Artemisin (BioDeep_00000176228)

 

Secondary id: BioDeep_00000003757

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


4-hydroxy-3,5a,9-trimethyl-2H,3H,3aH,4H,5H,5aH,8H,9bH-naphtho[1,2-b]furan-2,8-dione

化学式: C15H18O4 (262.1205)
中文名称:
谱图信息: 最多检出来源 Escherichia coli(natural_products) 4.51%

分子结构信息

SMILES: CC1=C2C3OC(=O)C(C)C3C(O)CC2(C)C=CC1=O
InChI: InChI=1S/C15H18O4/c1-7-9(16)4-5-15(3)6-10(17)11-8(2)14(18)19-13(11)12(7)15/h4-5,8,10-11,13,17H,6H2,1-3H3

描述信息

D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

同义名列表

4 个代谢物同义名

4-hydroxy-3,5a,9-trimethyl-2H,3H,3aH,4H,5H,5aH,8H,9bH-naphtho[1,2-b]furan-2,8-dione; 4-Methoxy-2-fluorobenzylcyanide; Artemisin; Artemisin



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

33 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AHSP, ALB, BDNF, CYP2B6, GFAP, NLRP3, PML, RAD51, SPINT1
Peripheral membrane protein 2 CYP2B6, PML
Endoplasmic reticulum membrane 3 CD4, CYP2B6, PML
Nucleus 5 ALB, CREBZF, NLRP3, PML, RAD51
cytosol 7 ALB, CD28, GFAP, NLRP3, PML, RAD51, SLC22A16
dendrite 1 BDNF
centrosome 2 ALB, RAD51
nucleoplasm 3 CREBZF, PML, RAD51
RNA polymerase II transcription regulator complex 1 CREBZF
Cell membrane 6 CD28, CD4, CD69, SLC22A16, SPINT1, TNF
Cytoplasmic side 1 PML
Early endosome membrane 1 PML
Multi-pass membrane protein 1 SLC22A16
Golgi apparatus membrane 1 NLRP3
cell surface 2 CD28, TNF
Golgi apparatus 2 ALB, GDNF
Golgi membrane 1 NLRP3
neuronal cell body 1 TNF
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 1 NLRP3
plasma membrane 7 CD28, CD4, CD69, IFNLR1, SLC22A16, SPINT1, TNF
Membrane 5 BDNF, IFNLR1, NLRP3, SLC22A16, SPINT1
axon 1 BDNF
extracellular exosome 2 ALB, SPINT1
endoplasmic reticulum 2 ALB, NLRP3
extracellular space 5 ALB, BDNF, GDNF, SPINT1, TNF
perinuclear region of cytoplasm 2 BDNF, RAD51
mitochondrion 3 CREBZF, NLRP3, RAD51
protein-containing complex 3 ALB, CD69, RAD51
intracellular membrane-bounded organelle 1 CYP2B6
Microsome membrane 1 CYP2B6
Single-pass type I membrane protein 2 CD4, IFNLR1
Secreted 5 ALB, BDNF, GDNF, NLRP3, SPINT1
extracellular region 6 ALB, BDNF, GDNF, NLRP3, SPINT1, TNF
astrocyte end-foot 1 GFAP
Mitochondrion matrix 1 RAD51
mitochondrial matrix 1 RAD51
anchoring junction 1 ALB
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 RAD51
nuclear membrane 1 PML
external side of plasma membrane 4 CD28, CD4, CD69, TNF
nucleolus 2 PML, RAD51
Early endosome 1 CD4
recycling endosome 1 TNF
Single-pass type II membrane protein 2 CD69, TNF
Membrane raft 2 CD4, TNF
Nucleus, PML body 1 PML
PML body 2 PML, RAD51
intermediate filament 1 GFAP
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
ciliary basal body 1 ALB
chromatin 2 CREBZF, RAD51
cell projection 1 GFAP
phagocytic cup 1 TNF
Chromosome 1 RAD51
centriole 1 ALB
spindle pole 1 ALB
chromosome, telomeric region 2 PML, RAD51
nuclear chromosome 1 RAD51
blood microparticle 1 ALB
site of double-strand break 1 RAD51
Endomembrane system 1 NLRP3
microtubule organizing center 1 NLRP3
lateral element 1 RAD51
cell body 1 GFAP
intermediate filament cytoskeleton 1 GFAP
endoplasmic reticulum lumen 3 ALB, BDNF, CD4
nuclear matrix 1 PML
male germ cell nucleus 1 RAD51
platelet alpha granule lumen 1 ALB
immunological synapse 1 CD28
condensed nuclear chromosome 1 RAD51
clathrin-coated endocytic vesicle membrane 1 CD4
condensed chromosome 1 RAD51
cytoplasmic side of lysosomal membrane 1 GFAP
hemoglobin complex 1 AHSP
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 CD4
presynaptic intermediate filament cytoskeleton 1 RAD51
[Isoform 3]: Cell surface 1 CD28
protein complex involved in cell adhesion 1 CD28
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
nuclear ubiquitin ligase complex 1 RAD51
ciliary transition fiber 1 ALB
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Meng-Yue Wang, Hui-Hua Wan, Li Xiang, Yu-Ting Pu, Qing-Gang Yin, Ran-Ran Gao, Yu-Hua Shi, Lan Wu. [Simultaneous determination of seven artemisinin-related compounds in Artemisia annua by UPLC-QQQ-MS/MS]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2024 Mar; 49(5):1260-1265. doi: 10.19540/j.cnki.cjcmm.2023105.101. [PMID: 38621973]
  • Lihua Liu, Juanzhi Zhao, An Li, Xuan Yang, Ben Sprangers, Shengqiao Li. Prolongation of allograft survival by artemisinin treatment is associated with blockade of OX40-OX40L. Immunopharmacology and immunotoxicology. 2021 Jun; 43(3):291-298. doi: 10.1080/08923973.2021.1902347. [PMID: 33757384]
  • Xueqing Fu, Yilong He, Ling Li, Limei Zhao, Yuting Wang, Hongmei Qian, Xiaofen Sun, Kexuan Tang, Jingya Zhao. Overexpression of blue light receptor AaCRY1 improves artemisinin content in Artemisia annua L. . Biotechnology and applied biochemistry. 2021 Apr; 68(2):338-344. doi: 10.1002/bab.1931. [PMID: 32339306]
  • Zongyou Lv, Lei Zhang, Lingxian Chen, Fangyuan Zhang, Kexuan Tang. The Artemisia annua FLOWERING LOCUS T Homolog 2, AaFT2, is a key regulator of flowering time. Plant physiology and biochemistry : PPB. 2018 May; 126(?):197-205. doi: 10.1016/j.plaphy.2018.02.033. [PMID: 29525443]
  • Habib Eslami, Seyed Kaveh Mohtashami, Maryam Taghavi Basmanj, Maryam Rahati, Hamzeh Rahimi. An in-silico insight into the substrate binding characteristics of the active site of amorpha-4, 11-diene synthase, a key enzyme in artemisinin biosynthesis. Journal of molecular modeling. 2017 Jul; 23(7):202. doi: 10.1007/s00894-017-3374-0. [PMID: 28620813]
  • Wanhong Liu, Huanyan Wang, Yupei Chen, Shunqin Zhu, Min Chen, Xiaozhong Lan, Guoping Chen, Zhihua Liao. Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate. Biotechnology and applied biochemistry. 2017 May; 64(3):305-314. doi: 10.1002/bab.1493. [PMID: 26988377]
  • Jasmina Poluga, Ivana Milosevic, Jelena Jordovic, Zorica Dakic, Lidija Lavadinovic, Goran Stevanovic, Branko Milosevic, Dorde Jevtovic, Milorad Pavlovic. Clinical characteristics of imported malaria: An 11-year experience in a Serbian referral center. Journal of infection in developing countries. 2016 Aug; 10(7):770-6. doi: 10.3855/jidc.6799. [PMID: 27482810]
  • Paskorn Muangphrom, Hikaru Seki, Munenori Suzuki, Aya Komori, Mika Nishiwaki, Ryota Mikawa, Ery Odette Fukushima, Toshiya Muranaka. Functional Analysis of Amorpha-4,11-Diene Synthase (ADS) Homologs from Non-Artemisinin-Producing Artemisia Species: The Discovery of Novel Koidzumiol and (+)-α-Bisabolol Synthases. Plant & cell physiology. 2016 Aug; 57(8):1678-88. doi: 10.1093/pcp/pcw094. [PMID: 27273626]
  • Jianguang Jia, Yiyu Qin, Ligong Zhang, Chenxu Guo, Yaguo Wang, Xicheng Yue, Jun Qian. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Molecular medicine reports. 2016 May; 13(5):4461-8. doi: 10.3892/mmr.2016.5073. [PMID: 27035431]
  • Zongyou Lv, Fangyuan Zhang, Qifang Pan, Xueqing Fu, Weimin Jiang, Qian Shen, Tingxiang Yan, Pu Shi, Xu Lu, Xiaofen Sun, Kexuan Tang. Branch Pathway Blocking in Artemisia annua is a Useful Method for Obtaining High Yield Artemisinin. Plant & cell physiology. 2016 Mar; 57(3):588-602. doi: 10.1093/pcp/pcw014. [PMID: 26858285]
  • Dennis Normile. DRUG DISCOVERY. Nobel for antimalarial drug highlights East-West divide. Science (New York, N.Y.). 2015 Oct; 350(6258):265. doi: 10.1126/science.350.6258.265. [PMID: 26472888]
  • Anushree Mondal, Urmi Chatterji. Artemisinin Represses Telomerase Subunits and Induces Apoptosis in HPV-39 Infected Human Cervical Cancer Cells. Journal of cellular biochemistry. 2015 Sep; 116(9):1968-81. doi: 10.1002/jcb.25152. [PMID: 25755006]
  • Gian Pietro Di Sansebastiano, Francesca Rizzello, Miriana Durante, Sofia Caretto, Rossella Nisi, Angelo De Paolis, Marianna Faraco, Anna Montefusco, Gabriella Piro, Giovanni Mita. Subcellular compartmentalization in protoplasts from Artemisia annua cell cultures: engineering attempts using a modified SNARE protein. Journal of biotechnology. 2015 May; 202(?):146-52. doi: 10.1016/j.jbiotec.2014.11.016. [PMID: 25451863]
  • Yuan Yuan, Wanhong Liu, Qiaozhuo Zhang, Lien Xiang, Xiaoqiang Liu, Min Chen, Zhi Lin, Qiang Wang, Zhihua Liao. Overexpression of artemisinic aldehyde Δ11 (13) reductase gene-enhanced artemisinin and its relative metabolite biosynthesis in transgenic Artemisia annua L. Biotechnology and applied biochemistry. 2015 Jan; 62(1):17-23. doi: 10.1002/bab.1234. [PMID: 25040292]
  • Yan Yang, Xiaomin Zhang, Xiaofen Wang, Xiaomei Zhao, Tianrui Ren, Feng Wang, Bo Yu. Enhanced delivery of artemisinin and its analogues to cancer cells by their adducts with human serum transferrin. International journal of pharmaceutics. 2014 Jun; 467(1-2):113-22. doi: 10.1016/j.ijpharm.2014.03.044. [PMID: 24661944]
  • I Aquino, M S F Tsuboy, J C Marcarini, M S Mantovani, F F Perazzo, E L Maistro. Genotoxic evaluation of the antimalarial drugs artemisinin and artesunate in human HepG2 cells and effects on CASP3 and SOD1 gene expressions. Genetics and molecular research : GMR. 2013 Jul; 12(3):2517-27. doi: 10.4238/2013.july.24.6. [PMID: 23979886]
  • Fanping Zhu, Fuying Du, Xinxiu Li, Jie Xing. An investigation of the auto-induction of and gender-related variability in the pharmacokinetics of dihydroartemisinin in the rat. Malaria journal. 2012 Nov; 11(?):379. doi: 10.1186/1475-2875-11-379. [PMID: 23171067]
  • Josh L Pilkington, Chris Preston, Rachel L Gomes. The impact of impurities in various crude A. annua extracts on the analysis of artemisinin by liquid chromatographic methods. Journal of pharmaceutical and biomedical analysis. 2012 Nov; 70(?):136-42. doi: 10.1016/j.jpba.2012.06.015. [PMID: 22785378]
  • Xing Li, Dongming Ma, Jianlin Chen, Gaobin Pu, Yunpeng Ji, Caiyan Lei, Zhigao Du, Benye Liu, Hechun Ye, Hong Wang. Biochemical characterization and identification of a cinnamyl alcohol dehydrogenase from Artemisia annua. Plant science : an international journal of experimental plant biology. 2012 Sep; 193-194(?):85-95. doi: 10.1016/j.plantsci.2012.05.011. [PMID: 22794921]
  • Alvaro L Pérez-Quintero, Gaurav Sablok, Tatiana V Tatarinova, Ana Conesa, Jimmy Kuo, Camilo López. Mining of miRNAs and potential targets from gene oriented clusters of transcripts sequences of the anti-malarial plant, Artemisia annua. Biotechnology letters. 2012 Apr; 34(4):737-45. doi: 10.1007/s10529-011-0808-0. [PMID: 22160362]
  • K Cocquyt, P Cos, P Herdewijn, L Maes, P E Van den Steen, G Laekeman. Ajuga remota Benth.: from ethnopharmacology to phytomedical perspective in the treatment of malaria. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2011 Nov; 18(14):1229-37. doi: 10.1016/j.phymed.2011.08.063. [PMID: 22015320]
  • Catherine M Moore, Elizabeth M Hoey, Alan Trudgett, David J Timson. Artemisinins act through at least two targets in a yeast model. FEMS yeast research. 2011 Mar; 11(2):233-7. doi: 10.1111/j.1567-1364.2010.00706.x. [PMID: 21320288]
  • Albert P Ekanem, Ebiamadon Andi Brisibe. Effects of ethanol extract of Artemisia annua L. against monogenean parasites of Heterobranchus longifilis. Parasitology research. 2010 Apr; 106(5):1135-9. doi: 10.1007/s00436-010-1787-0. [PMID: 20165872]
  • Jian Wen Wang, Li Ping Zheng, Ben Zhang, Ting Zou. Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. Applied microbiology and biotechnology. 2009 Nov; 85(2):285-92. doi: 10.1007/s00253-009-2090-9. [PMID: 19562334]
  • Jorge F S Ferreira, Javier M Gonzalez. Analysis of underivatized artemisinin and related sesquiterpene lactones by high-performance liquid chromatography with ultraviolet detection. Phytochemical analysis : PCA. 2009 Mar; 20(2):91-7. doi: 10.1002/pca.1101. [PMID: 18980258]
  • Elisabeth Hsu. Reflections on the 'discovery' of the antimalarial qinghao. British journal of clinical pharmacology. 2006 Jun; 61(6):666-70. doi: 10.1111/j.1365-2125.2006.02673.x. [PMID: 16722826]
  • F H Jansen. The herbal tea approach for artemisinin as a therapy for malaria?. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2006 Mar; 100(3):285-6. doi: 10.1016/j.trstmh.2005.08.004. [PMID: 16274712]
  • Manpreet Sukhija, Bikash Medhi, P Pandhi. Effects of artemisinin, artemether, arteether on the pharmacokinetics of carbamazepine. Pharmacology. 2006; 76(3):110-6. doi: 10.1159/000090434. [PMID: 16388199]
  • Tashinga E Bapiro, Jane Sayi, Julia A Hasler, Mary Jande, Gerald Rimoy, Amos Masselle, Collen M Masimirembwa. Artemisinin and thiabendazole are potent inhibitors of cytochrome P450 1A2 (CYP1A2) activity in humans. European journal of clinical pharmacology. 2005 Nov; 61(10):755-61. doi: 10.1007/s00228-005-0037-3. [PMID: 16261361]
  • M S Mueller, I B Karhagomba, H M Hirt, E Wemakor. The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: agricultural, chemical and clinical aspects. Journal of ethnopharmacology. 2000 Dec; 73(3):487-93. doi: 10.1016/s0378-8741(00)00289-0. [PMID: 11091003]
  • N Perez-Souto, R J Lynch, G Measures, J T Hann. Use of high-performance liquid chromatographic peak deconvolution and peak labelling to identify antiparasitic components in plant extracts. Journal of chromatography. 1992 Feb; 593(1-2):209-15. doi: 10.1016/0021-9673(92)80288-6. [PMID: 1639905]