3-Aminopropionaldehyde (BioDeep_00000005908)

 

Secondary id: BioDeep_00001869163

human metabolite Endogenous


代谢物信息卡片


beta-Aminopropion aldehyde

化学式: C3H7NO (73.0528)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 17.57%

分子结构信息

SMILES: C(CN)C=O
InChI: InChI=1S/C3H7NO/c4-2-1-3-5/h3H,1-2,4H2

描述信息

3-aminopropionaldehyde is a member of the class of compounds known as alpha-hydrogen aldehydes. Alpha-hydrogen aldehydes are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-aminopropionaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-aminopropionaldehyde can be found in a number of food items such as lemon, natal plum, common wheat, and leek, which makes 3-aminopropionaldehyde a potential biomarker for the consumption of these food products. 3-aminopropionaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, 3-aminopropionaldehyde is involved in the beta-alanine metabolism. 3-aminopropionaldehyde is also involved in few metabolic disorders, which include carnosinuria, carnosinemia, gaba-transaminase deficiency, and ureidopropionase deficiency.
3-Aminopropanal is a reactive aldehyde that mediates progressive neuronal necrosis and glial apoptosis. (PMID 11943872). Increased activity of polyamine oxidase catabolizes polyamines (such as spermine, spermidine and putrescine) to produce 3-aminopropanal. (PMID 15246852).

同义名列表

5 个代谢物同义名

beta-Aminopropion aldehyde; Β-aminopropion aldehyde; b-Aminopropion aldehyde; 3-Aminopropionaldehyde; 3-Aminopropanal



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(8)

BioCyc(1)

PlantCyc(0)

代谢反应

121 个相关的代谢反应过程信息。

Reactome(101)

BioCyc(1)

WikiPathways(0)

Plant Reactome(4)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(15)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ALDH3A2, ALDH9A1, AOC3, CA3, CASP1, CAT, DDO, HADH, HPGDS, ODC1, PAOX, PTEN, SMOX
Endoplasmic reticulum membrane 1 ALDH3A2
Nucleus 2 PTEN, SMOX
cytosol 14 ACOX1, ACOX2, AGXT, ALDH3A2, ALDH9A1, CA3, CASP1, CAT, DDO, HPGDS, ODC1, PAOX, PTEN, SMOX
nucleoplasm 4 HADH, HPGDS, PTEN, SMOX
Cell membrane 2 AOC3, CASP1
Cytoplasmic side 1 ALDH3A2
Multi-pass membrane protein 1 ATP4A
cell surface 1 AOC3
Golgi apparatus 1 AOC3
mitochondrial inner membrane 1 HADH
Cytoplasm, cytosol 2 ALDH9A1, DDO
plasma membrane 4 AOC3, ATP4A, CASP1, PTEN
Membrane 5 ACOX1, ALDH3A2, AOC3, ATP4A, CAT
apical plasma membrane 2 ATP4A, PTEN
extracellular exosome 3 ALDH2, ALDH9A1, CAT
endoplasmic reticulum 1 AOC3
extracellular space 2 ATP4A, IL6
mitochondrion 4 ALDH2, ALDH9A1, CAT, HADH
protein-containing complex 2 CASP1, CAT
intracellular membrane-bounded organelle 6 ACOX2, AGXT, ALDH3A2, CAT, HPGDS, SMOX
Microsome membrane 1 ALDH3A2
postsynaptic density 1 PTEN
Secreted 1 IL6
extracellular region 3 CAT, IL6, PTEN
cytoplasmic side of plasma membrane 1 PTEN
Single-pass membrane protein 1 ALDH3A2
Mitochondrion matrix 2 ALDH2, HADH
mitochondrial matrix 3 ALDH2, CAT, HADH
nuclear membrane 1 SMOX
dendritic spine 1 PTEN
nucleolus 1 CASP1
Early endosome 1 AOC3
Single-pass type II membrane protein 1 AOC3
Apical cell membrane 1 ATP4A
Mitochondrion inner membrane 1 HADH
focal adhesion 1 CAT
microtubule 1 CASP1
mitochondrial nucleoid 1 HADH
Peroxisome 7 ACOX1, ACOX2, AGXT, ALDH3A2, CAT, DDO, PAOX
Peroxisome matrix 2 CAT, DDO
peroxisomal matrix 6 ACOX1, ACOX2, AGXT, CAT, DDO, PAOX
peroxisomal membrane 3 ACOX1, ALDH3A2, CAT
Cell projection, dendritic spine 1 PTEN
Nucleus, PML body 1 PTEN
PML body 1 PTEN
NLRP3 inflammasome complex 1 CASP1
Cell projection, neuron projection 1 PTEN
neuron projection 1 PTEN
cell projection 1 PTEN
microvillus 1 AOC3
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 1 IL6
Schmidt-Lanterman incisure 1 PTEN
mitochondrial fatty acid beta-oxidation multienzyme complex 1 HADH
AIM2 inflammasome complex 1 CASP1
canonical inflammasome complex 1 CASP1
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
myelin sheath adaxonal region 1 PTEN
[Isoform alpha]: Secreted 1 PTEN
potassium:proton exchanging ATPase complex 1 ATP4A
IPAF inflammasome complex 1 CASP1
NLRP1 inflammasome complex 1 CASP1
protease inhibitor complex 1 CASP1
[Isoform DDO-1]: Peroxisome matrix 1 DDO
[Isoform 3]: Peroxisome matrix 1 DDO


文献列表

  • Adel Zarei, Christopher P Trobacher, Barry J Shelp. NAD(+)-aminoaldehyde dehydrogenase candidates for 4-aminobutyrate (GABA) and β-alanine production during terminal oxidation of polyamines in apple fruit. FEBS letters. 2015 Sep; 589(19 Pt B):2695-700. doi: 10.1016/j.febslet.2015.08.005. [PMID: 26296314]
  • Jan Frömmel, Marek Šebela, Gabriel Demo, René Lenobel, Tomáš Pospíšil, Miroslav Soural, David Kopečný. N-acyl-ω-aminoaldehydes are efficient substrates of plant aminoaldehyde dehydrogenases. Amino acids. 2015 Jan; 47(1):175-87. doi: 10.1007/s00726-014-1853-5. [PMID: 25344796]
  • Jan Frömmel, Miroslav Soural, Martina Tylichová, David Kopečný, Gabriel Demo, Michaela Wimmerová, Marek Sebela. Plant aminoaldehyde dehydrogenases oxidize a wide range of nitrogenous heterocyclic aldehydes. Amino acids. 2012 Sep; 43(3):1189-202. doi: 10.1007/s00726-011-1174-x. [PMID: 22160258]
  • Ikumi Ishii, Yoshihiko Ikeguchi, Hiroshi Mano, Masahiro Wada, Anthony E Pegg, Akira Shirahata. Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells. Amino acids. 2012 Feb; 42(2-3):619-26. doi: 10.1007/s00726-011-1037-5. [PMID: 21809076]
  • Kuniyasu Soda. The mechanisms by which polyamines accelerate tumor spread. Journal of experimental & clinical cancer research : CR. 2011 Oct; 30(?):95. doi: 10.1186/1756-9966-30-95. [PMID: 21988863]
  • David Kopečný, Martina Tylichová, Jacques Snegaroff, Hana Popelková, Marek Šebela. Carboxylate and aromatic active-site residues are determinants of high-affinity binding of ω-aminoaldehydes to plant aminoaldehyde dehydrogenases. The FEBS journal. 2011 Sep; 278(17):3130-9. doi: 10.1111/j.1742-4658.2011.08239.x. [PMID: 21740525]
  • Tagnon D Missihoun, Jessica Schmitz, Rebecca Klug, Hans-Hubert Kirch, Dorothea Bartels. Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. Planta. 2011 Feb; 233(2):369-82. doi: 10.1007/s00425-010-1297-4. [PMID: 21053011]
  • Naim Stiti, Tagnon D Missihoun, Simeon O Kotchoni, Hans-Hubert Kirch, Dorothea Bartels. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis. Frontiers in plant science. 2011; 2(?):65. doi: 10.3389/fpls.2011.00065. [PMID: 22639603]
  • A F Aydin, C Küçükgergin, G Ozdemirler-Erata, N Koçak-Toker, M Uysal. The effect of carnosine treatment on prooxidant-antioxidant balance in liver, heart and brain tissues of male aged rats. Biogerontology. 2010 Feb; 11(1):103-9. doi: 10.1007/s10522-009-9232-4. [PMID: 19430956]
  • Takashi Fujiwara, Kazuya Hori, Keiko Ozaki, Yuka Yokota, Shiro Mitsuya, Tsuyoshi Ichiyanagi, Tasuku Hattori, Tetsuko Takabe. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiologia plantarum. 2008 Sep; 134(1):22-30. doi: 10.1111/j.1399-3054.2008.01122.x. [PMID: 18429940]
  • Saihua Chen, Yi Yang, Weiwei Shi, Qing Ji, Fei He, Ziding Zhang, Zhukuan Cheng, Xiangnong Liu, Mingliang Xu. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. The Plant cell. 2008 Jul; 20(7):1850-61. doi: 10.1105/tpc.108.058917. [PMID: 18599581]
  • Hideki Oishi, Masumi Ebina. Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia tenuifolia. Journal of plant physiology. 2005 Oct; 162(10):1077-86. doi: 10.1016/j.jplph.2005.01.020. [PMID: 16255165]
  • Jeyanthi Rebecca Livingstone, Toshiya Maruo, Izumi Yoshida, Yutaka Tarui, Kiyoo Hirooka, Yoshihiro Yamamoto, Nobuo Tsutui, Eiji Hirasawa. Purification and properties of betaine aldehyde dehydrogenase from Avena sativa. Journal of plant research. 2003 Apr; 116(2):133-40. doi: 10.1007/s10265-003-0077-7. [PMID: 12736784]
  • Giancarlo Aldini, Marina Carini, Giangiacomo Beretta, Silvia Bradamante, Roberto Maffei Facino. Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction?. Biochemical and biophysical research communications. 2002 Nov; 298(5):699-706. doi: 10.1016/s0006-291x(02)02545-7. [PMID: 12419310]
  • S Sharmin, K Sakata, K Kashiwagi, S Ueda, S Iwasaki, A Shirahata, K Igarashi. Polyamine cytotoxicity in the presence of bovine serum amine oxidase. Biochemical and biophysical research communications. 2001 Mar; 282(1):228-35. doi: 10.1006/bbrc.2001.4569. [PMID: 11263996]
  • Y Lee, L M Sayre. Reaffirmation that metabolism of polyamines by bovine plasma amine oxidase occurs strictly at the primary amino termini. The Journal of biological chemistry. 1998 Jul; 273(31):19490-4. doi: 10.1074/jbc.273.31.19490. [PMID: 9677370]
  • G Houen, K Bock, A L Jensen. HPLC and NMR investigation of the serum amine oxidase catalyzed oxidation of polyamines. Acta chemica Scandinavica (Copenhagen, Denmark : 1989). 1994 Jan; 48(1):52-60. doi: 10.3891/acta.chem.scand.48-0052. [PMID: 8130014]
  • G Quash, H Ripoll, L Gazzolo, A Doutheau, A Saba, J Gore. Malondialdehyde production from spermine by homogenates of normal and transformed cells. Biochimie. 1987 Feb; 69(2):101-8. doi: 10.1016/0300-9084(87)90241-0. [PMID: 3032285]