Flusilazole (BioDeep_00000397702)

Main id: BioDeep_00000001158

 

natural product Industrial Pollutants


代谢物信息卡片


Pesticide6_Flusilazole_C16H15F2N3Si_1-[(Bis(4-fluorophenyl)methylsilyl)methyl]-1H-1,2,4-triazole

化学式: C16H15F2N3Si (315.1003)
中文名称: 甲醇中氟硅唑溶液, 氟硅唑
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C[Si](CN1C=NC=N1)(C2=CC=C(C=C2)F)C3=CC=C(C=C3)F
InChI: InChI=1S/C16H15F2N3Si/c1-22(12-21-11-19-10-20-21,15-6-2-13(17)3-7-15)16-8-4-14(18)5-9-16/h2-11H,12H2,1H3

描述信息

D016573 - Agrochemicals
D010575 - Pesticides
CONFIDENCE standard compound; EAWAG_UCHEM_ID 97

同义名列表

4 个代谢物同义名

Flusilazole; Pesticide6_Flusilazole_C16H15F2N3Si_1-[(Bis(4-fluorophenyl)methylsilyl)methyl]-1H-1,2,4-triazole; FSZ; Flusilazole



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ABCB1, AR, ARHGAP45, CASP1, CASP3, CASP9, GAPDH, GSTA2, ITPR3, MYH6
Endoplasmic reticulum membrane 7 ABCA1, CYP19A1, CYP26A1, CYP51A1, CYP7A1, DHRS3, ITPR3
Nucleus 7 AR, CALB2, CASP3, CASP9, CDX1, GAPDH, GBX2
cytosol 9 AR, ARHGAP45, CALB2, CASP1, CASP3, CASP9, GAPDH, GSTA2, MYH6
dendrite 1 CALB2
phagocytic vesicle 1 ABCA1
nucleoplasm 3 AR, CASP3, ITPR3
Cell membrane 3 ABCA1, ABCB1, CASP1
ruffle membrane 1 ARHGAP45
Multi-pass membrane protein 5 ABCA1, ABCB1, CYP19A1, DHRS3, ITPR3
Synapse 1 CALB2
cell surface 1 ABCB1
glutamatergic synapse 1 CASP3
Golgi apparatus 1 ABCA1
neuronal cell body 2 CASP3, ITPR3
Cytoplasm, cytosol 1 GAPDH
endosome 1 ABCA1
plasma membrane 7 ABCA1, ABCB1, AR, ARHGAP45, CASP1, GAPDH, ITPR3
terminal bouton 1 CALB2
Membrane 9 ABCA1, ABCB1, AR, ARHGAP45, CYP19A1, CYP51A1, DHRS3, GAPDH, ITPR3
apical plasma membrane 1 ABCB1
basolateral plasma membrane 1 ABCA1
brush border 1 ITPR3
extracellular exosome 3 ABCB1, GAPDH, GSTA2
endoplasmic reticulum 2 CYP19A1, ITPR3
extracellular space 1 BMP4
perinuclear region of cytoplasm 2 ABCA1, GAPDH
gap junction 1 CALB2
mitochondrion 1 CASP9
protein-containing complex 3 AR, CASP1, CASP9
intracellular membrane-bounded organelle 4 ABCA1, CYP51A1, CYP7A1, GAPDH
Microsome membrane 4 CYP19A1, CYP26A1, CYP51A1, CYP7A1
postsynaptic density 1 CASP3
Secreted 1 BMP4
extracellular region 2 ARHGAP45, BMP4
Single-pass membrane protein 2 CYP51A1, CYP7A1
nuclear membrane 1 GAPDH
external side of plasma membrane 1 ABCA1
Z disc 1 MYH6
microtubule cytoskeleton 1 GAPDH
nucleolus 2 CASP1, ITPR3
apical part of cell 1 ITPR3
vesicle 1 GAPDH
Apical cell membrane 1 ABCB1
Cell projection, ruffle membrane 1 ARHGAP45
Cytoplasm, perinuclear region 1 GAPDH
Membrane raft 1 ABCA1
Cytoplasm, cytoskeleton 1 GAPDH
microtubule 1 CASP1
intracellular vesicle 1 ABCA1
myofibril 1 MYH6
sarcoplasmic reticulum 1 ITPR3
nuclear speck 1 AR
NLRP3 inflammasome complex 1 CASP1
nuclear outer membrane 1 ITPR3
sarcomere 1 MYH6
receptor complex 1 ITPR3
chromatin 3 AR, CDX1, GBX2
cytoskeleton 1 GAPDH
myosin filament 1 MYH6
myosin II complex 1 MYH6
Lipid droplet 2 DHRS3, GAPDH
myosin complex 1 MYH6
stress fiber 1 MYH6
secretory granule lumen 1 ARHGAP45
secretory granule membrane 1 ITPR3
endoplasmic reticulum lumen 1 BMP4
endocytic vesicle 1 ABCA1
azurophil granule lumen 1 ARHGAP45
apoptosome 1 CASP9
parallel fiber to Purkinje cell synapse 1 CALB2
AIM2 inflammasome complex 1 CASP1
ribonucleoprotein complex 1 GAPDH
platelet dense tubular network membrane 1 ITPR3
external side of apical plasma membrane 1 ABCB1
death-inducing signaling complex 1 CASP3
canonical inflammasome complex 1 CASP1
photoreceptor outer segment membrane 1 DHRS3
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
GAIT complex 1 GAPDH
transport vesicle membrane 1 ITPR3
muscle myosin complex 1 MYH6
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
IPAF inflammasome complex 1 CASP1
NLRP1 inflammasome complex 1 CASP1
protease inhibitor complex 1 CASP1
caspase complex 1 CASP9


文献列表

  • Zakir Amin, Parveez Ahmad Sheikh, Ishrat Jan, Baby Summuna, Fayaz Ahmad Mohiddin. Assessment of flusilazole residues on apples: Detection, quantification and health risk implications. Biomedical chromatography : BMC. 2024 Feb; ?(?):e5836. doi: 10.1002/bmc.5836. [PMID: 38308120]
  • Kun Fan, Yu-Kun Qi, Li Fu, Li Li, Xinghong Liu, Jianlu Qu, De-Wei Li, Ai-Xin Dong, Yi-Ji Peng, Qing-Hai Wang. Identification and fungicide screening of fungal species associated with walnut anthracnose in Shaanxi and Liaoning provinces, China. Plant disease. 2023 Sep; ?(?):. doi: 10.1094/pdis-05-23-0967-re. [PMID: 37682223]
  • Xiao Liu, Dong-Dong Zhou, Min Chen, Yi-Wen Cao, Lv-Yun Zhuang, Zhi-Heng Lu, Zhong-Hua Yang. Adsorption behavior of azole fungicides on polystyrene and polyethylene microplastics. Chemosphere. 2022 Dec; 308(Pt 2):136280. doi: 10.1016/j.chemosphere.2022.136280. [PMID: 36084829]
  • Elif Karacaoğlu. Flusilazole-induced damage to SerW3 cells via cytotoxicity, oxidative stress and lipid metabolism: An in vitro study. Pesticide biochemistry and physiology. 2022 Jan; 180(?):104998. doi: 10.1016/j.pestbp.2021.104998. [PMID: 34955182]
  • Qiaolan Liang, Liexin Wei, Bingliang Xu, Jia Liu, Shuwu Zhang, Lilong Liu. Induction of resistance of Podosphaera xanthii (hull-less pumpkin powdery mildew) to triazole fungicides and its resistance mechanism. PloS one. 2022; 17(2):e0263068. doi: 10.1371/journal.pone.0263068. [PMID: 35104292]
  • Monica Kam Draskau, Aurélie Lardenois, Bertrand Evrard, Julie Boberg, Frédéric Chalmel, Terje Svingen. Transcriptome analysis of fetal rat testis following intrauterine exposure to the azole fungicides triticonazole and flusilazole reveals subtle changes despite adverse endocrine effects. Chemosphere. 2021 Feb; 264(Pt 1):128468. doi: 10.1016/j.chemosphere.2020.128468. [PMID: 33032228]
  • Yong Wang, Lin Jiang, Miao-Miao Wang, Jun-Tao Feng. Baseline sensitivity and action mechanism of the sterol demethylation inhibitor flusilazole to Valsa mali. Pesticide biochemistry and physiology. 2021 Jan; 171(?):104722. doi: 10.1016/j.pestbp.2020.104722. [PMID: 33357544]
  • Marek Šudoma, Natália Peštálová, Zuzana Bílková, Petr Sedláček, Jakub Hofman. Ageing effect on conazole fungicide bioaccumulation in arable soils. Chemosphere. 2021 Jan; 262(?):127612. doi: 10.1016/j.chemosphere.2020.127612. [PMID: 32750590]
  • Yong Wang, Miaomaio Wang, Letian Xu, Yang Sun, Juntao Feng. Baseline Sensitivity and Toxic Action of the Sterol Demethylation Inhibitor Flusilazole Against Botrytis cinerea. Plant disease. 2020 Nov; 104(11):2986-2993. doi: 10.1094/pdis-11-19-2478-re. [PMID: 32852244]
  • Dimitra A Karamanou, Konstantinos A Aliferis. The yeast (Saccharomyces cerevisiae) YCF1 vacuole transporter: Evidence on its implication into the yeast resistance to flusilazole as revealed by GC/EI/MS metabolomics. Pesticide biochemistry and physiology. 2020 May; 165(?):104475. doi: 10.1016/j.pestbp.2019.09.013. [PMID: 32359550]
  • Ya-Bing Xiong, Zhi-Heng Lu, Dan-Dan Wang, Mei-Nan Ou Yang, Hao-Ming Guo, Zhong-Hua Yang. Application of polydopamine functionalized magnetic graphene in triazole fungicides residue analysis. Journal of chromatography. A. 2020 Mar; 1614(?):460725. doi: 10.1016/j.chroma.2019.460725. [PMID: 31767260]
  • Jing Nie, Peter Yaro, Kaifeng He, Haihong Hu, Su Zeng. Excretion stereoselectivity of triticonazole in rat urine and faeces. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2020; 55(3):175-183. doi: 10.1080/03601234.2019.1675406. [PMID: 31631749]
  • Urszula Wachowska, Witold Irzykowski, Małgorzata Jędryczka. Agrochemicals: Effect on genetic resistance in yeasts colonizing winter wheat kernels. Ecotoxicology and environmental safety. 2018 Oct; 162(?):77-84. doi: 10.1016/j.ecoenv.2018.06.042. [PMID: 29990742]
  • Xiaoming Lu, Shun He, Hongju Ma, Jianhong Li, Fuxing Zhu. Hormetic Effects of Flusilazole Preconditioning on Mycelial Growth and Virulence of Sclerotinia sclerotiorum. Plant disease. 2018 Jun; 102(6):1165-1170. doi: 10.1094/pdis-10-17-1638-re. [PMID: 30673443]
  • Xiaoming Lu, Ran Zhang, Menglong Cong, Jianhong Li, Fuxing Zhu. Stimulatory Effects of Flusilazole on Virulence of Sclerotinia sclerotiorum. Plant disease. 2018 Jan; 102(1):197-201. doi: 10.1094/pdis-07-17-1041-re. [PMID: 30673466]
  • Xiaoxiao Qi, Jun Wu, Lifen Wang, Leiting Li, Yufen Cao, Luming Tian, Xingguang Dong, Shaoling Zhang. Identifying the candidate genes involved in the calyx abscission process of 'Kuerlexiangli' (Pyrus sinkiangensis Yu) by digital transcript abundance measurements. BMC genomics. 2013 Oct; 14(?):727. doi: 10.1186/1471-2164-14-727. [PMID: 24152304]
  • Dilek Unal Ozakca, Hulya Silah. Genotoxicity effects of Flusilazole on the somatic cells of Allium cepa. Pesticide biochemistry and physiology. 2013 Sep; 107(1):38-43. doi: 10.1016/j.pestbp.2013.05.001. [PMID: 25149233]
  • Pierre Leroux, Michel Gredt, Florent Remuson, Annie Micoud, Anne-Sophie Walker. Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae. Pest management science. 2013 Jan; 69(1):15-26. doi: 10.1002/ps.3408. [PMID: 23073993]
  • Nicholas T Amponsah, Eirian Jones, Hayley J Ridgway, Marlene V Jaspers. Evaluation of fungicides for the management of Botryosphaeria dieback diseases of grapevines. Pest management science. 2012 May; 68(5):676-83. doi: 10.1002/ps.2309. [PMID: 22290833]
  • Emmanuel Varesio, J C Yves Le Blanc, Gérard Hopfgartner. Real-time 2D separation by LC × differential ion mobility hyphenated to mass spectrometry. Analytical and bioanalytical chemistry. 2012 Mar; 402(8):2555-64. doi: 10.1007/s00216-011-5444-y. [PMID: 22006241]
  • Quang Le Dang, Won Ki Kim, Cuong Mai Nguyen, Yong Ho Choi, Gyung Ja Choi, Kyoung Soo Jang, Myung Soo Park, Chi Hwan Lim, Ngoc Hoang Luu, Jin-Cheol Kim. Nematicidal and antifungal activities of annonaceous acetogenins from Annona squamosa against various plant pathogens. Journal of agricultural and food chemistry. 2011 Oct; 59(20):11160-7. doi: 10.1021/jf203017f. [PMID: 21910504]
  • Raquel N Carvalho, Stephanie K Bopp, Teresa Lettieri. Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo[a]pyrene. PloS one. 2011; 6(11):e26985. doi: 10.1371/journal.pone.0026985. [PMID: 22073232]
  • Maria R Eckert, Stephen Rossall, Andrew Selley, Bruce D L Fitt. Effects of fungicides on in vitro spore germination and mycelial growth of the phytopathogens Leptosphaeria maculans and L. biglobosa (phoma stem canker of oilseed rape). Pest management science. 2010 Apr; 66(4):396-405. doi: 10.1002/ps.1890. [PMID: 20013877]
  • Anna Machowska, Magdalena Słowik-Borowiec, Ewa Szpyrka, Stanisław Sadło. [Occurrence of plant protection product residues in apples in 2007]. Roczniki Panstwowego Zakladu Higieny. 2008; 59(3):293-300. doi: ". [PMID: 19143426]
  • Francesca Di Renzo, Maria L Broccia, Erminio Giavini, Elena Menegola. Citral, an inhibitor of retinoic acid synthesis, attenuates the frequency and severity of branchial arch abnormalities induced by triazole-derivative fluconazole in rat embryos cultured in vitro. Reproductive toxicology (Elmsford, N.Y.). 2007 Nov; 24(3-4):326-32. doi: 10.1016/j.reprotox.2007.07.012. [PMID: 17875381]
  • S Bensoltane, M Youbi, H Djebar, M R Djebar. Effects of two systemic fungicides: Artea (Propiconazole+cyproconazole) and Punch (Flusilazole) on the physiology and the respiratory metabolism of durum wheat (Triticum durum L.). Communications in agricultural and applied biological sciences. 2006; 71(3 Pt B):1041-8. doi: . [PMID: 17390857]
  • J J Anderson, L M Shalaby, D S Berg. Metabolism of [(14)C]flusilazole in the goat. Journal of agricultural and food chemistry. 1999 Jun; 47(6):2439-46. doi: 10.1021/jf980613j. [PMID: 10794648]
  • B Grausem, N Chaubet, C Gigot, J C Loper, P Benveniste. Functional expression of Saccharomyces cerevisiae CYP51A1 encoding lanosterol-14-demethylase in tobacco results in bypass of endogenous sterol biosynthetic pathway and resistance to an obtusifoliol-14-demethylase herbicide inhibitor. The Plant journal : for cell and molecular biology. 1995 May; 7(5):761-70. doi: 10.1046/j.1365-313x.1995.07050761.x. [PMID: 7773307]