2,6-octadienal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Citral is present in the oils of several plants, including lemon myrtle (90-98\\\\%), Litsea citrata (90\\\\%), Litsea cubeba, lemongrass (65-80\\\\%), lemon tea-tree (70-80\\\\%), Ocimum gratissimum, Lindera citriodora, Calypranthes parriculata, petitgrain, lemon verbena, lemon ironbark, lemon balm, lime, lemon and orange. Citral has also been reported to be found in Cannabis sativa (PMID:6991645 , 26657499 ). Citral has a strong lemon (citrus) odor. Nerals lemon odor is less intense, but sweeter. Citral is therefore an aroma compound used in perfumery for its citrus effect. Citral is also used as a flavor and for fortifying lemon oil. It has strong antimicrobial qualities (PMID:28974979 ) and pheromonal effects in nematodes and insects (PMID:26973536 ). Citral is used in the synthesis of vitamin A, lycopene, ionone, and methylionone (a compound used to mask the smell of smoke). Occurs in lemon grass oil (Cymbopogon citratus), lemon, orange and many other essential oils; flavouring ingredient. Geranial is found in many foods, some of which are watermelon, nutmeg, cloud ear fungus, and yellow wax bean. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1]. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1].
Bacitracin
Bacitracin is a mixture of related cyclic polypeptides produced by organisms of the licheniformis group of Bacillus subtilis var Tracy. Its unique name derives from the fact that the bacillus producing it was first isolated in 1943 from a knee scrape from a girl named Margaret Tracy. As a toxic and difficult-to-use antibiotic, bacitracin doesnt work well orally. However, it is very effective topically. Bacitracin is synthesised via the so-called nonribosomal peptide synthetases (NRPSs), which means that ribosomes are not involved in its synthesis. C254 - Anti-Infective Agent > C258 - Antibiotic > C295 - Bacitracin D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Bacitracin is a polypeptide antibiotic against staphylococcal and pathogenic protozoa infections. Bacitracin inhibits cell wall biosynthesis and permeability through binding to the undecaprenyl pyrophosphate. Bacitracin inhibits macromolecular synthesis. Bacitracin is also a protein disulfide isomerase (PDI) inhibitor[1][2][3].
(+)-Syringaresinol
(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.
Phenylacetylglycine
Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:. acyl-CoA + glycine < -- > CoA + N-acylglycine. Phenylacetylglycine or PAG is a glycine conjugate of phenylacetic acid. Phenylacetic acid may arise from exposure to styrene (plastic) or through the consumption of fruits and vegetables. Phenylacetic acid is used in some perfumes, possessing a honey-like odour in low concentrations, and is also used in penicillin G production. PAG is a putative biomarker of phospholipidosis. Urinary PAG is elevated in animals exhibiting abnormal phospholipid accumulation in many tissues and may thus be useful as a surrogate biomarker for phospholipidosis. (PMID: 15764292) The presence of phenylacetylglycine in urine has been confirmed for dogs, rats and mice. However, the presence of this compound in human urine is controversial. GC-MS studies have not found this compound (PMID: 7492634) while NMR studies claimed to have identified it (PMID: 21167146). It appears that phenylacetylglycine may sometimes be mistaken for phenylacetylglutamine via NMR. Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].
9-Oxo-ODE
9-OxoODE results from oxidation of the allylic hydroxyl of either 9(S)- or 9(R)-HODE. Rabbit reticulocyte plasma and mitochondrial membranes contain both 9- and 13-oxoODEs, representing about 2\\% of the total linoleate residues in the membranes. Most of these oxidized linoleate residues are esterified to membrane lipids. [HMDB] 9-OxoODE results from oxidation of the allylic hydroxyl of either 9(S)- or 9(R)-HODE. Rabbit reticulocyte plasma and mitochondrial membranes contain both 9- and 13-oxoODEs, representing about 2\\% of the total linoleate residues in the membranes. Most of these oxidized linoleate residues are esterified to membrane lipids.
Cetirizine
Cetirizine is a medication used for the treatment of allergies, hay fever, angioedema, and hives. It is a second-generation H1-receptor antagonist antihistamine and works by blocking H1 histamine receptors. It is a major metabolite of hydroxyzine, and has the same basic side effects, including dry mouth. A potent second-generation histamine H1 antagonist that is effective in the treatment of allergic rhinitis, chronic urticaria, and pollen-induced asthma. Unlike many traditional antihistamines, it does not cause drowsiness or anticholinergic side effects. Cetirizine hydrochloride is a medication used for the treatment of allergies, hay fever, angioedema, and hives. It is a second-generation H1-receptor antagonist antihistamine and works by blocking H1 histamine receptors. It is a major metabolite of hydroxyzine, and has the same basic side effects, including dry mouth. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Cetirizine, a second-generation antihistamine and the carboxylated metabolite of hydroxyzine, is a specific, orally active and long-acting histamine H1-receptor antagonist. Cetirizine marks antiallergic properties and inhibits eosinophil chemotaxis during the allergic response[1][2][3].
D-Glucurono-6,3-lactone
D-Glucurono-6,3-lactone belongs to the class of organic compounds known as isosorbides. These are organic polycyclic compounds containing an isosorbide(1,4-Dianhydrosorbitol) moiety, which consists of two -oxolan-3-ol rings. D-Glucurono-6,3-lactone is a very mild and mentholic tasting compound. Glucuronolactone is a naturally occurring substance that is an important structural component of nearly all connective tissues. It is frequently used in energy drinks to increase energy levels and improve alertness, and can also be used to reduce "brain fog" caused by various medical conditions. Glucuronolactone is also found in many plant gums. Glucuronolactone is a white solid odorless compound, soluble in hot and cold water. Its melting point ranges from 176 to 178 °C. The compound can exist in a monocyclic aldehyde form or in a bicyclic hemiacetal (lactol) form. Glucuronolactone is a popular ingredient in energy drinks because it has been shown to be effective at increasing energy levels and improving alertness. Glucuronolactone supplementation also significantly reduces "brain fog" cause by various medical conditions. Although levels of glucuronolactone in energy drinks can far exceed those found in the rest of the diet, glucuronolactone is extremely safe and well tolerated. The European Food Safety Authority (EFSA) has concluded that exposure to glucuronolactone from regular consumption of energy drinks is not a safety concern.[2] The no-observed-adverse-effect level of glucuronolactone is 1000 mg/kg/day. Additionally, according to The Merck Index, glucuronolactone is used as a detoxicant. The liver uses glucose to create glucuronolactone, which inhibits the enzyme B-glucuronidase (metabolizes glucuronides), which should cause blood-glucuronide levels to rise. Glucuronides combines with toxic substances, such as morphine and depot medroxyprogesterone acetate, by converting them to water-soluble glucuronide-conjugates which are excreted in the urine. Higher blood-glucuronides help remove toxins from the body, leading to the claim that energy drinks are detoxifying. Free glucuronic acid (or its self-ester glucuronolactone) has less effect on detoxification than glucose, because the body synthesizes UDP-glucuronic acid from glucose. Therefore, sufficient carbohydrate intake provides enough UDP-glucuronic acid for detoxication, and foods rich in glucose are usually abundant in developed nations. Glucuronolactone is also metabolized to glucaric acid, xylitol, and L-xylulose, and humans may also be able to use glucuronolactone as a precursor for ascorbic acid synthesis. D-glucurono-6,3-lactone participates in ascorbate and aldarate metabolism. D-glucurono-6,3-lactone is produced by the reaction between D-glucaric acid and the enzyme, aldehyde dehydrogenase (NAD+) [EC: 1.2.1.3]. [HMDB] D-Glucuronic acid lactone is an endogenous metabolite.
Epsilon-caprolactam
Caprolactam, also known as aminocaproic lactam or hexahydro-2h-azepin-2-one, is a member of the class of compounds known as caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Caprolactam is soluble (in water) and a very weakly acidic compound (based on its pKa). Caprolactam is an amine, bitter, and spicy tasting compound found in sunflower, which makes caprolactam a potential biomarker for the consumption of this food product. Caprolactam (CPL) is an organic compound with the formula (CH2)5C(O)NH. This colourless solid is a lactam (a cyclic amide) of caproic acid. Global demand for this compound is approximately 5 million tons per year, and the vast majority is used to make Nylon 6 filament, fiber, and plastics . Epsilon-caprolactam, also known as Caprolactam or Aminocaproic lactam, is classified as a member of the Caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Epsilon-caprolactam is considered to be soluble (in water) and relatively neutral. Epsilon-caprolactam is an amine, bitter, and spicy tasting compound found in Sunflowers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Cytidine monophosphate
Cytidine monophosphate, also known as 5-cytidylic acid and abbreviated CMP, is a nucleotide. It is an ester of phosphoric acid with the nucleoside cytidine. CMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase cytosine. Cytidine monophosphate (CMP) is derived from cytidine triphosphate (CTP) with subsequent loss of two phosphates. The synthesis of the pyrimidines CTP and UTP occurs in the cytoplasm and starts with the formation of carbamoyl phosphate from glutamine and CO2. Next, aspartate undergoes a condensation reaction with carbamoyl-phosphate to form orotic acid. In a subsequent cyclization reaction, the enzyme Aspartate carbamoyltransferase forms N-carbamoyl-aspartate which is converted into dihydroorotic acid by Dihydroorotase. The latter is converted to orotate by Dihydroorotate oxidase. Orotate is covalently linked with a phosphorylated ribosyl unit with Orotate phosphoribosyltransferase (aka "PRPP transferase") catalyzing reaction, yielding orotidine monophosphate (OMP). Orotidine-5-phosphate is decarboxylated by Orotidine-5-phosphate decarboxylase to form uridine monophosphate (UMP). UMP is phosphorylated by two kinases to uridine triphosphate (UTP) via two sequential reactions with ATP. CTP is subsequently formed by amination of UTP by the catalytic activity of CTP synthetase. Cytosine monophosphate (CMP) and uridine monophosphate (UMP) have been prescribed for the treatment of neuromuscular affections in humans. Patients treated with CMP/UMP recover from altered neurological functions. Additionally, the administration of CMP/UMP appears to favour the entry of glucose in the muscle and CMP/UMP may be important in maintaining the level of hepatic glycogen constant during exercise. [PMID:18663991]. Cytidine monophosphate, also known as cmp or cytidylic acid, is a member of the class of compounds known as pyrimidine ribonucleoside monophosphates. Pyrimidine ribonucleoside monophosphates are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. Cytidine monophosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Cytidine monophosphate can be found in a number of food items such as elliotts blueberry, small-leaf linden, orange mint, and malabar spinach, which makes cytidine monophosphate a potential biomarker for the consumption of these food products. Cytidine monophosphate can be found primarily in saliva, as well as throughout all human tissues. Cytidine monophosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine monophosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/i-18:0/i-17:0/18:2(9z,11z)), cardiolipin biosynthesis cl(i-13:0/i-24:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(i-13:0/i-22:0/i-20:0/i-15:0), and cardiolipin biosynthesis cl(i-12:0/a-17:0/i-20:0/a-21:0). Cytidine monophosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), UMP synthase deficiency (orotic aciduria), and dihydropyrimidinase deficiency. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].
Clofazimine
A fat-soluble riminophenazine dye used for the treatment of leprosy. It has been used investigationally in combination with other antimycobacterial drugs to treat Mycobacterium avium infections in AIDS patients. Clofazimine also has a marked anti-inflammatory effect and is given to control the leprosy reaction, erythema nodosum leprosum. (From AMA Drug Evaluations Annual, 1993, p1619) J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04B - Drugs for treatment of lepra > J04BA - Drugs for treatment of lepra D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Diphenoxylate
A meperidine congener used as an antidiarrheal, usually in combination with atropine. At high doses, it acts like morphine. Its unesterified metabolite difenoxin has similar properties and is used similarly. It has little or no analgesic activity. This medication is classified as a Schedule V under the Controlled Substances Act by the Food and Drug Administration (FDA) and the DEA in the United States when used in preparations. When diphenoxylate is used alone, it is classified as a Schedule II. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals
Fluperlapine
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist
Terazosin
Terazosin is a selective alpha1-antagonist used for treatment of symptoms of benign prostatic hyperplasia (BPH). It also acts to lower blood pressure, so it is a drug of choice for men with hypertension and prostate enlargement. It works by blocking the action of adrenaline on smooth muscle of the bladder and the blood vessel walls. G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents
alpha-Hydroxyisobutyric acid
Alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolised to t-butyl alcohol (TBA) and formaldehyde and oxidised to 2-methyl-1,2-propanediol and a-hydroxy isobuturic acid. Alpha-Hydroxyisobutyric acid has been used as an arial bactericide. [HMDB] alpha-Hydroxyisobutyric acid is a metabolite of methyl tert-butyl ether (MTBE). MTBE may be obtained through environmental exposure. MTBE is rapidly eliminated from the body, mainly through expired air as the unchanged compound. MTBE is to some extent metabolized to t-butyl alcohol (TBA) and formaldehyde and oxidized to 2-methyl-1,2-propanediol and alpha-hydroxyisobutyric acid. alpha-Hydroxyisobutyric acid has been used as an aerial bactericide. 2-Hydroxyisobutyric acid is an endogenous metabolite.
trans-Piceid
trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.
13-HOTE
13-HOTE is a biologically active lipid molecule produced due to altered intestinal lipid metabolism indicative of Alox15 activity. (PMID: 18258795) [HMDB] 13-HOTE is a biologically active lipid molecule produced due to altered intestinal lipid metabolism indicative of Alox15 activity. (PMID: 18258795).
Ononin
Widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium subspecies Formononetin 7-glucoside is found in chickpea, soy bean, and pulses. Ononin is found in chickpea. Ononin is widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium species. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 381; CONFIDENCE confident structure Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.
Proteinase inhibitor E 64
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents KEIO_ID E015; [MS2] KO008950 KEIO_ID E015
Homocarnosine
Homocarnosine is a normal human metabolite, the brain-specific dipeptide of gamma-aminobutyric acid (GABA) and histidine. (PMID 1266573). Increased concentration of CSF homocarnosine has been found in familial spastic paraplegia. (PMID 842287). Homocarnosinosis (an inherited disorder, OMIM 236130) is characterized by an elevated level of the dipeptide homocarnosine (Hca) in the Cerebrospinal fluid (CSF) and the brain and by carnosinuria and serum carnosinase deficiency, and can co-exist with paraplegia, retinitis pigmentosa, and a progressive mental deficiency. (PMID 3736769). In glial tumors of human brain the content of homocarnosine has been found to be lower than in brain tissue (PMID 1032224), while an increase in content of homocarnosine was observed in brain tissue of animals under experimental trauma of cranium. (PMID 1025883). Homocarnosine is a normal human metabolite, the brain-specific dipeptide of gamma-aminobutyric acid (GABA) and histidine. (PMID 1266573) Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H013; [MS3] KO008992 KEIO_ID H013; [MS2] KO008991 KEIO_ID H013
Isovaleric acid
Isovaleric acid, is a natural fatty acid found in a wide variety of plants and essential oils. Isovaleric acid is clear colorless liquid that is sparingly soluble in water, but well soluble in most common organic solvents. It has been suggested that isovaleric acid from pilot whales, a species frequently consumed in the Faroe Islands, may be the unusual dietary factor in prolonged gestation in the population of the Faroe Islands. Previous studies suggested that was due to the high intake of n-3 polyunsaturated fatty acids has been, but fatty acid data for eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA) in blood lipids of Faroese and Norwegians was reviewed in terms of the type of fish eaten (mostly lean white fish with DHA much greater than EPA); the popular lean fish, thus, probably provides too little EPA to produce a marked effect on human biochemistry (PMID 2646392). Isovaleric acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Flavouring agent. Simple esters are used in flavourings. Constituent of hops, cheese etc.; an important component of cheese aroma and flavour CONFIDENCE standard compound; INTERNAL_ID 152 KEIO_ID I018 Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human.
Beta-Aminopropionitrile
beta-Aminopropionitrile is a toxic amino-acid derivative. On an unusual case of the Cantrell-sequence in a premature infant with associated dysmelia, aplasia of the right kidney, cerebellar hypoplasia and circumscribed aplasia of the cutis, maternal history suggested an occupational exposure to aminopropionitriles prior to pregnancy. The characteristic features of the Cantrell-sequence--anterior thoraco-abdominal wall defect with ectopia cordis and diaphragm, sternum, pericardium, and heart defects--have been observed in animals following maternal administration of beta-aminopropionitrile. Some species of lathyrus (chickling pea, Lathyrus sativus- related), notably Lathyrus odoratus, are unable to induce human lathyrism but contain beta-aminopropionitrile, that induces pathological changes in bone ("osteolathyrism") and blood vessels ("angiolathyrism") of experimental animals without damaging the nervous system. The administration of beta-aminopropionitrile has been proposed for pharmacological control of unwanted scar tissue in human beings. beta-Aminopropionitrile is a reagent used as an intermediate in the manufacture of beta-alanine and pantothenic acid. (PMID:367235, 6422318, 9394169, Am J Perinatol. 1997 Oct;14(9):567-71.). Constituent of chickling pea (Lathyrus sativus) C471 - Enzyme Inhibitor KEIO_ID A044 β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].
Buformin
A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides KEIO_ID B010
Cyanidin-3,5-diglucoside
Cyanidin-3,5-diglucoside is a member of the class of compounds known as anthocyanidin-5-o-glycosides. Anthocyanidin-5-o-glycosides are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Cyanidin-3,5-diglucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Cyanidin-3,5-diglucoside can be found in a number of food items such as winged bean, evening primrose, durian, and peppermint, which makes cyanidin-3,5-diglucoside a potential biomarker for the consumption of these food products. Cyanidin 3,5-diglucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2611-67-8 (retrieved 2024-09-27) (CAS RN: 2611-67-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Skimmianine
Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
(-)-maackiain-3-O-glucoside
(-)-maackiain-3-o-glucoside, also known as trifolrhizin, is a member of the class of compounds known as pterocarpans. Pterocarpans are benzo-pyrano-furano-benzene compounds, containing the 6H-[1]benzofuro[3,2-c]chromene skeleton. They are derivatives of isoflavonoids (-)-maackiain-3-o-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (-)-maackiain-3-o-glucoside can be found in a number of food items such as pepper (c. pubescens), loquat, nopal, and kiwi, which makes (-)-maackiain-3-o-glucoside a potential biomarker for the consumption of these food products. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2]. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2].
3-Hydroxybenzo(a)pyrene
CONFIDENCE standard compound; INTERNAL_ID 45
Miltirone
Constituent of roots of Salvia miltiorrhiza (Chinese sage)and is) also present in leaves of rosemary (Rosmarinus officinalis). Antioxidant. Miltirone is found in herbs and spices, rosemary, and common sage. Miltirone is found in common sage. Miltirone is a constituent of roots of Salvia miltiorrhiza (Chinese sage). Also present in leaves of rosemary (Rosmarinus officinalis). Antioxidant Miltirone is an abietane diterpenoid. Miltirone is a natural product found in Salvia, Salvia miltiorrhiza, and other organisms with data available. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1].
Neoxanthin
Neoxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Neoxanthin is an intermediate in the synthesis of abscisic acid from violaxanthin. Neoxanthin has been detected, but not quantified in, several different foods, such as apples, paprikas, Valencia oranges, kiwis, globe artichokes, sparkleberries, hard wheat, and cinnamon. This could make neoxanthin a potential biomarker for the consumption of these foods. Neoxanthin has been shown to exhibit apoptotic and anti-proliferative functions (PMID: 15333710, 15333710). Neoxanthin is a carotenoid and xanthophyll. In plants, it is an intermediate in the biosynthesis of the plant hormone abscisic acid. It is produced from violaxanthin by the action of neoxanthin synthase. It is a major xanthophyll found in green leafy vegetables such as spinach. [Wikipedia] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
(R)-Glabridin
(R)-Glabridin is found in herbs and spices. (R)-Glabridin is isolated from Glycyrrhiza glabra (licorice). Isolated from Glycyrrhiza glabra (licorice). (R)-Glabridin is found in tea and herbs and spices. C26170 - Protective Agent > C275 - Antioxidant > C306 - Bioflavonoid Glabridin is a natural isoflavan from Glycyrrhiza uralensis, binds to and activates PPARγ, with an EC50 of 6115 nM. Glabridin exhibits antioxidant, anti-bacterial, anti-nephritic, anti-diabetic, anti-fungal, antitumor, anti-inflammatory, antiosteoporotic, cardiovascular protective, neuroprotective and radical scavenging activities[1][2]. Glabridin is a natural isoflavan from Glycyrrhiza uralensis, binds to and activates PPARγ, with an EC50 of 6115 nM. Glabridin exhibits antioxidant, anti-bacterial, anti-nephritic, anti-diabetic, anti-fungal, antitumor, anti-inflammatory, antiosteoporotic, cardiovascular protective, neuroprotective and radical scavenging activities[1][2]. Glabridin is a natural isoflavan from Glycyrrhiza uralensis, binds to and activates PPARγ, with an EC50 of 6115 nM. Glabridin exhibits antioxidant, anti-bacterial, anti-nephritic, anti-diabetic, anti-fungal, antitumor, anti-inflammatory, antiosteoporotic, cardiovascular protective, neuroprotective and radical scavenging activities[1][2].
Acteoside
The main hydroxycinnamic deriv. in olives. Acteoside is found in many foods, some of which are olive, lemon verbena, bitter gourd, and common verbena. Acteoside is found in bitter gourd. It is the main hydroxycinnamic derivative in olives Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.
Galloyl glucose
Galloyl glucose, also known as 1-galloyl-beta-D-glucose or beta-glucogallin, is a member of the class of compounds known as tannins. Tannins are naturally occurring polyphenols which be categorized into four main classes: hydrolyzable tannin (based on ellagic acid or gallic acid), condensed tannins (made of oligomeric or polymeric proanthocyanidins), complex tannins (made of a catechin bound to a gallotannin or elagitannin), and phlorotannins (oligomers of phloroglucinol). Galloyl glucose is soluble (in water) and a very weakly acidic compound (based on its pKa). Galloyl glucose can be found in a number of food items such as pomegranate, strawberry, redcurrant, and rubus (blackberry, raspberry), which makes galloyl glucose a potential biomarker for the consumption of these food products. Galloyl glucose is formed by a gallate 1-beta-glucosyltransferase (UDP-glucose: gallate glucosyltransferase), an enzyme performing the esterification of two substrates, UDP-glucose and gallate to yield two products, UDP and glucogallin. This enzyme can be found in oak leaf preparations .
Lusianthridin
7-methoxy-9,10-dihydrophenanthrene-2,5-diol is a dihydrophenanthrene. 7-Methoxy-9,10-dihydrophenanthrene-2,5-diol is a natural product found in Dendrobium loddigesii, Pleione bulbocodioides, and other organisms with data available.
Dictamnine
Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.
alpha-Cadinol
alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)
Geniposidic acid
Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
(-)-Kaur-16-en-19-oic acid
(-)-kaur-16-en-19-oic acid, also known as ent-kaurenoic acid or ent-kaur-16-en-19-oate, is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D (-)-kaur-16-en-19-oic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (-)-kaur-16-en-19-oic acid can be found in sugar apple and sunflower, which makes (-)-kaur-16-en-19-oic acid a potential biomarker for the consumption of these food products. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
Phyllanthin
Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].
Enniatin B
An enniatin obtained from formal cyclocondensation of three N-[(2R)-2-hydroxy-3-methylbutanoyl]-N-methyl-L-valine units. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE Reference Standard (Level 1)
Roridin A
CONFIDENCE isolated standard D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Rubrofusarin
A member of the class of benzochromenones that is benzo[g]chromen-4-one carrying two additional hydroxy substituents at positions 5 and 6 as well as methyl and methoxy substituents at positions 2 and 8 respectively. An orange polyketide pigment that is a common intermediate in many different fungal biosynthetic pathways. CONFIDENCE Culture of Fusarium graminearum from DAOM
Dehydrolithocholic acid
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
3-oxo-C12 homoserine lactone
CONFIDENCE standard compound; INTERNAL_ID 211
α-Muricholic acid
alpha-Muricholic acid is a hydroxylated bile acid present in normal human urine (PMID: 1629271), and in free glycine-conjugated, taurine-conjugated, and sulfated forms in human feces (PMID: 3667743). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). a-Muricholic acid is an hydroxylated bile acid present in normal human urine (PMID 1629271), and free, glycine-conjugated, taurine-conjugated and sulphated forms in human feces (PMID 3667743). α-Muricholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2393-58-0 (retrieved 2024-06-29) (CAS RN: 2393-58-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
P-Coumaraldehyde
p-Coumaraldehyde (CAS: 2538-87-6), also known as 4-hydroxycinnamaldehyde or 3-(4-hydroxyphenyl)-2-propenal, belongs to the class of organic compounds known as cinnamaldehydes. These are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. p-Coumaraldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, p-coumaraldehyde has been detected, but not quantified in, several different foods, such as red rice, lindens, peaches, white lupines, and evergreen huckleberries. This could make p-coumaraldehyde a potential biomarker for the consumption of these foods. p-Coumaraldehyde is also a constituent of Alpinia galanga (greater galangal) rhizomes and Cucurbita maxima. Constituent of Alpinia galanga (greater galangal) rhizomes Cucurbita maxima. (E)-3-(4-Hydroxyphenyl)-2-propenal is found in many foods, some of which are climbing bean, japanese walnut, chicory leaves, and walnut.
12-HHTrE
12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH. [HMDB] 12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH.
14,15-DiHETrE
14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR ). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR . shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065) [HMDB] 14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR, shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065).
goitrin
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D013956 - Antithyroid Agents D000890 - Anti-Infective Agents > D023303 - Oxazolidinones CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2335 INTERNAL_ID 2335; CONFIDENCE Reference Standard (Level 1)
3-Hydroxy-3-methylglutaryl-CoA
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) (CAS: 1553-55-5) is formed when acetyl-CoA condenses with acetoacetyl-CoA in a reaction that is catalyzed by the enzyme HMG-CoA synthase in the mevalonate pathway or mevalonate-dependent (MAD) route, an important cellular metabolic pathway present in virtually all organisms. HMG-CoA reductase (EC 1.1.1.34) inhibitors, more commonly known as statins, are cholesterol-lowering drugs that have been widely used for many years to reduce the incidence of adverse cardiovascular events. HMG-CoA reductase catalyzes the rate-limiting step in the mevalonate pathway and these agents lower cholesterol by inhibiting its synthesis in the liver and in peripheral tissues. Androgen also stimulates lipogenesis in human prostate cancer cells directly by increasing transcription of the fatty acid synthase and HMG-CoA-reductase genes (PMID: 14689582). (s)-3-hydroxy-3-methylglutaryl-coa, also known as hmg-coa or hydroxymethylglutaroyl coenzyme a, is a member of the class of compounds known as (s)-3-hydroxy-3-alkylglutaryl coas (s)-3-hydroxy-3-alkylglutaryl coas are 3-hydroxy-3-alkylglutaryl-CoAs where the 3-hydroxy-3-alkylglutaryl component has (S)-configuration. Thus, (s)-3-hydroxy-3-methylglutaryl-coa is considered to be a fatty ester lipid molecule (s)-3-hydroxy-3-methylglutaryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxy-3-methylglutaryl-coa can be found in a number of food items such as watercress, burdock, spirulina, and chicory, which makes (s)-3-hydroxy-3-methylglutaryl-coa a potential biomarker for the consumption of these food products (s)-3-hydroxy-3-methylglutaryl-coa may be a unique S.cerevisiae (yeast) metabolite.
Tosyllysine Chloromethyl Ketone
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D009676 - Noxae > D000477 - Alkylating Agents > D000590 - Amino Acid Chloromethyl Ketones D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors
UDP-N-acetylmuraminate
UDP-N-acetylmuraminate is a nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed. UDP-N-acetylmuraminate, also known as UDP-MurNAc, is a key molecule in the biosynthesis of bacterial cell walls. It is a nucleotide sugar, which means it consists of a nucleotide (uridine diphosphate, UDP) linked to a sugar molecule (N-acetylmuramic acid, MurNAc). This compound plays a critical role in the formation of peptidoglycan, the essential structural component of the bacterial cell wall. Here are some key points about UDP-N-acetylmuraminate: Biosynthesis: UDP-MurNAc is synthesized from UDP-N-acetylglucosamine (UDP-GlcNAc) through a series of enzymatic reactions. The addition of a lactyl group to UDP-GlcNAc forms UDP-MurNAc. Peptidoglycan Precursor: It serves as a precursor for the synthesis of peptidoglycan, which is a polymer made up of alternating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). The peptide chains attached to MurNAc units cross-link to provide structural strength to the cell wall. Enzymatic Processing: UDP-MurNAc is further processed by enzymes such as Mur synthases, which add amino acids to form the pentapeptide chain attached to the MurNAc residue. This pentapeptide is crucial for the cross-linking of peptidoglycan layers. Target for Antibiotics: Since peptidoglycan synthesis is unique to bacteria, enzymes involved in the biosynthesis and processing of UDP-MurNAc are targets for antibiotics. Inhibiting these enzymes can prevent proper cell wall formation, leading to bacterial cell death. Importance in Bacterial Growth: The availability of UDP-MurNAc is essential for bacterial growth and cell division, as it is a direct precursor to the building blocks of the cell wall. Research and Applications: Understanding the biosynthesis and function of UDP-MurNAc is important for developing new antibiotics, as well as for basic research in bacterial cell biology. UDP-N-acetylmuraminate is a vital molecule in the construction of the bacterial cell wall, and its biosynthesis and function are of significant interest in both basic research and the development of antibacterial therapies. A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed [HMDB]
Desmosterol
Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is found in many foods, some of which are fig, sago palm, mexican groundcherry, and pepper (c. frutescens). Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].
Naphthazarin
A naphthoquinone that is 1,4-naphthoquinone in which the hydrogens at positions 5 and 8 are replaced by hydroxy groups. D000970 - Antineoplastic Agents
5alpha-Cholest-8-en-3beta-ol
5a-Cholest-8-en-3b-ol is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decrease and cholesterol precursor sterols such as zymostenol increase. (PMID: 15736111, 16709621, 16477216, 12756385) [HMDB]. 5a-Cholest-8-en-3b-ol is found in many foods, some of which are chinese water chestnut, garden tomato, calabash, and cassava. 5alpha-Cholest-8-en-3beta-ol, also known as zymostenol, is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in the serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decreased and cholesterol precursor sterols such as zymostenol increased (PMID: 15736111, 16709621, 16477216, 12756385).
5-Aminoimidazole
Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054) [HMDB] Because of its ability to mimic a low energy status of the cell, the cell-permeable nucleoside 5-aminoimidazole-4-carboxamide (AICA) riboside was proposed as an antineoplastic agent switching off major energy-consuming processes associated with the malignant phenotype (lipid production, DNA synthesis, cell proliferation, cell migration, etc.). Key to the antineoplastic action of AICA riboside is its conversion to ZMP, an AMP mimetic that at high concentrations activates the AMP-activated protein kinase (AMPK). (PMID: 16985054).
3-Aminopropionaldehyde
3-aminopropionaldehyde is a member of the class of compounds known as alpha-hydrogen aldehydes. Alpha-hydrogen aldehydes are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-aminopropionaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-aminopropionaldehyde can be found in a number of food items such as lemon, natal plum, common wheat, and leek, which makes 3-aminopropionaldehyde a potential biomarker for the consumption of these food products. 3-aminopropionaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, 3-aminopropionaldehyde is involved in the beta-alanine metabolism. 3-aminopropionaldehyde is also involved in few metabolic disorders, which include carnosinuria, carnosinemia, gaba-transaminase deficiency, and ureidopropionase deficiency. 3-Aminopropanal is a reactive aldehyde that mediates progressive neuronal necrosis and glial apoptosis. (PMID 11943872). Increased activity of polyamine oxidase catabolizes polyamines (such as spermine, spermidine and putrescine) to produce 3-aminopropanal. (PMID 15246852).
Phycocyanobilin
Phycocyanobilin is a linear, open-chain tetrapyrrole pigment that belongs to the family of bilins. It serves as a chromophore in various phytochrome photoreceptors found in cyanobacteria, as well as in the chlorosomes of green sulfur bacteria. Phycocyanobilin is a key component of phycobiliproteins, which are water-soluble pigments involved in light harvesting during photosynthesis. **Chemical Structure:** Phycocyanobilin has a molecular formula of C33H36N4O6 and a molecular weight of approximately 596.67 g/mol. Structurally, it consists of a porphyrin backbone with four pyrrole rings connected by methine bridges. The pyrrole rings contain nitrogen atoms that coordinate a central magnesium ion in phycobiliproteins. Unlike chlorophyll, phycocyanobilin has an open-chain structure due to the presence of a double bond between the C-20 and C-21 positions of the macrocyclic ring, which prevents it from forming a fully circular porphyrin ring. **Properties:** - **Color:** Phycocyanobilin imparts a blue color to the phycobiliproteins in which it is bound. The specific color is due to the electronic structure of the phycocyanobilin molecule, which allows it to absorb light in the red region of the visible spectrum, typically around 620-630 nm. - **Solubility:** Unlike many other pigments, phycocyanobilin is water-soluble due to its binding to phycobiliproteins, which enhances its functionality in the thylakoid membranes of cyanobacteria. - **Chemical Reactivity:** Phycocyanobilin can be isomerized and oxidized to form other bilins, such as phycoerythrobilin and phycourobilin, which have different spectral properties and can be found in different phycobiliproteins. **Biological Role:** Phycocyanobilin plays a critical role in the photosynthetic process of cyanobacteria and certain green sulfur bacteria. Its primary functions include: - **Light Harvesting:** In phycobiliproteins like phycocyanin, phycocyanobilin serves as a light-harvesting antenna. It absorbs light energy and transfers it to the photosynthetic reaction centers, where it is used to drive the synthesis of ATP and NADPH. - **Photoregulation:** In cyanobacteria, phycocyanobilin is also involved in the regulation of photosynthesis through the action of phytochrome-like photoreceptors. These photoreceptors can switch between a Pr (red-absorbing) and a Pfr (far-red-absorbing) form in response to light, regulating gene expression and various metabolic processes. **Synthesis:** Phycocyanobilin is synthesized from the amino acid L-arginine through a series of enzymatic reactions that include the production of 5-aminolevulinic acid (ALA), which is then transformed into protoporphyrin IX. The protoporphyrin IX is subsequently modified to form phycocyanobilin, a process that involves the removal of the macrocyclic ring and the introduction of the double bond at the C-20 and C-21 positions. In summary, phycocyanobilin is an essential pigment for the photosynthetic apparatus of certain photosynthetic organisms, contributing to their ability to capture and utilize light energy for the production of organic compounds. Its unique structure and properties allow it to perform a variety of functions that are critical to the survival and ecological success of these organisms.
Biotinyl-5'-AMP
5-biotinyl-AMP (B-AMP) is the active form of biotin in mammals. In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The vitamin biotin plays an essential role in gluconeogenesis, fatty acid synthesis, and carbohydrate metabolism because of its role as cofactor of five carboxylases; pyruvate carboxylase (PC), propionyl-CoA carboxylase (PCC), methylcrotonyl-CoA carboxylase, and two forms of acetyl-CoA carboxylase (ACC-1 and ACC-2). Carboxylase biotinylation is catalyzed by the enzyme holocarboxylase synthetase (HCS) through a reaction that involves the transformation of biotin into B-AMP and its subsequent attachment to a specific lysine residue in the carboxylases. B-AMP is also required to activate a signal transduction cascade that includes a soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG). The regulatory role of biotin in the biotin cycle seems to be limited to the expression of proteins involved in the transport and utilization of exogenous vitamin while having no effect on biotinidase mRNA levels, enzyme responsible for biotin recycling during carboxylase turnover. Multiple carboxylase deficiency (MCD) is a life-threatening disease characterized by the lack of carboxylase activities because of deficiency of HCS activity. (PMID: 15905112, 11959985). 5-biotinyl-AMP (B-AMP) is the active form of biotin in mammals. In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The vitamin biotin plays an essential role in gluconeogenesis, fatty acid synthesis, and carbohydrate metabolism because of its role as cofactor of five carboxylases; pyruvate carboxylase (PC), propionyl-CoA carboxylase (PCC), methylcrotonyl-CoA carboxylase, and two forms of acetyl-CoA carboxylase (ACC-1 and ACC-2).
Delta-12-Prostaglandin J2
Delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585) D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
Lipoxin B4
Lipoxins (LXs) and aspirin-triggered lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation. In addition to the well-appreciated ability of aspirin to inhibit PGs, aspirin also acetylates cyclooxygenase (COX)-2, triggering the formation of a 15-epimeric form of lipoxins, termed aspirin-triggered LXA4 (ATL). These eicosanoids (i.e. LXA4 and ATL) with a unique trihydroxytetraene structure function as stop signals in inflammation and actively participate in dampening host responses to bring the inflammation to a close, namely, resolution. LXA4 and ATL elicit the multicellular responses via a specific G protein-coupled receptor (GPCR) termed ALX that has been identified in human (PMID: 16968948, 11478982). Lipoxins (LXs) and aspirin-triggered Lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
Algestone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents
(+)-1(10),4-Cadinadiene
Constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag. (+)-1(10),4-Cadinadiene is found in many foods, some of which are common pea, asparagus, sweet potato, and dill. (+)-1(10),4-Cadinadiene is found in allspice. (+)-1(10),4-Cadinadiene is a constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag
D-1,5-Anhydrofructose
D-1,5-Anhydrofructose is found in fruits. D-1,5-Anhydrofructose is isolated from Morchella vulgaris (morel). Isolated from Morchella vulgaris (morel). D-1,5-Anhydrofructose is found in fruits.
1,3-Dichloropropene
1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. [HMDB] 1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Rocuronium
Rocuronium (rapid onset-curonium) is a desacetoxy analogue of vecuronium with a more rapid onset of action. It is an aminosteroid non-depolarizing neuromuscular blocker or muscle relaxant used in modern anaesthesia, to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation. Introduced in 1994, rocuronium has rapid onset, and intermediate duration of action. It is marketed under the trade name of Zemuron in the United States and Esmeron in most other countries. There is considered to be a risk of allergic reaction to the drug in some patients (particularly those with asthma), but a similar incidence of allergic reactions has been observed by using other members of the same drug class (non-depolarizing neuromuscular blocking drugs). The γ-cyclodextrin derivative sugammadex (trade name Bridion) has been recently introduced as a novel agent to reverse the action of rocuronium. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist
Ginkgolide J
Isolated from Ginkgo biloba (ginkgo). Ginkgolide J is found in ginkgo nuts and fats and oils. Ginkgolide J is found in fats and oils. Ginkgolide J is isolated from Ginkgo biloba (ginkgo Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2]. Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2].
Mometasone
Mometasone is a medium-potency synthetic corticosteroid with antiinflammatory, antipruritic, and vasoconstrictive properties. Studies in asthmatic patients have demonstrated that mometasone provides a favorable ratio of topical to systemic activity due to its primary local effect along with the extensive hepatic metabolism and the lack of active metabolites. Though effective for the treatment of asthma, glucocorticoids do not affect asthma symptoms immediately. Maximum improvement in symptoms following inhaled administration of mometasone furoate may not be achieved for 1 to 2 weeks or longer after starting treatment. he antiinflammatory actions of corticosteroids are thought to involve phospholipase A2 inhibitory proteins, lipocortins, which control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes. D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XC - Corticosteroids, potent, other combinations R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents D003879 - Dermatologic Agents
magnesium hydroxide
C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D000863 - Antacids
Zanamivir
Zanamivir is only found in individuals that have used or taken this drug. It is a guanido-neuraminic acid that is used to inhibit neuraminidase. [PubChem]The proposed mechanism of action of zanamivir is via inhibition of influenza virus neuraminidase with the possibility of alteration of virus particle aggregation and release. By binding and inhibiting the neuraminidase protein, the drug renders the influenza virus unable to escape its host cell and infect others. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors
Prednisolone Acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents
Hentriacontane
Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.
Methyl 2-propenyl disulfide
Constituent of the essential oils of Allium subspecies Flavouring ingredient. Methyl 2-propenyl disulfide is found in many foods, some of which are garden onion, allium (onion), chives, and soft-necked garlic. Methyl 2-propenyl disulfide is found in allium (onion). Methyl 2-propenyl disulfide is a constituent of the essential oils of Allium species Methyl 2-propenyl disulfide is a flavouring ingredient.
Verrucarin A
A trichothecene antibiotic which incorporates a triester macrocyclic structure and an exocyclic methylene epoxide group. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D000970 - Antineoplastic Agents
Selagine
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents D004791 - Enzyme Inhibitors (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (-)-Huperzine A (Huperzine A) is an alkaloid isolated from Huperzia serrata, with neuroprotective activity. (-)-Huperzine A is a potent, highly specific, reversible and blood-brain barrier penetrant inhibitor of acetylcholinesterase (AChE), with an IC50 of 82 nM. (-)-Huperzine A also is non-competitive antagonist of N-methyl-D-aspartate glutamate (NMDA) receptor. (-)-Huperzine A is developed for the research of neurodegenerative diseases, including Alzheimer’s disease[1][2][3][4][5]. (±)-Huperzine A, an active Lycopodium alkaloid extracted from traditional Chinese herb, is a potent, selective and reversible acetylcholinesterase (AChE) inhibitor and has been widely used in China for the treatment of Alzheimer's disease (AD). IC50 value: Target: AChE (±)-Huperzine A exhibited protective effects against d-gal-induced hepatotoxicity and inflamm-aging by inhibiting AChE activity and via the activation of the cholinergic anti-inflammatory pathway. The (±)-Huperzine A mechanism might be involved in the inhibition of DAMPs-mediated NF-κB nuclear localization and activation. (±)-Huperzine A is a potential therapeutic agent for Alzheimer's disease. (±)-Huperzine A, an active Lycopodium alkaloid extracted from traditional Chinese herb, is a potent, selective and reversible acetylcholinesterase (AChE) inhibitor and has been widely used in China for the treatment of Alzheimer's disease (AD). IC50 value: Target: AChE (±)-Huperzine A exhibited protective effects against d-gal-induced hepatotoxicity and inflamm-aging by inhibiting AChE activity and via the activation of the cholinergic anti-inflammatory pathway. The (±)-Huperzine A mechanism might be involved in the inhibition of DAMPs-mediated NF-κB nuclear localization and activation. (±)-Huperzine A is a potential therapeutic agent for Alzheimer's disease.
Theasinensin A
Theasinensin D is found in tea. Theasinensin D is from oolong tea Camellia sinensis var. viridis. From oolong tea Camellia sinensis variety viridis. Theasinensin D is found in tea.
Agathisflavone
A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-6 and C-8 of the two chromene rings.
Perlolyrine
Alkaloid from Korean ginseng and Japanese soy sauce. Perlolyrine is found in saffron, soy bean, and herbs and spices. Perlolyrine is found in herbs and spices. Perlolyrine is an alkaloid from Korean ginseng and Japanese soy sauc
Euxanthone
Occurs in Mammea americana (mamey), Platonia insignis (bakuri) and Mangifera indica (mango). Euxanthone is found in fruits and mammee apple. Euxanthone is found in fruits. Euxanthone occurs in Mammea americana (mamey), Platonia insignis (bakuri) and Mangifera indica (mango
Usnic acid
A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
Pachypodol
Pachypodol is a trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. It has a role as a plant metabolite and an antiemetic. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. Pachypodol is a natural product found in Larrea cuneifolia, Macaranga triloba, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2]. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2].
Robustaflavone
A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-6 of the chromene ring. Isolated from Thuja orientalis and Rhus succedanea it exhibits antioxidant, cytotoxic and anti-hepatitis B activity.
Casuarinin
Casuarinin is found in feijoa. Casuarinin is isolated from Corylus heterophylla (Siberian filbert
Pedunculagin
Nanafrocin
A pyranonaphthoquinone antibiotic from strain OS-3966 of Streptomyces rosa var. notoensis. C254 - Anti-Infective Agent > C514 - Antifungal Agent C254 - Anti-Infective Agent > C258 - Antibiotic
1-(4-Hydroxy-3-methoxyphenyl)-3-decanone
1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is found in alcoholic beverages. 1-(4-Hydroxy-3-methoxyphenyl)-3-decanone is from grains of paradise (Amomum melegueta) and ginger (Zingiber officinale).Paradol is the active flavor constituent of the seeds of Guinea pepper (Aframomum melegueta). The seed is also known as Grains of paradise. Paradol has been found to have antioxidative and antitumor promoting effects. It is used in flavors as an essential oil to give spiciness. (Wikipedia [6]-Paradol is a member of phenols, a ketone and a monomethoxybenzene. Paradol is a natural product found in Aframomum angustifolium, Aframomum melegueta, and Zingiber officinale with data available. From grains of paradise (Amomum melegueta) and ginger (Zingiber officinale) Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site. Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.
Diphyllin
Diphyllin is a lignan. Diphyllin is a natural product found in Haplophyllum alberti-regelii, Haplophyllum bucharicum, and other organisms with data available. Origin: Plant Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3]. Diphyllin is an arylnaphthalene lignan isolated from Justicia procumbens and is a potent HIV-1 inhibitor with an IC50 of 0.38 μM. Diphyllin is active against vesicular stomatitis virus (VSV) and influenza virus[1]. Diphyllin is a vacuolar type H+-ATPase (V-ATPase) inhibitor with an IC50 value of 17 nM and inhibits lysosomal acidification in human osteoclasts[2]. Diphyllin inhibits NO production with an IC50 of 50 μM and has anticancer and anti-inflammatory activities[3].
savinin
A lignan that is dihydrofuran-2(3H)-one (gamma-butyrolactone) substituted by a 1,3-benzodioxol-5-ylmethylidene group at position 3 and a 1,3-benzodioxol-5-ylmethyl group at position 4 (the 3E,4R-isomer). It exhibits antiviral activity against SARS-CoV-2.
5-Hydroxymethyl-2-furancarboxaldehyde
5-hydroxymethylfurfural is a member of the class of furans that is furan which is substituted at positions 2 and 5 by formyl and hydroxymethyl substituents, respectively. Virtually absent from fresh foods, it is naturally generated in sugar-containing foods during storage, and especially by drying or cooking. It is the causative component in honey that affects the presystemic metabolism and pharmacokinetics of GZ in-vivo. It has a role as an indicator and a Maillard reaction product. It is a member of furans, an arenecarbaldehyde and a primary alcohol. Aes-103 has been used in trials studying the treatment and prevention of Hypoxia, Anemia, Sickle Cell, and Sickle Cell Disease. 5-Hydroxymethylfurfural is a natural product found in Prunus mume, Tussilago farfara, and other organisms with data available. 5-Hydroxymethyl-2-furancarboxaldehyde belongs to the family of Furans. These are compounds containing a furan ring, which is a five-member aromatic ring with one oxygen atom, four carbon atoms. 5-Hydroxymethyl-2-furancarboxaldehyde is found in garden onion. Obtainable from various carbohydrates. 5-Hydroxymethyl-2-furancarboxaldehyde is present in tomatoes, tobacco oil etc. 5-Hydroxymethyl-2-furancarboxaldehyde is a constituent of numerous plant species. 5-Hydroxymethyl-2-furancarboxaldehyde is used as an index of heat treatment and deterioration in food such as tomato paste, honey and fruit juices. Also an indicator of adulteration with acid-converted invert sugars. 5-Hydroxymethylfurfural is a biomarker for the consumption of beer 5-Hydroxymethyl-2-furancarboxaldehyde or simply HMF is obtainable from various carbohydrates. It is found in garden tomatoes, garden onion, and tobacco oil. Constituent of numerous plant spp.. Used as an index of heat treatment and deterioration in food such as tomato paste, honey and fruit juices. Also an indicator of adulteration with acid-converted invert sugars. 5-Hydroxymethylfurfural is a biomarker for the consumption of beer. 5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors. 5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors.
Tebufenpyrad
CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10181; ORIGINAL_PRECURSOR_SCAN_NO 10180 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10149; ORIGINAL_PRECURSOR_SCAN_NO 10147 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10181; ORIGINAL_PRECURSOR_SCAN_NO 10178 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10099; ORIGINAL_PRECURSOR_SCAN_NO 10097 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10204; ORIGINAL_PRECURSOR_SCAN_NO 10202 CONFIDENCE standard compound; INTERNAL_ID 1210; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10140; ORIGINAL_PRECURSOR_SCAN_NO 10138
calpeptin
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors
Grepafloxacin
Grepafloxacin hydrochloride (Raxar®, Glaxo Wellcome) is an oral broad-spectrum quinoline antibacterial agent used to treat bacterial infections. Grepafloxacin was withdrawn in the United States due to its side effect of lengthening the QT interval on the electrocardiogram, leading to cardiac events and sudden death. [Wikipedia] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors ATC code: J01MA11
Sultopride
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AL - Benzamides C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Same as: D08549
alpha-Terpineol acetate
alpha-Terpineol acetate, also known as a-terpineol acetic acid or p-menth-1-en-8-yl acetate, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpineol acetate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. α-Terpinyl acetate is a monoterpene ester isolated from Laurus nobilis L. essential oil. α-Terpinyl acetate is a competitive P450 2B6 substrate which binding to the active site of P450 2B6 with a Kd value of 5.4?μM[1][2]. α-Terpinyl acetate is a monoterpene ester isolated from Laurus nobilis L. essential oil. α-Terpinyl acetate is a competitive P450 2B6 substrate which binding to the active site of P450 2B6 with a Kd value of 5.4?μM[1][2].
PHENOL RED
V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CH - Tests for renal function and ureteral injuries D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins D004396 - Coloring Agents Same as: D01200
Quercetin 7-glucoside
Quercetin 7-glucoside, also known as quercimeritrin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Quercetin 7-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 7-glucoside can be found in a number of food items such as roman camomile, okra, dandelion, and cottonseed, which makes quercetin 7-glucoside a potential biomarker for the consumption of these food products. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].
Mequitazine
Mequitazine is a histamine H1 antagonist (antihistamine). It competes with histamine for the normal H1-receptor sites on effector cells of the gastrointestinal tract, blood vessels and respiratory tract. It provides effective, temporary relief of sneezing, watery and itchy eyes, and runny nose due to hay fever and other upper respiratory allergies. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist Same as: D01324 Mequitazine is a potent, and long-acting histamine H1 antagonist.
Nedaplatin
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent > C1450 - Platinum Compound D000970 - Antineoplastic Agents Same as: D01416
TG(8:0/8:0/8:0)
TG(8:0/8:0/8:0) belongs to the family of triradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. Their general formula is [R1]OCC(CO[R2])O[R3]. TG(8:0/8:0/8:0) is made up of one octanoyl(R1), one octanoyl(R2), and one octanoyl(R3). It is used in bakery products. Carrier for essential oils and flavours. Glycerol trioctanoate is found in cereals and cereal products. D010592 - Pharmaceutic Aids > D014677 - Pharmaceutical Vehicles > D005079 - Excipients Same as: D01587 Tricaprilin (Trioctanoin) is used in study for patients with mild to moderate Alzheimer's disease and has a role as an anticonvulsant and a plant metabolite[1][2].
carmofur
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000970 - Antineoplastic Agents Same as: D01784 Carmofur (HCFU) is a rat recombinant acid ceramidase inhibitor with an IC50 of 29 nM. Carmofur is also a protease inhibitor of SARS-CoV-2 main protease (Mpro), fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA). Carmofur has anti-cancer, anti-inflammatory and anti-virus activities, and can be used for the study of COVID-19 and acute lung injury (ALI)[1][2][3].
Tannic acid
Clarifying agent for beer and wine; flavour enhancer, colour modifier, pH control agent. Permitted boiler water additive in generation of steam for use in food contact processes Same as: D01959 Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM. Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM.
1-(2-Hydroxy-5-(trifluoromethyl)phenyl)-5-(trifluoromethyl)-1H-benzo[d]imidazol-2(3H)-one
Monobenzone
Monobenzone is the monobenzyl ether of hydroquinone used medically for depigmentation. Monobenzone occurs as a white, almost tasteless crystalline powder, soluble in alcohol and practically insoluble in water. The topical application of monobenzone in animals increases the excretion of melanin from the melanocytes. The same action is thought to be responsible for the depigmenting effect of the drug in humans. Monobenzone may cause destruction of melanocytes and permanent depigmentation. D - Dermatologicals Same as: D05072
(Chloromethyl)oxirane
(Chloromethyl)oxirane is used for cross-linking dextrose units in food starc It is used for cross-linking dextrose units in food starch.
Benzofuran
Benzofuran, also known as coumaron or 1-oxaindene, belongs to the class of organic compounds known as benzofurans. These are organic compounds containing a benzene ring fused to a furan. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Benzothiophene, an analog with a sulfur instead of the oxygen atom. Benzofuran is a drug. benzofuran has been detected, but not quantified, in several different foods, such as alcoholic beverages, coffee and coffee products, herbs and spices, root vegetables, and tea. This could make benzofuran a potential biomarker for the consumption of these foods. This colourless liquid is a component of coal tar. Benzofuran is the heterocyclic compound consisting of fused benzene and furan rings. Benzofuran is a potentially toxic compound. For example, psoralen is a benzofuran derivative that occurs in several plants. Isobenzofuran, the isomer with oxygen in the adjacent position. Benzofuran is a Maillard product. It is a heterocyclic compound consisting of fused benzene and furan rings. It is the parent of many related compounds with more complex structures. For example, psoralen is a benzofuran derivative that occurs in several plants. It is found in many foods, some of which are herbs and spices, tea, alcoholic beverages, and coffee and coffee products.
Phenol-formaldehyde, cross-linked, tetraethylenepentamine activated
Phenol-formaldehyde, cross-linked, tetraethylenepentamine activated is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
Chloroxylenol
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D004202 - Disinfectants Same as: D03473
{4-[({2-[3-Fluoro-4-(Trifluoromethyl)phenyl]-4-Methyl-1,3-Thiazol-5-Yl}methyl)sulfanyl]-2-Methylphenoxy}acetic Acid
CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10481; ORIGINAL_PRECURSOR_SCAN_NO 10479 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10494; ORIGINAL_PRECURSOR_SCAN_NO 10490 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10524; ORIGINAL_PRECURSOR_SCAN_NO 10520 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10518; ORIGINAL_PRECURSOR_SCAN_NO 10516 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10469; ORIGINAL_PRECURSOR_SCAN_NO 10466 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10519; ORIGINAL_PRECURSOR_SCAN_NO 10516 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5241; ORIGINAL_PRECURSOR_SCAN_NO 5238 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5267; ORIGINAL_PRECURSOR_SCAN_NO 5265 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5258; ORIGINAL_PRECURSOR_SCAN_NO 5256 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5274; ORIGINAL_PRECURSOR_SCAN_NO 5271 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5266; ORIGINAL_PRECURSOR_SCAN_NO 5264 CONFIDENCE standard compound; INTERNAL_ID 1372; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5246; ORIGINAL_PRECURSOR_SCAN_NO 5244 GW0742 is a potent PPARβ and PPARδ agonist, with an IC50 of 1 nM for human PPARδ in binding assay, and EC50s of 1 nM, 1.1 μM and 2 μM for human PPARδ, PPARα, and PPARγ, respectively.
SR 12813
D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates SR12813 (GW 485801) is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, with an IC50 value of 0.85 μM[1][2]. SR12813 is also an efficient agonist of human pregnane X receptor (hPXR). SR12813 can strongly bind to hPXR but not to mouse PXR (mPXR)[3].
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (also known as NNK) is a potent tobacco-specific nitrosamine derived from nicotine. It plays a key role in human tobacco-related cancers (PMID:24830349). NNK is found in cured tobacco and is also produced during its burning or combustion in cigarettes. NNK is abundantly present in cigarette smoke (20-280 ng/cigarette). Electronic cigarettes (e-cigarettes) do not convert nicotine to NNK due to their lower operating temperatures. NNK is a procarcinogen. This means it must be activated by cytochrome P450 enzymes (CYP2A6 and CYP2B6) to become a carcinogen (PMID:24830349). NNK can also be activated by myeloperoxidase (MPO) and epoxide hydrolase (EPHX1). All activation processes lead to the formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol from NNK, which is called NNAL (PMID:24830349). NNAL can be detoxified via glucuronidation via glucuronidases. Once NNK is activated to NNAL, this compound initiates a cascade of signalling pathways (for example ERK1/2, NFκB, PI3K/Akt, MAPK, FasL, K-ras), resulting in uncontrolled cellular proliferation and tumorigenesis. NNK is known as a mutagen and can cause point mutations that affect cell growth proliferation and differentiation. NNK also targets the SULT1A1, TGF-beta, and angiotensin II genes. NNK plays a key role in gene silencing, gene modification, and carcinogenesis. NNK has been implicated in tumour promotion by activating nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-AdrRs), leading to downstream activation of parallel signal transduction pathways that facilitate tumour progression (PMID:24830349). Antioxidants such as EGCG (from green tea) inhibit lung tumorigenesis by NNK. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific nitrosamine in animals. It has been suggested to play a role in human tobacco-related cancers. P450 1A2 catalyzed the formation of keto alcohol and 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde) from NNK, with the keto alcohol being the major metabolite. Phenethyl isothiocyanate (PEITC0 is an effective inhibitor of the carcinogenicity or toxicity of chemicals that are activated by P450 1A2.( PMID: 8625495) [HMDB] D009676 - Noxae > D002273 - Carcinogens
Dinophysistoxin 1
Dinophysistoxin 1 is found in mollusks. Dinophysistoxin 1 is a metabolite of Dinophysis fortii. Dinophysistoxin 1 is found in scallops and mussels. Component toxin in diarrhetic shellfish poisonin D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins
Neochlorogenic_acid
Trans-5-O-caffeoyl-D-quinic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. It has a role as a plant metabolite. It is a cyclitol carboxylic acid and a cinnamate ester. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a trans-5-O-caffeoyl-D-quinate. Neochlorogenic acid is a natural product found in Eupatorium perfoliatum, Centaurea bracteata, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (has part); Moringa oleifera leaf (part of). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.
1,2,4-Trihydroxyanthraquinone
Purpurin is a trihydroxyanthraquinone derived from anthracene by substitution with oxo groups at C-9 and C-10 and with hydroxy groups at C-1, C-2 and C-4. It has a role as a biological pigment, a histological dye and a plant metabolite. Purpurin is a natural product found in Rubia argyi, Cinchona calisaya, and other organisms with data available. See also: Rubia tinctorum root (part of). A trihydroxyanthraquinone derived from anthracene by substitution with oxo groups at C-9 and C-10 and with hydroxy groups at C-1, C-2 and C-4. D004396 - Coloring Agents Purpurin is a natural anthraquinone compound from Rubia cordifolia L.. Purpurin has antidepressant-like effects[1]. Purpurin is a natural anthraquinone compound from Rubia cordifolia L.. Purpurin has antidepressant-like effects[1].
dictamine
Dictamnine is an oxacycle, an organonitrogen heterocyclic compound, an organic heterotricyclic compound and an alkaloid antibiotic. Dictamnine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. A furoquinoline alkaloid, dictamnine, is very common within the family Rutaceae. It is the main alkaloid in the roots of Dictamnus albus and responsible for the mutagenicity of the drug derived from crude extracts. Dictamnine was also reported to be a phototoxic and photomutagenic compound. It participates in the severe skin phototoxicity of the plant. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.
Gelsemine
Gelsemin is an indole alkaloid. Gelsemine is a natural product found in Gelsemium sempervirens and Gelsemium elegans with data available. Gelsemine, an alkaloid from the Chinese herb Gelsemium elegans, is effective in mitigating chronic pain. Antinociceptive effects. Gelsemine, an alkaloid from the Chinese herb Gelsemium elegans, is effective in mitigating chronic pain. Antinociceptive effects.
Skimmianine
Skimmianine is an organonitrogen heterocyclic compound, an organic heterotricyclic compound, an oxacycle and an alkaloid antibiotic. Skimmianine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
Daphnoretin
Daphnoretin is a member of the class of coumarins that is coumarin substituted by a hydroxy group at position 7, a methoxy group at position 6 and a (2-oxo-2H-chromen-7-yl)oxy group at position 3. It has a role as a metabolite, an antiviral agent and an antineoplastic agent. It is a hydroxycoumarin and an aromatic ether. It is functionally related to a coumarin. Daphnoretin is a natural product found in Coronilla scorpioides, Edgeworthia chrysantha, and other organisms with data available. A member of the class of coumarins that is coumarin substituted by a hydroxy group at position 7, a methoxy group at position 6 and a (2-oxo-2H-chromen-7-yl)oxy group at position 3. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2]. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2].
1-Triacontanol
Triacontan-1-ol is an ultra-long-chain primary fatty alcohol that is triacontane in which one of the terminal methyl hydrogens is replaced by a hydroxy group. It is a fatty alcohol 30:0 and an ultra-long-chain primary fatty alcohol. 1-Triacontanol is a natural product found in Haplophyllum bucharicum, Euphorbia dracunculoides, and other organisms with data available. See also: Saw Palmetto (part of); Iris versicolor root (part of).
Khellin
Khellin is a furanochrome in which the basic tricyclic skeleton is substituted at positions 4 and 9 with methoxy groups and at position 7 with a methyl group. A major constituent of the plant Ammi visnaga it is a herbal folk medicine used for various illnesses, its main effect being as a vasodilator. It has a role as a vasodilator agent, a bronchodilator agent, an anti-asthmatic agent and a cardiovascular drug. It is an organic heterotricyclic compound, an oxacycle and a furanochromone. It is functionally related to a 5H-furo[3,2-g]chromen-5-one. Khellin is a natural product found in Ammi visnaga, Annona muricata, and other organisms with data available. A vasodilator that also has bronchodilatory action. It has been employed in the treatment of angina pectoris, in the treatment of asthma, and in conjunction with ultraviolet light A, has been tried in the treatment of vitiligo. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1024) See also: Visnaga daucoides fruit (part of). D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2]. Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2].
Dihydrobrassicasterol
24-epicampesterol is a 3beta-sterol, a member of phytosterols, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. 22,23-Dihydrobrassicasterol is a natural product found in Euphorbia fischeriana, Sambucus chinensis, and other organisms with data available. Occurs in Physalis peruviana (Cape gooseberry). Dihydrobrassicasterol is found in many foods, some of which are watermelon, muskmelon, fruits, and cucumber. Dihydrobrassicasterol is found in cucumber. Dihydrobrassicasterol occurs in Physalis peruviana (Cape gooseberry
Cedrol
Cedrol is a cedrane sesquiterpenoid and a tertiary alcohol. Cedrol is a natural product found in Xylopia aromatica, Widdringtonia whytei, and other organisms with data available. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].
skrofulein
Cirsimaritin is a dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5 and 4 respectively. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsimaritin is a natural product found in Achillea santolina, Schoenia cassiniana, and other organisms with data available. See also: Tangerine peel (part of).
Chelidonic_acid
Chelidonic acid is a carbonyl compound and a member of pyrans. Chelidonic acid is a natural product found in Zea mays, Leucojum aestivum, and other organisms with data available. See also: Chelidonium majus flowering top (part of). Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2]. Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2].
(R)-Salsolinol
Salsolinol is an endogenous catechol isoquinoline detected in humans. Salsolinol was detected in urine of parkinsonian patients administered with L-DOPA. This finding stimulated the studies on Salsolinol derivatives in the brain, and gave new aspects of the endogenous alkaloids, which had been considered to occur only in plants. In normal non-alcoholic subjects and alcoholics, Salsolinol and O-methylated Salsolinol were found in urine, cerebrospinal fluid and brains. Salsolinol has an asymmetric center at first position and exists as (R)- and (S)enantiomer. The (R)enantiomer of Salsolinol is predominant in urine from healthy volunteers. Only the (R)enantiomers of Salsolinol and N-methylated Salsolinol occur in the human brain, cerebrospinal fluid (CSF) and intraventricular fluid (IVF), and the (S)enantiomers were not detected. (R)salsolinol synthase catalyzes the enantio-selective synthesis of (R)Salsolinol and 1-carboxyl(R)Salsolinol from dopamine with acetaldehyde or pyruvic acid. The N-methylation of (R)salsolinol into N-methylsalsolinol (NMSal) is catalyzed by two N-methyltransferases with different optimum pH, at pH 7.0 and 8.4. NM(R)Salsolinol is enzymatically oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion (DMDHIQ+) by an oxidase sensitive to semicarbaside and also non-enzymatically by autoxidation. NM(R)Salsolinol and its precursor, dopamine, were found to occur selectively in the nigro-striatum, whereas (R)Salsolinol distributes uniformly among the brain regions. (PMID 14697894). Alkaloid from Annona reticulata (custard apple), Musa paradisiaca (banana) and Theobroma cacao (cocoa). xi-Salsolinol is found in cocoa and cocoa products and fruits.
Limonin
Limonin is found in citrus. Limonin is isolated from oranges and other citrus fruits (Citrus species). Limonin is a limonoid, and a bitter, white, crystalline substance found in orange and lemon seeds. It is also known as limonoate D-ring-lactone and limonoic acid di-delta-lactone. Chemically, it is a member of the class of compounds known as furanolactones Isolated from oranges and other citrus fruits (Citrus subspecies). Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.
Trifolirhizin
Maackiain O-beta-D-galactopyranoside is found in herbs and spices. Maackiain O-beta-D-galactopyranoside is isolated from Trifolium pratense (red clover). Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2]. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2].
beta-Glucogallin
beta-Glucogallin is found in green vegetables. beta-Glucogallin is isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus species. Isolated from various plants, e.g. Rheum officinale (Chinese rhubarb), Eucalyptus subspecies 1-Glucosyl gallate is found in tea and green vegetables.
delta-Amorphene
1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]
Quercimeritrin
Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].
Indoleacrylic acid
Indoleacrylic acid (CAS: 1204-06-4), also known as indoleacrylate, IA, and IAcrA, is a member of the class of compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of pyrrole ring fused to benzene to form 2,3-benzopyrrole. Indoleacrylic acid is practically insoluble (in water) and a weak acidic compound (based on its pKa). Within the cell, indoleacrylic acid is primarily located in the membrane (predicted from logP). Indoleacrylic acid is best known as a plant growth hormone (a natural auxin), whereas its biological role in animals is still unknown. A two-stage production of this compound is likely: intestinal microorganisms catabolize tryptophan to indole derivatives which are then absorbed and converted into indoleacrylic acid and its glycine conjugate, indolylacryloylglycine (IAcrGly). Indolylacryloylglycine excretion in urine is especially pronounced in some myopathies, namely in boys with Duchenne muscular dystrophy (PMID: 10707769). It has been recently found that indoleacrylic acid promotes intestinal epithelial barrier function and mitigates inflammatory responses. Stimulating indoleacrylic acid production could promote anti-inflammatory responses and have therapeutic benefits (PMID: 28704649). Urinary Indole-3-acrylate is produced by Clostridium sporogenes (PMID: 29168502). Indoleacrylic acid is also a metabolite of Peptostreptococcus (PMID: 28704649, 29168502). trans-3-Indoleacrylic acid is an endogenous metabolite.
Luteolin 7-galactoside
Luteolin 7-galactoside is found in fruits. Luteolin 7-galactoside is isolated from Capsella bursa-pastoris (shepherds purse). Isolated from Capsella bursa-pastoris (shepherds purse). Luteolin 7-galactoside is found in herbs and spices and fruits.
(2R,3Z)-Phycocyanobilin
pimaricin
(1R,4R,5S,9R,10S,13R)-5,9-Dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylic acid
Kaurenoic acid, also known as kaur-16-en-18-oic acid or kaurenoate, is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Kaurenoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Kaurenoic acid can be found in sunflower, which makes kaurenoic acid a potential biomarker for the consumption of this food product. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
Baciguent
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
Carmofur
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000970 - Antineoplastic Agents Carmofur (HCFU) is a rat recombinant acid ceramidase inhibitor with an IC50 of 29 nM. Carmofur is also a protease inhibitor of SARS-CoV-2 main protease (Mpro), fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA). Carmofur has anti-cancer, anti-inflammatory and anti-virus activities, and can be used for the study of COVID-19 and acute lung injury (ALI)[1][2][3].
Cefatriaxone
Gelsemin
Gelsemine, an alkaloid from the Chinese herb Gelsemium elegans, is effective in mitigating chronic pain. Antinociceptive effects. Gelsemine, an alkaloid from the Chinese herb Gelsemium elegans, is effective in mitigating chronic pain. Antinociceptive effects.
Geranylgeraniol diphosphate
5,8-Dihydroxy-1,4-naphthoquinone
D000970 - Antineoplastic Agents
Verbascoside
Indolelactic acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
DL-beta-Hydroxybutyric acid
(R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].
cis-Aconitic acid
(Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Kaurenoic_acid
Ent-kaur-16-en-19-oic acid is an ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. It has a role as an anti-HIV-1 agent, an antineoplastic agent and a plant metabolite. It is a conjugate acid of an ent-kaur-16-en-19-oate. Kaurenoic acid is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. An ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
Glabridin
Glabridin is a member of the class of hydroxyisoflavans that is (R)-isoflavan substituted by hydroxy groups at positions 2 and 4 and a 2,2-dimethyl-2H-pyran group across positions 7 and 8 respectively. It has a role as an antiplasmodial drug. It derives from a hydride of a (R)-isoflavan. Glabridin is a natural product found in Ornithopus sativus, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). C26170 - Protective Agent > C275 - Antioxidant > C306 - Bioflavonoid Glabridin is a natural isoflavan from Glycyrrhiza uralensis, binds to and activates PPARγ, with an EC50 of 6115 nM. Glabridin exhibits antioxidant, anti-bacterial, anti-nephritic, anti-diabetic, anti-fungal, antitumor, anti-inflammatory, antiosteoporotic, cardiovascular protective, neuroprotective and radical scavenging activities[1][2]. Glabridin is a natural isoflavan from Glycyrrhiza uralensis, binds to and activates PPARγ, with an EC50 of 6115 nM. Glabridin exhibits antioxidant, anti-bacterial, anti-nephritic, anti-diabetic, anti-fungal, antitumor, anti-inflammatory, antiosteoporotic, cardiovascular protective, neuroprotective and radical scavenging activities[1][2]. Glabridin is a natural isoflavan from Glycyrrhiza uralensis, binds to and activates PPARγ, with an EC50 of 6115 nM. Glabridin exhibits antioxidant, anti-bacterial, anti-nephritic, anti-diabetic, anti-fungal, antitumor, anti-inflammatory, antiosteoporotic, cardiovascular protective, neuroprotective and radical scavenging activities[1][2].
Geniposidic_acid
Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Ginkgolide J
ginkgolide-J is a natural product found in Ginkgo biloba with data available. See also: Ginkgo (part of). Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2]. Ginkgolide J is a main constituent of the non-flavone fraction of Ginkgo biloba with an IC50 range of 12-54 μM, has neuroprotective and anti neuronal apoptotic ability[1][2].
Ononin
Ononin is a 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of 4-methoxyisoflavones and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a formononetin. Ononin is a natural product found in Cicer chorassanicum, Thermopsis lanceolata, and other organisms with data available. See also: Astragalus propinquus root (part of). A 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.
trifolrhizin
Trifolirhizin is a member of pterocarpans. Trifolirhizin is a natural product found in Sophora alopecuroides, Ononis arvensis, and other organisms with data available. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2]. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2].
Quercimeritrin
Quercetin 7-O-beta-D-glucoside is a quercetin O-glucoside in which a glucosyl residue is attached at position 7 of quercetin via a beta-glycosidic linkage. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of flavonols, a tetrahydroxyflavone and a quercetin O-glucoside. Quercimeritrin is a natural product found in Salix atrocinerea, Dendroviguiera sphaerocephala, and other organisms with data available. See also: Chamomile (part of). Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].
UsnicAcid
(-)-usnic acid is the (-)-enantiomer of usnic acid. It has a role as an EC 1.13.11.27 (4-hydroxyphenylpyruvate dioxygenase) inhibitor. It is a conjugate acid of a (-)-usnic acid(2-). It is an enantiomer of a (+)-usnic acid. Usnic acid is a furandione found uniquely in lichen that is used widely in cosmetics, deodorants, toothpaste and medicinal creams as well as some herbal products. Taken orally, usnic acid can be toxic and has been linked to instances of clinically apparent, acute liver injury. (-)-Usnic acid is a natural product found in Dactylina arctica, Evernia divaricata, and other organisms with data available. The (-)-enantiomer of usnic acid. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2].
trans-Piceid
Trans-piceid is a stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, a potassium channel modulator, an anti-arrhythmia drug, a hepatoprotective agent, an antioxidant, a nephroprotective agent and a geroprotector. It is a stilbenoid, a polyphenol, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-resveratrol. Polydatin, or Piceid, is a natural precursor and glycoside form of resveratrol with a monocrystalline structure. While it is isolated from the bark of *Picea sitchensis* or *Polygonum cuspidatum*, polydatin may be detected in grape, peanut, hop cones, red wines, hop pellets, cocoa-containing products, chocolate products and many daily diets. Polydatin possesses anti-inflammatory, immunoregulatory, anti-oxidative and anti-tumor activities. It is shown to mediate a cytotoxic action on colorectal cancer cells by inducing cell arrest and apoptosis. Polydatin is a natural product found in Vitis rupestris, Vitis labrusca, and other organisms with data available. trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices A stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.
Irisflorentin
Irisflorentin, a naturally occurring isoflavone, is an abundant active constituent in Belamcanda chinensis. Irisflorentin markedly reduces the transcriptional and translational levels of inducible nitric oxide synthase (iNOS) as well as the production of NO. Anti-inflammatory activity[1]. Irisflorentin, a naturally occurring isoflavone, is an abundant active constituent in Belamcanda chinensis. Irisflorentin markedly reduces the transcriptional and translational levels of inducible nitric oxide synthase (iNOS) as well as the production of NO. Anti-inflammatory activity[1].
4-hydroxyproline
A monohydroxyproline where the hydroxy group is located at the 4-position. It is found in fibrillar collagen. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; PMMYEEVYMWASQN_STSL_0115_4-Hydroxyproline_8000fmol_180430_S2_LC02_MS02_67; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. cis-4-Hydroxy-L-proline, a proline analogue, is an inhibitor of collagen production. cis-4-Hydroxy-L-proline could inhibit fibroblast growth by preventing the deposition of triple-helical collagen on the cell layer. cis-4-Hydroxy-L-proline also depresses the growth of primary N-nitrosomethylurea-induced rat mammary tumors[1][2][3][4]. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.
3-Aminopropanenitrile
C471 - Enzyme Inhibitor β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].
Neoastilbin
Neoastilbin is a flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a monosaccharide derivative, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to a (-)-taxifolin. It is an enantiomer of an astilbin. Neoastilbin is a natural product found in Neolitsea sericea, Dimorphandra mollis, and other organisms with data available. A flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Neosmitilbin is?isolated from?Garcinia?mangostana. Neosmitilbin is?isolated from?Garcinia?mangostana.
ononin
Origin: Plant; Formula(Parent): C22H22O9; Bottle Name:Ononin; PRIME Parent Name:Formononetin-7-O-glucoside; PRIME in-house No.:S0305, Pyrans Annotation level-1 Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.
Glycyrol
Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2]. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2].
Homoeriodictyol
Homoeriodictyol is a trihydroxyflavanone that consists of 3-methoxyflavanone in which the three hydroxy substituents are located at positions 4, 5, and 7. It has a role as a metabolite and a flavouring agent. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-methoxyflavanones and a member of 4-hydroxyflavanones. It is functionally related to an eriodictyol. Homoeriodictyol is a natural product found in Smilax corbularia, Limonium aureum, and other organisms with data available. A trihydroxyflavanone that consists of 3-methoxyflavanone in which the three hydroxy substituents are located at positions 4, 5, and 7. Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1]. Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1].
Lespedin
Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.
Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). A flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.697 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.694 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.693 Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].
Mesaconic acid
A dicarboxylic acid consisting of fumaric acid having a methyl substituent at the 2-position. D003879 - Dermatologic Agents
L(-)-Carvone
A p-menthane monoterpenoid that consists of cyclohex-2-enone having methyl and isopropenyl substituents at positions 2 and 5, respectively. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2]. (-)-Carvone is an insect neurotoxin and a irreversible acetylcholinesterase (AChE) inhibitor. (-)-Carvone can be used as a bird repellent, inhibits larval growth, decreases pupatation rate, and increases mortality of larvae[1][2].
7,8-Dihydroxyflavone
7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].
alpha-muricholic acid
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids [Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz; In-suorce decay
Thujone
α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].
Menthone
P-menthan-3-one is a p-menthane monoterpenoid that is p-menthane substituted by an oxo group at position 3. It has a role as a plant metabolite and a volatile oil component. p-Menthan-3-one is a natural product found in Citrus hystrix, Mentha aquatica, and other organisms with data available. The trans-stereoisomer of p-menthan-3-one. Flavouring compound [Flavornet] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\\% and 94.92\\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\% and 94.92\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\% and 94.92\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\% and 94.92\\\%. [2] Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2]. Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2].
Daphnoretin
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2]. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2].
Neoxanthin
9-cis-neoxanthin is a neoxanthin in which all of the double bonds have trans geometry except for that at the 9 position, which is cis. It is a 9-cis-epoxycarotenoid and a neoxanthin. Neoxanthin is a natural product found in Hibiscus syriacus, Cladonia rangiferina, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Gelsemine
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2295 Annotation level-1 Gelsemine, an alkaloid from the Chinese herb Gelsemium elegans, is effective in mitigating chronic pain. Antinociceptive effects. Gelsemine, an alkaloid from the Chinese herb Gelsemium elegans, is effective in mitigating chronic pain. Antinociceptive effects.
Obacunone
Obacunone is a limonoid. Obacunone is a natural product found in Limonia acidissima, Citrus latipes, and other organisms with data available. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1]. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1].
Isomangiferin
Isomangiferin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7 and a 1,5-anhydro-D-glucitol moiety at position 1. It has a role as an anti-HSV-1 agent and a plant metabolite. It is a member of xanthones, a C-glycosyl compound and a polyphenol. Isomangiferin is a natural product found in Cystopteris moupinensis, Cystopteris montana, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7 and a 1,5-anhydro-D-glucitol moiety at position 1. Isomangiferin, a natural product, is reported to have antiviral activity. Isomangiferin, a natural product, is reported to have antiviral activity.
Lupenone
Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
Soyasaponin II
Allocryptopine
Allocryptopine is a dibenzazecine alkaloid, an organic heterotetracyclic compound, a tertiary amino compound, a cyclic ketone, a cyclic acetal and an aromatic ether. Allocryptopine is a natural product found in Zanthoxylum beecheyanum, Berberis integerrima, and other organisms with data available. See also: Sanguinaria canadensis root (part of). IPB_RECORD: 788; CONFIDENCE confident structure Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2]. Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].
alpha-Cadinol
A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.
Limonin
Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.
Euxanthone
Euxanthone is a member of the class of xanthones that is 9H-xanthene substituted by hydroxy group at positions 1 and 7 and an oxo group at position 9. It has been isolated from Cratoxylum cochinchinense. It has a role as a plant metabolite and a metabolite. It is a member of xanthones and a member of phenols. Euxanthone is a natural product found in Garcinia oblongifolia, Hypericum scabrum, and other organisms with data available. A member of the class of xanthones that is 9H-xanthene substituted by hydroxy group at positions 1 and 7 and an oxo group at position 9. It has been isolated from Cratoxylum cochinchinense. Occurs in Mammea americana (mamey), Platonia insignis (bakuri) and Mangifera indica (mango). Euxanthone is found in fruits and mammee apple. Euxanthone is found in fruits. Euxanthone occurs in Mammea americana (mamey), Platonia insignis (bakuri) and Mangifera indica (mango
75O1TFF47Z
Phyllanthin is a lignan. Phyllanthin is a natural product found in Phyllanthus debilis, Phyllanthus amarus, and other organisms with data available. See also: Phyllanthus amarus top (part of). Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1]. Phyllanthin is a major bioactive lignan component of Phyllanthus amarus. Phyllanthin exhibits high antioxidative and hepatoprotective properties[1].
alpha-Terpineol acetate
alpha-Terpineol acetate, also known as a-terpineol acetic acid or p-menth-1-en-8-yl acetate, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpineol acetate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Alpha-Terpinyl acetate is a p-menthane monoterpenoid. alpha-Terpinyl acetate is a natural product found in Xylopia sericea, Elettaria cardamomum, and other organisms with data available. Terpinyl acetate is a metabolite found in or produced by Saccharomyces cerevisiae. α-Terpinyl acetate is a monoterpene ester isolated from Laurus nobilis L. essential oil. α-Terpinyl acetate is a competitive P450 2B6 substrate which binding to the active site of P450 2B6 with a Kd value of 5.4?μM[1][2]. α-Terpinyl acetate is a monoterpene ester isolated from Laurus nobilis L. essential oil. α-Terpinyl acetate is a competitive P450 2B6 substrate which binding to the active site of P450 2B6 with a Kd value of 5.4?μM[1][2].
Vestitol
The S-enantiomer of vestitol. Vestitol is a member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity. It has a role as an anti-inflammatory agent, a plant metabolite and a phytoalexin. It is an aromatic ether, a member of hydroxyisoflavans and a methoxyisoflavan. Vestitol is a natural product found in Lotus japonicus, Medicago rugosa, and other organisms with data available. A member of the class of hydroxyisoflavans that is isoflavan substituted by hydroxy groups at positions 7 and 2 and a methoxy group at position 4. Isolated from Glycyrrhiza uralensis, it exhibits anti-inflammatory activity.
Bisphenol_F
Bisphenol F is a bisphenol that is methane in which two of the hydrogens have been replaced by 4-hydroxyphenyl groups. It has a role as an environmental food contaminant and a xenoestrogen. It is a diarylmethane and a bisphenol. 4,4-Methylenediphenol is a natural product found in Galeola faberi, Xanthium strumarium, and other organisms with data available. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1]. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1].
cetirizine
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Cetirizine is a medication used for the treatment of allergies, hay fever, angioedema, and hives. It is a second-generation H1-receptor antagonist antihistamine and works by blocking H1 histamine receptors. It is a major metabolite of hydroxyzine, and has the same basic side effects, including dry mouth.; A potent second-generation histamine H1 antagonist that is effective in the treatment of allergic rhinitis, chronic urticaria, and pollen-induced asthma. Unlike many traditional antihistamines, it does not cause drowsiness or anticholinergic side effects.; Cetirizine hydrochloride is a medication used for the treatment of allergies, hay fever, angioedema, and hives. It is a second-generation H1-receptor antagonist antihistamine and works by blocking H1 histamine receptors. It is a major metabolite of hydroxyzine, and has the same basic side effects, including dry mouth. [HMDB] CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4258; ORIGINAL_PRECURSOR_SCAN_NO 4255 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4282; ORIGINAL_PRECURSOR_SCAN_NO 4280 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4227; ORIGINAL_PRECURSOR_SCAN_NO 4225 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4253; ORIGINAL_PRECURSOR_SCAN_NO 4251 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4259; ORIGINAL_PRECURSOR_SCAN_NO 4258 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4253; ORIGINAL_PRECURSOR_SCAN_NO 4250 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8478; ORIGINAL_PRECURSOR_SCAN_NO 8477 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8516; ORIGINAL_PRECURSOR_SCAN_NO 8514 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8525; ORIGINAL_PRECURSOR_SCAN_NO 8524 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8560; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8566; ORIGINAL_PRECURSOR_SCAN_NO 8564 CONFIDENCE standard compound; INTERNAL_ID 535; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8574; ORIGINAL_PRECURSOR_SCAN_NO 8573 CONFIDENCE standard compound; INTERNAL_ID 2124 CONFIDENCE standard compound; INTERNAL_ID 8582 CONFIDENCE standard compound; INTERNAL_ID 4110 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2772 Cetirizine, a second-generation antihistamine and the carboxylated metabolite of hydroxyzine, is a specific, orally active and long-acting histamine H1-receptor antagonist. Cetirizine marks antiallergic properties and inhibits eosinophil chemotaxis during the allergic response[1][2][3]. Levocetirizine ((R)-Cetirizine) is a third-generation peripheral H1-receptor antagonist. Levocetirizine is an antihistaminic agent which is the R-enantiomer of Cetirizine. Levocetirizine has a higher affinity for the histamine H1-receptor than (S)-Cetirizine and can effectively treat allergic rhinitis and chronic idiopathic urticaria[1].
Flusilazole
D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 97
Methoxyfenozide
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2935 EAWAG_UCHEM_ID 2935; CONFIDENCE standard compound
Paclobutrazol
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3705
BISOPROLOL
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE Reference Standard (Level 1)
Protopine
Annotation level-1 D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.601 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.596 IPB_RECORD: 1441; CONFIDENCE confident structure Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].
Salsolinol
Salsolinol is an endogenous catechol isoquinoline detected in humans. Salsolinol was detected in urine of parkinsonian patients administered with L-DOPA. This finding stimulated the studies on Salsolinol derivatives in the brain, and gave new aspects of the endogenous alkaloids, which had been considered to occur only in plants. In normal non-alcoholic subjects and alcoholics, Salsolinol and O-methylated Salsolinol were found in urine, cerebrospinal fluid and brains. Salsolinol has an asymmetric center at first position and exists as (R)- and (S)enantiomer. The (R)enantiomer of Salsolinol is predominant in urine from healthy volunteers. Only the (R)enantiomers of Salsolinol and N-methylated Salsolinol occur in the human brain, cerebrospinal fluid (CSF) and intraventricular fluid (IVF), and the (S)enantiomers were not detected. (R)salsolinol synthase catalyzes the enantio-selective synthesis of (R)Salsolinol and 1-carboxyl(R)Salsolinol from dopamine with acetaldehyde or pyruvic acid. The N-methylation of (R)salsolinol into N-methylsalsolinol (NMSal) is catalyzed by two N-methyltransferases with different optimum pH, at pH 7.0 and 8.4. NM(R)Salsolinol is enzymatically oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion (DMDHIQ+) by an oxidase sensitive to semicarbaside and also non-enzymatically by autoxidation. NM(R)Salsolinol and its precursor, dopamine, were found to occur selectively in the nigro-striatum, whereas (R)Salsolinol distributes uniformly among the brain regions. (PMID 14697894) [HMDB]. Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1521; CONFIDENCE confident structure
Sinapine
Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2601; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
Kaempferol-3-rutinoside
Kaempferol 3-rhamno-glucoside, also known as nicotiflorin or kaempferol 3-rutinoside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-rhamno-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-rhamno-glucoside can be found in ginkgo nuts and tea, which makes kaempferol 3-rhamno-glucoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects. Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Carthamus tinctorius. Nicotiflorin shows potent antiglycation activity and neuroprotection effects.
alpha-Hydroxyisobutyric acid
A 2-hydroxy monocarboxylic acid that is isobutyric acid bearing a hydroxy substituent at position 2. It is a metabolite of methyl tertiary-butyl ether. Acquisition and generation of the data is financially supported in part by CREST/JST. 2-Hydroxyisobutyric acid is an endogenous metabolite.
Diphenoxylate
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals
Geniposidic acid
Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Atractylenolide III
Annotation level-1 Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
Morin
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].
Skimmianine
Origin: Plant; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.048 Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
Sclareol
Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). A labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.468 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.471 Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].
Dehydrocholic acid
Dehydrocholic acid is a synthetic bile acid, manufactured by the oxidation of cholic acid. It acts as a hydrocholeretic, increasing bile output to clear increased bile acid load. 3,7,12-trioxo-5beta-cholanic acid is an oxo-5beta-cholanic acid in which three oxo substituents are located at positions 3, 7 and 12 on the cholanic acid skeleton. It has a role as a gastrointestinal drug. It is an oxo-5beta-cholanic acid, a 7-oxo steroid, a 12-oxo steroid and a 3-oxo-5beta-steroid. It is a conjugate acid of a 3,7,12-trioxo-5beta-cholan-24-oate. Dehydrocholic acid is a synthetic bile acid that was prepared from the oxidation of cholic acid with chromic acid. It has been used for stimulation of biliary lipid secretion. The use of dehydrocholic acid in over-the-counter products has been discontinued by Health Canada.
felbamate
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics Felbamate (W-554) is a potent nonsedative anticonvulsant whose clinical effect may be related to the inhibition of N-methyl-D-aspartate (NMDA).
Poncirin
(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. A flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].
Homocarnosine
A histidine derivative that is histidine in which one of the hydrogens attached to the alpha-amino group has been replaced by a 4-aminobutanoyl group.
cis-Aconitic acid
The cis-isomer of aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Ginsenoside Rf
Constituent of Panax ginseng (ginseng). The first pure ginseng constituent to show nearly all the activities of the plant extract. Ginsenoside Rf is found in tea. Annotation level-1 Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel.
Miltiron
Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1].
Anserine
A dipeptide comprising of beta-alanine and 3-methyl-L-histidine units. C26170 - Protective Agent > C275 - Antioxidant Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2]. Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2].
ISOVALERIC ACID
A C5, branched-chain saturated fatty acid. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human.
Phenylacetylglycine
A N-acylglycine that is glycine substituted on nitrogen with a phenylacetyl group. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].
picolinic acid
A pyridinemonocarboxylic acid in which the carboxy group is located at position 2. It is an intermediate in the metabolism of tryptophan. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Picolinic acid (PCL 016) is a topical antiviral agent, which inhibits adenovirus replication in rabbits.
clofazimine
J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04B - Drugs for treatment of lepra > J04BA - Drugs for treatment of lepra D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
FLUPERLAPINE
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist
penciclovir
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent Penciclovir (VSA 671) is a potent and selective anti-herpesvirus agent with EC50 values of 0.5, 0.8 μg/ml for HSV-1 (HFEM), HSV-2 (MS), respectively. Penciclovir shows anti-herpesvirus activity with no-toxic. Penciclovir preventes mortality in mouse[1][2].
terazosin
G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents
10-Hydroxydecanoic acid
10-Hydroxydecanoic acid (NSC 15139) is a saturated fatty acid of 10-hydroxy-trans-2-decenoic acid from royal jelly, with anti-inflammatory activity[1].
piceid
Origin: Plant, Glucosides, Stilbenes (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.
Octanal
A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents Octanal is an aromatic aldehyde, with antioxidant and antimicrobial activities. Octanal shows cytotoxicity against Hela cells[1]. Octanal is an aromatic aldehyde, with antioxidant and antimicrobial activities. Octanal shows cytotoxicity against Hela cells[1].
cannabinol
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
Sultopride
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AL - Benzamides C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Same as: D08549
Levomepromazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics Levomepromazine (Methotrimeprazine) is an orally available neuroleptic agent, which is commonly used to relieve nausea and vomiting in palliative care settings. Levomepromazine has antagonist actions at multiple neurotransmitter receptor sites, including dopaminergic, cholinergic, serotonin and histamine receptors[1].
Purpurin
D004396 - Coloring Agents Origin: Plant, Organic chemicals, Polycyclic compounds, Anthracenes Purpurin is a natural anthraquinone compound from Rubia cordifolia L.. Purpurin has antidepressant-like effects[1]. Purpurin is a natural anthraquinone compound from Rubia cordifolia L.. Purpurin has antidepressant-like effects[1].
Fagarine I
Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Morphine alkaloids, Cryptopine alkaloids Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2]. Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].
Vincamin
C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2327 Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2]. Vincamine?is a monoterpenoid indole alkaloid extracted from the?Madagascar periwinkle. Vincamine?is a peripheral?vasodilator?and exerts a selective vasoregulator action on the brain microcapilar circulation[1]. Vincamine?is a?GPR40?agonist and acts as a β-cell protector by ameliorating β-cell dysfunction and promoting glucose-stimulated insulin secretion (GSIS).?Vincamine?improves glucose homeostasis?in vivo, and has the potential for the type 2 diabetes mellitus (T2DM) research[2].
flufenamic acid
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AG - Fenamates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5428; ORIGINAL_PRECURSOR_SCAN_NO 5423 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5418; ORIGINAL_PRECURSOR_SCAN_NO 5416 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5457; ORIGINAL_PRECURSOR_SCAN_NO 5455 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5442; ORIGINAL_PRECURSOR_SCAN_NO 5441 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5524; ORIGINAL_PRECURSOR_SCAN_NO 5519 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5447; ORIGINAL_PRECURSOR_SCAN_NO 5445 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9133; ORIGINAL_PRECURSOR_SCAN_NO 9128 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9153; ORIGINAL_PRECURSOR_SCAN_NO 9148 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9175; ORIGINAL_PRECURSOR_SCAN_NO 9171 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9182; ORIGINAL_PRECURSOR_SCAN_NO 9178 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9162; ORIGINAL_PRECURSOR_SCAN_NO 9160 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9196; ORIGINAL_PRECURSOR_SCAN_NO 9192 Flufenamic acid is a non-steroidal anti-inflammatory agent, inhibits cyclooxygenase (COX), activates AMPK, and also modulates ion channels, blocking chloride channels and L-type Ca2+ channels, modulating non-selective cation channels (NSC), activating K+ channels. Flufenamic acid binds to the central pocket of TEAD2 YBD and inhibits both TEAD function and TEAD-YAP-dependent processes, such as cell migration and proliferation.
chloroxylenol
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D004202 - Disinfectants Same as: D03473 CONFIDENCE standard compound; INTERNAL_ID 1207; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4542; ORIGINAL_PRECURSOR_SCAN_NO 4540 CONFIDENCE standard compound; INTERNAL_ID 1207; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4530; ORIGINAL_PRECURSOR_SCAN_NO 4528 CONFIDENCE standard compound; INTERNAL_ID 1207; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4525; ORIGINAL_PRECURSOR_SCAN_NO 4524 CONFIDENCE standard compound; INTERNAL_ID 1207; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4540; ORIGINAL_PRECURSOR_SCAN_NO 4537 CONFIDENCE standard compound; INTERNAL_ID 1207; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4552; ORIGINAL_PRECURSOR_SCAN_NO 4548
N-Acetyl-D-tryptophan
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
euphol
Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1].
Desmesterol
A cholestanoid that is cholesta-5,24-diene substituted by a beta-hydroxy group at position 3. It is an intermediate metabolite obtained during the synthesis of cholesterol. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].
Tebufenpyrad
N-Acetyl-DL-tryptophan
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite.
Kdo2-lipid A
Maackiain
Widespread in the Leguminosae subfamily. Constituent of Trifolium pratense (red clover). (-)-Maackiain is found in many foods, some of which are nectarine, chickpea, alaska blueberry, and adzuki bean. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].
Rocuronium
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist
FA 20:5;O2
An oxylipin that is the (5S,6S)-epoxy-(15S)-hydroxy derivative of 7E,9E,11Z,13E-icosa-7,9,11,13-tetraenoic acid. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
lipoxin B4
A C20 hydroxy fatty acid having (5S)-, (14R)- and (15S)-hydroxy groups as well as (6E)- (8Z)-, (10E)- and (12E)-double bonds. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
ST 24:1;O5
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids β-Muricholic acid is a potent and orally active biliary cholesterol-desaturating agent. β-Muricholic acid prevents cholesterol gallstones. β-Muricholic acid inhibits lipid accumulation. β-Muricholic acid has the potential for the research of nonalcoholic fatty liver disease (NAFLD)[1][2].
(+)-DELTA-CADINENE
A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,8aR-enantiomer).
Cyanin
An anthocyanin cation that is cyanidin(1+) carrying two beta-D-glucosyl residues at positions 3 and 5.
Theasinensin A
A biflavonoid that is obtained by coupling of two molecules of (-)-epigallocatechin 3-gallate resulting in a bond between positions C-2 of the hydroxyphenyl ring. It is a natural product found in oolong tea.
Ethidium
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D004396 - Coloring Agents > D005456 - Fluorescent Dyes D004791 - Enzyme Inhibitors
4-Isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-octahydro-1-naphthalenol
Tricaprilin
D010592 - Pharmaceutic Aids > D014677 - Pharmaceutical Vehicles > D005079 - Excipients Same as: D01587 Tricaprilin (Trioctanoin) is used in study for patients with mild to moderate Alzheimer's disease and has a role as an anticonvulsant and a plant metabolite[1][2].
DL-Aspartic Acid
3,6-hexahydroxydiphenoylglucose is a member of the class of compounds known as hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. 3,6-hexahydroxydiphenoylglucose is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,6-hexahydroxydiphenoylglucose can be found in pomegranate, which makes 3,6-hexahydroxydiphenoylglucose a potential biomarker for the consumption of this food product. Constituent of Allium chinense (rakkyo). Gitogenin 3-[glucosyl-(1->2)-glucosyl-(1->4)-galactoside] is found in onion-family vegetables. Pigment from Phytolacca americana (pokeberry). 15-Epibetanidin 5-[E-feruloyl-(->3)-apiosyl-(1->2)-glucoside] is found in fruits. Isolated from sugar cane leaves (Saccharum officinarum) Constituent of the famine food Physalis angulata (cutleaf ground cherry). 24,25-Epoxywithanolide D is found in herbs and spices and fruits. Isolated from Melilotus alba (white melilot). cis-o-Coumaric acid 2-glucoside is found in herbs and spices and pulses. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids
mequitazine
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist Same as: D01324 Mequitazine is a potent, and long-acting histamine H1 antagonist.
GW0742
GW0742 is a potent PPARβ and PPARδ agonist, with an IC50 of 1 nM for human PPARδ in binding assay, and EC50s of 1 nM, 1.1 μM and 2 μM for human PPARδ, PPARα, and PPARγ, respectively.
3-Hydroxyflavanone
The simplest member of the class of dihydroflavonols that is flavanone with a hydroxy substituent at the 3-position. A monohydroxyflavanone in which the hydroxy group is located at position 3.
473-15-4
Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].
atractylenolideII
Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2]. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].
Atractylenolide-III
Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.
446-71-9
Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1]. Homoeriodictyol is a flavonoid metabolite of Eriocitrin in plasma and urine. Eriocitrin is a strong antioxidant agent[1].
Gentianine
Gentianine is a pyranopyridine, a lactone and a pyridine alkaloid. Gentianine is a natural product found in Strychnos angolensis, Strychnos xantha, and other organisms with data available. See also: Fenugreek seed (part of); Centaurium erythraea whole (part of).
67-47-0
5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors. 5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors.
Terpilene
α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].
Jerva acid
Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2]. Chelidonic acid is a component of Chelidonium majus L., used as an antimicrobial. Chelidonic acid also shows anti-inflammatory activity. Chelidonic acid has potential to inhibit IL-6 production by blocking NF-κB and caspase-1[1]. Chelidonic acid is a glutamate decarboxylase inhibitor, with a Ki of 1.2 μM[2].
CHEBI:19809
LS-2530
2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].
I6783_SIGMA
D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.
Perlolyrine
Paradol
Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site. Paradol is a pungent phenolic substance found in ginger and other Zingiberaceae plants. Paradol is an effective inhibitor of tumor promotion in mouse skin carcinogenesis, binds to cyclooxygenase (COX)-2 active site.
dictamine
Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities. Dictamnine (Dictamine) exhibits cytotoxicity to human cervical and colon cancer cells and also has antibacterial and antifungal activities.
Skimmianin
Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].
LS-2386
Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human. Isovaleric acid is a natural fatty acid and known to effect on neonatal death and possible Jamaican vomiting sickness in human.
Eskel
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2]. Khellin is a furochromone that can be isolated from Ammi visnuga L.. Khellin is an EGFR inhibitor with an IC50 of 0.15 μM. Khelline has anti-proliferative activity in vitro. Khellin has antispasmodic and coronary vasodilator effects[1][2].
likviritin
Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
Cornin
Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2]. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2].
29307-60-6
Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities. Genipin 1-β-D-gentiobioside (Genipin 1-gentiobioside) is one of the most abundant and bioactive iridoid glycosides in Gardenia jasminoides Ellis, which possesses hepatoprotective, anti-inflammatory, antioxidant, and antithrombotic activities.
Monotropein
Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
CHEBI:28113
Thymelol
Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2]. Daphnoretin (Dephnoretin), isolated from Wikstroemia indica, possesses antiviral activity[1]. Daphnoretin likes PMA, may direct activation of protein kinase C which in turn activated NADPH oxidase and elicited respiratory burst[2].
Tulipane
D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].
Verbenalin
Verbenalin is a terpene glycoside. Verbenalin is a natural product found in Symplocos glauca, Cornus kousa, and other organisms with data available. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2]. Verbenalin is Verbena glycoside, with anti-inflammatory, anti-fungal anti-virus activities. Verbenalin can be used for the research of prostatitis. Verbenalin can reduce cerebral ischemia-reperfusion injury[1][2].
Saponin V
Chikusetsusaponin-V is a triterpenoid saponin. It has a role as a metabolite. Ginsenoside Ro is a natural product found in Panax vietnamensis, Bassia indica, and other organisms with data available. See also: Asian Ginseng (part of). A natural product found in Panax japonicus var. major. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS. Ginsenoside Ro (Polysciasaponin P3; Chikusetsusaponin 5; Chikusetsusaponin V) exhibits a Ca2+-antagonistic antiplatelet effect with an IC50 of 155 ?μM. Ginsenoside Ro reduces the production of TXA2 more than it reduces the activities of COX-1 and TXAS.
Sinapine
Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. An acylcholine in which the acyl group specified is sinapoyl. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
Monotropein
Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). An iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
canthinone
Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. An indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].
chrysoplenol D
3,4,5-trihydroxy-3,6,7-trimethoxyflavone is a trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. It has a role as an antineoplastic agent and a metabolite. It is a trihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetagetin. Chrysosplenol D is a natural product found in Psiadia viscosa, Chrysosplenium oppositifolium, and other organisms with data available. See also: Vitex negundo fruit (part of). A trimethoxyflavone that is the 3,6,7-trimethyl ether derivative of quercetagetin. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4]. Chrysosplenol D is a methoxy flavonoid that induces ERK1/2-mediated apoptosis in triple negative human breast cancer cells. Chrysosplenol D also exhibits anti-inflammatory and moderate antitrypanosomal activities[1][2][3][4].
Tulipalin_A
Alpha-methylene gamma-butyrolactone is a butan-4-olide having a methylene group at the 3-position. It has a role as a gastrointestinal drug and an anti-ulcer drug. alpha-Methylene-gamma-butyrolactone is a natural product found in Tulipa agenensis, Tulipa humilis, and other organisms with data available. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].
Caprolactam
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
trans-1,3-Dichloropropene
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
DIBUTYL SUCCINATE
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
5-Cytidylic acid
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].
Methyl allyl disulfide
An organic disulfide having allyl and methyl as the two organic groups.
(R)-3-Hydroxybutyric acid
The R-enantiomer of 3-hydroxybutyric acid. Involved in the synthesis and degradation of ketone bodies, it can be used as an energy source by the brain during hypoglycaemia, and for the synthesis of biodegradable plastics. It is a sex pheremone in the European spider Linyphia triangularis. (R)-3-Hydroxybutanoic acid is a metabolite, and converted from acetoacetic acid catalyzed by 3-hydroxybutyrate dehydrogenase. (R)-3-Hydroxybutanoic acid has applications as a nutrition source and as a precursor for vitamins, antibiotics and pheromones[1][2].
Zanamivir
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors
Mometasone
D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XC - Corticosteroids, potent, other combinations R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents D003879 - Dermatologic Agents
Indole-3-lactic Acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
Taurolithocholic acid 3-sulfate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
Pimafucin
A macrolide antibiotic that has formula C33H47NO13, produced by several Streptomyces species including Streptomyces natalensis. It exhibits broad spectrum antifungal activity and used in eye drops, and as a food preservative, and also as a postharvest biofungicide for citrus and other fruit crops. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].
Buformin
A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BA - Biguanides C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98234 - Biguanide Antidiabetic Agent D007004 - Hypoglycemic Agents > D001645 - Biguanides
delta-12-Prostaglandin J2
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
e-64
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
Tosyl-L-lysine chloromethyl ketone
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D009676 - Noxae > D000477 - Alkylating Agents > D000590 - Amino Acid Chloromethyl Ketones D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors
4-Methylhistamine
An aralkylamino compound that is histamine bearing a methyl substituent at the 5 position on the ring.
all-trans-neoxanthin
A neoxanthin in which all of the double bonds have trans geometry. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
(1R,3R,8R,12S,13R,17R,18E,20Z,24R,25S,26R)-12-hydroxy-17-[(1R)-1-hydroxyethyl]-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,18,20-triene-26,2-oxirane]-11,22-dione
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Grepafloxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors ATC code: J01MA11
Bacitracin A
A homodetic cyclic peptide consisting of (4R)-2-[(1S,2S)-1-amino-2-methylbutyl]-4,5-dihydro-1,3-thiazole-4-carboxylic acid attached head-to-tail to L-leucyl,D-glutamyl, L-lysyl, D-ornityl, L-isoleucyl, D-phenylalanyl, L-histidyl. D-aspartyl and L-asparaginyl residues coupled in sequence and cyclised by condensation of the side-chain amino group of the L-lysyl residue with the C-terminal carboxylic acid group. It is the major component of bacitracin. C254 - Anti-Infective Agent > C258 - Antibiotic > C295 - Bacitracin
GW 0742
GW0742 is a potent PPARβ and PPARδ agonist, with an IC50 of 1 nM for human PPARδ in binding assay, and EC50s of 1 nM, 1.1 μM and 2 μM for human PPARδ, PPARα, and PPARγ, respectively.
(9Z,11E,13S,15Z)-13-Hydroxyoctadeca-9,11,15-trienoic acid
phosalone
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Thiophanate-methyl
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D016573 - Agrochemicals D010575 - Pesticides