(-)-Maackiain (BioDeep_00000002486)

 

Secondary id: BioDeep_00000016721, BioDeep_00000018131, BioDeep_00000600448

natural product PANOMIX_OTCML-2023


代谢物信息卡片


(1R,12R)-5,7,11,19-tetraoxapentacyclo[10.8.0.02,10.04,8.013,18]icosa-2,4(8),9,13(18),14,16-hexaen-16-ol

化学式: C16H12O5 (284.0685)
中文名称: 马卡因, (+)-高丽槐素, 高丽槐素
谱图信息: 最多检出来源 Viridiplantae(plant) 9.01%

Reviewed

Last reviewed on 2024-07-09.

Cite this Page

(-)-Maackiain. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/(-)-maackiain (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000002486). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: c1(ccc2c(c1)OC[C@@H]1[C@H]2Oc2c1cc1c(c2)OCO1)O
InChI: InChI=1S/C16H12O5/c17-8-1-2-9-12(3-8)18-6-11-10-4-14-15(20-7-19-14)5-13(10)21-16(9)11/h1-5,11,16-17H,6-7H2

描述信息

(-)-maackiain is the (-)-enantiomer of maackiain. It is an enantiomer of a (+)-maackiain.
Maackiain is a natural product found in Tephrosia virginiana, Leptolobium bijugum, and other organisms with data available.

(-)-Maackiain. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2035-15-6 (retrieved 2024-07-09) (CAS RN: 2035-15-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
(-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].
(-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].
(-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].
(-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

同义名列表

31 个代谢物同义名

(1R,12R)-5,7,11,19-tetraoxapentacyclo[10.8.0.02,10.04,8.013,18]icosa-2,4(8),9,13(18),14,16-hexaen-16-ol; (1R,12R)-5,7,11,19-tetraoxapentacyclo[10.8.0.0?,??.0?,?.0??,??]icosa-2,4(8),9,13,15,17-hexaen-16-ol; 6H-[1,3]Dioxolo[4,5:5,6]benzofuro[3,2-c][1]benzopyran-3-ol, 6a.alpha.,12a.alpha.-dihydro-, (-)-; 6H-[1,3]Dioxolo[4,5:5,6]benzofuro[3,2-c][1]benzopyran-3-ol, 6a,12a-dihydro-, (6aR,12aR)-; 6H-[1,3]Dioxolo[4,5:5,6]benzofuro[3,2-c][1]benzopyran-3-ol, 6a,12a-dihydro-, (6aR-cis)-; 6H-[1,3]Dioxolo[5,6]benzofuro[3,2-c][1]benzopyran-3-ol, 6a,12a-dihydro-, (6aR,12aR)-; 6H-(1,3)Dioxolo(5,6)benzofuro(3,2-c)(1)benzopyran-3-ol, 6a,12a-dihydro-, (6aR-cis)-; (6aR,12aR)-6a,12a-Dihydro-6H-[1,3]dioxolo[4,5:5,6]benzofuro[3,2-c]chromen-3-ol; (6ar,12ar)-6a,12a-dihydro-6h-[1,3]dioxolo[5,6][1]benzofuro[3,2-c]chromen-3-ol; 6a,12a-dihydro-6H-(1,3)dioxolo(5,6)benzofuro(3,2-c)(1)benzopyran-3-ol; (6aR,12aR)-3-hydroxy-8,9-methylenedioxypterocarpane; 3-Hydroxy-8,9-methylenedioxypterocarpan; (-)-Maackiain , HPLC Grade; inermin, (6aR-cis)-isomer; inermin, (6aS-cis)-isomer; (-)-(6aR,12aR)-maackiain; Trifolirhizin aglycone; (-?)?-Maackiain; (+/-)-Maackiain; (-) -Maackiain; (-)-Maackiain; (+)-Maackiain; L-Maackiain; Maackiaine; Maackiain; Inermine; CHEBI:99; inermin; Demethylpterocarpin; (-)-Maackiain; Maackiaine



数据库引用编号

44 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(5)

PlantCyc(1)

代谢反应

16 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(6)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(10)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

378 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ADIG, AKT1, BCAS1, BCL2, CASP3, EGFR, MYD88, PIK3CA, PPARG, PRKAA2, VEGFA
Endosome membrane 2 EGFR, MYD88
Endoplasmic reticulum membrane 4 BCL2, EGFR, HMOX1, HSP90B1
Nucleus 13 ADIG, AKT1, BCL2, CASP3, CEBPA, EGFR, GABPA, HMOX1, HSP90B1, MYD88, PPARG, PRKAA2, VEGFA
cytosol 10 AKT1, BCL2, CASP3, HMOX1, HSP90B1, MYD88, PIK3CA, PPARG, PRKAA2, PRKCQ
dendrite 2 MAOB, PRKAA2
nucleoplasm 7 AKT1, CASP3, CEBPA, GABPA, HMOX1, PPARG, PRKAA2
RNA polymerase II transcription regulator complex 2 CEBPA, PPARG
Cell membrane 3 AKT1, EGFR, TNF
Cytoplasmic side 2 HMOX1, MAOB
lamellipodium 2 AKT1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 5 ADIPOQ, EGFR, MYD88, TNF, VEGFA
glutamatergic synapse 3 AKT1, CASP3, EGFR
Golgi apparatus 2 PRKAA2, VEGFA
Golgi membrane 1 EGFR
neuronal cell body 4 CASP3, MAOB, PRKAA2, TNF
postsynapse 1 AKT1
smooth endoplasmic reticulum 1 HSP90B1
endosome 1 EGFR
plasma membrane 6 AKT1, EGFR, MYD88, PIK3CA, PRKCQ, TNF
Membrane 8 ADIG, AKT1, BCL2, EGFR, HMOX1, HSP90B1, PRKAA2, VEGFA
apical plasma membrane 1 EGFR
axon 1 PRKAA2
basolateral plasma membrane 1 EGFR
extracellular exosome 2 BCAS1, HSP90B1
endoplasmic reticulum 5 ADIPOQ, BCL2, HMOX1, HSP90B1, VEGFA
extracellular space 6 ADIPOQ, CCL27, EGFR, HMOX1, TNF, VEGFA
perinuclear region of cytoplasm 5 EGFR, HMOX1, HSP90B1, PIK3CA, PPARG
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 2 BCL2, MAOB
protein-containing complex 5 AKT1, BCL2, EGFR, HSP90B1, MYD88
intracellular membrane-bounded organelle 2 CEBPA, PPARG
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 EGFR
Secreted 4 ADIG, ADIPOQ, CCL27, VEGFA
extracellular region 6 ADIG, ADIPOQ, CCL27, HSP90B1, TNF, VEGFA
Mitochondrion outer membrane 2 BCL2, MAOB
Single-pass membrane protein 2 ADIG, BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MAOB
transcription regulator complex 1 CEBPA
centriolar satellite 1 PRKCQ
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
microtubule cytoskeleton 1 AKT1
nucleolus 1 CEBPA
midbody 1 HSP90B1
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 2 EGFR, TNF
pore complex 1 BCL2
focal adhesion 2 EGFR, HSP90B1
spindle 1 AKT1
extracellular matrix 1 VEGFA
collagen trimer 1 ADIPOQ
intracellular vesicle 1 EGFR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 2 ADIPOQ, HSP90B1
secretory granule 1 VEGFA
nuclear speck 1 PRKAA2
receptor complex 2 EGFR, PPARG
ciliary basal body 1 AKT1
chromatin 3 CEBPA, GABPA, PPARG
phagocytic cup 1 TNF
Lipid droplet 1 ADIG
Melanosome 1 HSP90B1
cytoplasmic stress granule 1 PRKAA2
myelin sheath 1 BCL2
sperm plasma membrane 1 HSP90B1
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
endoplasmic reticulum lumen 1 HSP90B1
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
mitochondrial envelope 1 MAOB
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
Single-pass type IV membrane protein 2 HMOX1, MAOB
clathrin-coated endocytic vesicle membrane 1 EGFR
Sarcoplasmic reticulum lumen 1 HSP90B1
extrinsic component of cytoplasmic side of plasma membrane 1 MYD88
death-inducing signaling complex 1 CASP3
nucleotide-activated protein kinase complex 1 PRKAA2
extrinsic component of plasma membrane 1 MYD88
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
endocytic vesicle lumen 1 HSP90B1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
endoplasmic reticulum chaperone complex 1 HSP90B1
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
C/EBP complex 1 CEBPA
CHOP-C/EBP complex 1 CEBPA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Isoform 4]: Nucleus, nucleolus 1 CEBPA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Saveta G Mladenova, Monika N Todorova, Martina S Savova, Milen I Georgiev, Liliya V Mihaylova. Maackiain Mimics Caloric Restriction through aak-2-Mediated Lipid Reduction in Caenorhabditis elegans. International journal of molecular sciences. 2023 Dec; 24(24):. doi: 10.3390/ijms242417442. [PMID: 38139270]
  • Xing Jiang, Xiaonan Yang, Yanxia Shi, Yan Long, Wenqing Su, Wendong He, Kunhua Wei, Jianhua Miao. Maackiain inhibits proliferation and promotes apoptosis of nasopharyngeal carcinoma cells by inhibiting the MAPK/Ras signaling pathway. Chinese journal of natural medicines. 2023 Mar; 21(3):185-196. doi: 10.1016/s1875-5364(23)60420-0. [PMID: 37003641]
  • Janakiraman V, Sudhan M, Abubakar Wani, Sheikh F Ahmad, Ahmed Nadeem, Ashutosh Sharma, Shiek S S J Ahmed. Pharmacoscreening, molecular dynamics, and quantum mechanics of inermin from Panax ginseng: a crucial molecule inhibiting exosomal protein target associated with coronary artery disease progression. PeerJ. 2023; 11(?):e16481. doi: 10.7717/peerj.16481. [PMID: 38077444]
  • Saveta G Mladenova, Martina S Savova, Andrey S Marchev, Claudio Ferrante, Giustino Orlando, Martin Wabitsch, Milen I Georgiev. Anti-adipogenic activity of maackiain and ononin is mediated via inhibition of PPARγ in human adipocytes. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 May; 149(?):112908. doi: 10.1016/j.biopha.2022.112908. [PMID: 35367764]
  • Na Lu, Guojun Tan, Hongling Tan, Xing Zhang, Yunling Lv, Xiujuan Song, Daofeng You, Ziyuan Gao. Maackiain Prevents Amyloid-Beta-Induced Cellular Injury via Priming PKC-Nrf2 Pathway. BioMed research international. 2022; 2022(?):4243210. doi: 10.1155/2022/4243210. [PMID: 35782063]
  • Wen-Lin Yuan, Zheng-Rui Huang, Si-Jia Xiao, Ji Ye, Wei-Dong Zhang, Yun-Heng Shen. [Metabolites and metabolic pathways of maackiain in rats based on UPLC-Q-TOF-MS]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2021 Dec; 46(23):6278-6288. doi: 10.19540/j.cnki.cjcmm.20210902.201. [PMID: 34951255]
  • Guangfei Wei, Yongzhong Chen, Xiaotong Guo, Jianhe Wei, Linlin Dong, Shilin Chen. Biosyntheses characterization of alkaloids and flavonoids in Sophora flavescens by combining metabolome and transcriptome. Scientific reports. 2021 04; 11(1):7388. doi: 10.1038/s41598-021-86970-0. [PMID: 33795823]
  • Jiahong Guo, Junying Li, Hua Wei, Zhaozhi Liang. Maackiain Protects the Kidneys of Type 2 Diabetic Rats via Modulating the Nrf2/HO-1 and TLR4/NF-κB/Caspase-3 Pathways. Drug design, development and therapy. 2021; 15(?):4339-4358. doi: 10.2147/dddt.s326975. [PMID: 34703210]
  • Jin-Won Huh, Jung-Hoon Lee, Eekhyoung Jeon, Hyung Won Ryu, Sei-Ryang Oh, Kyung-Seop Ahn, Hyun Sik Jun, Un-Hwan Ha. Maackiain, a compound derived from Sophora flavescens, increases IL-1β production by amplifying nigericin-mediated inflammasome activation. FEBS open bio. 2020 08; 10(8):1482-1491. doi: 10.1002/2211-5463.12899. [PMID: 32428336]
  • Yan Li, Jie-Wei Wu, Hai-Bo Tan, Bai-Lin Li, Sheng-Xiang Qiu. Three new pterocarpans from the aerial parts of Abrus Precatorius. Natural product research. 2020 Jul; 34(13):1836-1844. doi: 10.1080/14786419.2018.1564293. [PMID: 31328559]
  • Soyoung Kim, Yu Jeong Jeong, Su Hyun Park, Sung-Chul Park, Saet Buyl Lee, Jiyoung Lee, Suk Weon Kim, Bo-Keun Ha, Hyun-Soon Kim, HyeRan Kim, Young Bae Ryu, Jae Cheol Jeong, Cha Young Kim. The Synergistic Effect of Co-Treatment of Methyl Jasmonate and Cyclodextrins on Pterocarpan Production in Sophora flavescens Cell Cultures. International journal of molecular sciences. 2020 May; 21(11):. doi: 10.3390/ijms21113944. [PMID: 32486319]
  • Yannan Li, Jing Ning, Yan Wang, Chao Wang, Chengpeng Sun, Xiaokui Huo, Zhenlong Yu, Lei Feng, Baojing Zhang, Xiangge Tian, Xiaochi Ma. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicology letters. 2018 Sep; 294(?):27-36. doi: 10.1016/j.toxlet.2018.05.008. [PMID: 29753067]
  • Achara Raksat, Wisanu Maneerat, Raymond J Andersen, Stephen G Pyne, Surat Laphookhieo. Antibacterial Prenylated Isoflavonoids from the Stems of Millettia extensa. Journal of natural products. 2018 08; 81(8):1835-1840. doi: 10.1021/acs.jnatprod.8b00321. [PMID: 30106294]
  • Xinzhou Yang, Shihao Deng, Mi Huang, Jialin Wang, Li Chen, Mingrui Xiong, Jie Yang, Sijiang Zheng, Xinhua Ma, Ping Zhao, Yunjiang Feng. Chemical constituents from Sophora tonkinensis and their glucose transporter 4 translocation activities. Bioorganic & medicinal chemistry letters. 2017 03; 27(6):1463-1466. doi: 10.1016/j.bmcl.2017.01.078. [PMID: 28236591]
  • Hyun Woo Lee, Hyung Won Ryu, Myung-Gyun Kang, Daeui Park, Sei-Ryang Oh, Hoon Kim. Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens. Bioorganic & medicinal chemistry letters. 2016 10; 26(19):4714-4719. doi: 10.1016/j.bmcl.2016.08.044. [PMID: 27575476]
  • Kaitlin Deardorff, William Ray, Eric Winterstein, MacKenzie Brown, Jocelyn McCornack, Brianda Cardenas-Garcia, Kiah Jones, Sarah McNutt, Shannon Fulkerson, Daneel Ferreira, Charlotte Gény, Xiaoyan Chen, Gil Belofsky, Blaise Dondji. Phenolic Metabolites of Dalea ornata Affect Both Survival and Motility of the Human Pathogenic Hookworm Ancylostoma ceylanicum. Journal of natural products. 2016 09; 79(9):2296-303. doi: 10.1021/acs.jnatprod.6b00444. [PMID: 27584977]
  • Nóra Gampe, András Darcsi, Szilvia Lohner, Szabolcs Béni, László Kursinszki. Characterization and identification of isoflavonoid glycosides in the root of Spiny restharrow (Ononis spinosa L.) by HPLC-QTOF-MS, HPLC-MS/MS and NMR. Journal of pharmaceutical and biomedical analysis. 2016 May; 123(?):74-81. doi: 10.1016/j.jpba.2016.01.058. [PMID: 26874257]
  • Lotfi Ghribi, Pierre Waffo-Téguo, Stéphanie Cluzet, Axel Marchal, Jessica Marques, Jean-Michel Mérillon, Hichem Ben Jannet. Isolation and structure elucidation of bioactive compounds from the roots of the Tunisian Ononis angustissima L. Bioorganic & medicinal chemistry letters. 2015 Sep; 25(18):3825-30. doi: 10.1016/j.bmcl.2015.07.076. [PMID: 26248805]
  • Taijun Yin, Guanyi Yang, Yong Ma, Beibei Xu, Ming Hu, Ming You, Song Gao. Developing an activity and absorption-based quality control platform for Chinese traditional medicine: Application to Zeng-Sheng-Ping(Antitumor B). Journal of ethnopharmacology. 2015 Aug; 172(?):195-201. doi: 10.1016/j.jep.2015.06.019. [PMID: 26099633]
  • Patrícia C Bezerra-Silva, Jefferson C Santos, Geanne K N Santos, Kamilla A Dutra, Andrea L B D Santana, Claudia A Maranhão, Márcia S Nascimento, Daniela M A F Navarro, Lothar W Bieber. Extract of Bowdichia virgilioides and maackiain as larvicidal agent against Aedes aegypti mosquito. Experimental parasitology. 2015 Jun; 153(?):160-4. doi: 10.1016/j.exppara.2015.03.018. [PMID: 25819294]
  • Soo Min Jang, Soo Hyeon Bae, Woong-Kee Choi, Jung Bae Park, Doyun Kim, Jee Sun Min, Hunseung Yoo, Minseok Kang, Keun Ho Ryu, Soo Kyung Bae. Pharmacokinetic properties of trifolirhizin, (-)-maackiain, (-)-sophoranone and 2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran after intravenous and oral administration of Sophora tonkinensis extract in rats. Xenobiotica; the fate of foreign compounds in biological systems. 2015; 45(12):1092-104. doi: 10.3109/00498254.2015.1041181. [PMID: 26068519]
  • Hunseung Yoo, Hee-Sung Chae, Young-Mi Kim, Minseok Kang, Keun Ho Ryu, Hee Chul Ahn, Kee Dong Yoon, Young-Won Chin, Jinwoong Kim. Flavonoids and arylbenzofurans from the rhizomes and roots of Sophora tonkinensis with IL-6 production inhibitory activity. Bioorganic & medicinal chemistry letters. 2014 Dec; 24(24):5644-5647. doi: 10.1016/j.bmcl.2014.10.077. [PMID: 25467151]
  • Hunseung Yoo, Keun Ho Ryu, Soo Kyung Bae, Jinwoong Kim. Simultaneous determination of trifolirhizin, (-)-maackiain, (-)-sophoranone, and 2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran from Sophora tonkinensis in rat plasma by liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. Journal of separation science. 2014 Nov; 37(22):3235-44. doi: 10.1002/jssc.201400691. [PMID: 25156071]
  • Chong Wu, Gui-Hua Deng, Chao-Zhan Lin, Chen-Chen Zhu. [Simultaneous determination of 4 alkaloids and a flavonoid in Picrasmae Ramulus et Folium by RP-HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2014 May; 39(9):1656-9. doi: . [PMID: 25095379]
  • Diana C Rueda, Maria De Mieri, Steffen Hering, Matthias Hamburger. HPLC-based activity profiling for GABAA receptor modulators in Adenocarpus cincinnatus. Journal of natural products. 2014 Mar; 77(3):640-9. doi: 10.1021/np500016z. [PMID: 24571311]
  • Quan Liu, Rui Xu, Zhiqiang Yan, Hui Jin, Haiyan Cui, Liqin Lu, Denghong Zhang, Bo Qin. Phytotoxic allelochemicals from roots and root exudates of Trifolium pratense. Journal of agricultural and food chemistry. 2013 Jul; 61(26):6321-7. doi: 10.1021/jf401241e. [PMID: 23738849]
  • Yian Wang, Ruisheng Yao, Song Gao, Weidong Wen, Yinqiu Du, Eva Szabo, Ming Hu, Ronald A Lubet, Ming You. Chemopreventive effect of a mixture of Chinese Herbs (antitumor B) on chemically induced oral carcinogenesis. Molecular carcinogenesis. 2013 Jan; 52(1):49-56. doi: 10.1002/mc.20877. [PMID: 22086836]
  • Yong Zeng, Jian-Jun Luo, Chong Li. [Chemical constituents from aerial part of Rumex patientia]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2013 Jan; 36(1):57-60. doi: . [PMID: 23750410]
  • Song Gao, Zhen Yang, Taijun Yin, Ming You, Ming Hu. Validated LC-MS/MS method for the determination of maackiain and its sulfate and glucuronide in blood: application to pharmacokinetic and disposition studies. Journal of pharmaceutical and biomedical analysis. 2011 May; 55(2):288-93. doi: 10.1016/j.jpba.2011.01.015. [PMID: 21349678]
  • Wenjuan Feng, Yang Fa Ou, Yalun Su, Jin Li, Tengfei Ji. [Chemical constituents of Ammopiptanthus mongolicus]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Apr; 36(8):1040-2. doi: . [PMID: 21809581]
  • Gui-Ping Zhang, Zhi-Yong Xiao, Jamal Rafique, Mohammad Arfan, Peter J Smith, Carmen A Lategan, Li-Hong Hu. Antiplasmodial isoflavanones from the roots of Sophora mollis. Journal of natural products. 2009 Jul; 72(7):1265-8. doi: 10.1021/np900144c. [PMID: 19572738]
  • Xin-Kai Zong, Fu-Li Lai, Zhu-Nian Wang, Jian-Rong Wang. [Studies on chemical constituents of root of Millettia speciosa]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2009 Apr; 32(4):520-1. doi: . [PMID: 19645236]
  • Shu-ying Yao, Yun-bao Ma, Ya Tang, Ji-jun Chen, Xue-mei Zhang. [Chemical constituents of Oxytropis falcate]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Jun; 33(12):1418-21. doi: . [PMID: 18837346]
  • Gardenia C G Militão, Sávio M Pinheiro, Ivana N F Dantas, Cláudia Pessoa, Manoel Odorico de Moraes, Leti Cia V Costa-Lotufo, Mary Anne S Lima, Edilberto R Silveira. Bioassay-guided fractionation of pterocarpans from roots of Harpalyce brasiliana Benth. Bioorganic & medicinal chemistry. 2007 Nov; 15(21):6687-91. doi: 10.1016/j.bmc.2007.08.011. [PMID: 17764956]
  • Seizo Sato, Jiro Takeo, Chihiro Aoyama, Hiroyuki Kawahara. Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens. Bioorganic & medicinal chemistry. 2007 May; 15(10):3445-9. doi: 10.1016/j.bmc.2007.03.011. [PMID: 17374486]
  • Hisashi Matsuda, Kazutoshi Yoshida, Katsutoshi Miyagawa, Yasunobu Asao, Saya Takayama, Souichi Nakashima, Fengming Xu, Masayuki Yoshikawa. Rotenoids and flavonoids with anti-invasion of HT1080, anti-proliferation of U937, and differentiation-inducing activity in HL-60 from Erycibe expansa. Bioorganic & medicinal chemistry. 2007 Feb; 15(3):1539-46. doi: 10.1016/j.bmc.2006.09.024. [PMID: 17158054]
  • Hee Jin Jung, Sam Sik Kang, Sook Kyung Hyun, Jae Sue Choi. In vitro free radical and ONOO- scavengers from Sophora flavescens. Archives of pharmacal research. 2005 May; 28(5):534-40. doi: 10.1007/bf02977754. [PMID: 15974438]
  • Alcides J M da Silva, Antonio L Coelho, Alessandro B C Simas, Raphael A M Moraes, Diogo A Pinheiro, Fabrício F A Fernandes, Emerson Z Arruda, Paulo R R Costa, Paulo A Melo. Synthesis and pharmacological evaluation of prenylated and benzylated pterocarpans against snake venom. Bioorganic & medicinal chemistry letters. 2004 Jan; 14(2):431-5. doi: 10.1016/j.bmcl.2003.10.044. [PMID: 14698175]
  • Jeong An Park, Hyoung Ja Kim, Changbae Jin, Kyung-Tae Lee, Yong Sup Lee. A new pterocarpan, (-)-maackiain sulfate, from the roots of Sophora subprostrata. Archives of pharmacal research. 2003 Dec; 26(12):1009-13. doi: 10.1007/bf02994750. [PMID: 14723332]
  • E K Seo, N C Kim, Q Mi, H Chai, M E Wall, M C Wani, H A Navarro, J P Burgess, J G Graham, F Cabieses, G T Tan, N R Farnsworth, J M Pezzuto, A D Kinghorn. Macharistol, a new cytotoxic cinnamylphenol from the stems of Machaerium aristulatum. Journal of natural products. 2001 Nov; 64(11):1483-5. doi: 10.1021/np0103158. [PMID: 11720542]
  • M S Abdel-Kader. Phenolic constituents of Ononis vaginalis roots. Planta medica. 2001 Jun; 67(4):388-90. doi: 10.1055/s-2001-14325. [PMID: 11458469]
  • S Tebayashi , A Ishihara, H Iwamura. Elicitor-induced changes in isoflavonoid metabolism in red clover roots. Journal of experimental botany. 2001 Apr; 52(357):681-9. doi: 10.1093/jexbot/52.357.681. [PMID: 11413204]
  • T H Kang, S J Jeong, W G Ko, N Y Kim, B H Lee, M Inagaki, T Miyamoto, R Higuchi, Y C Kim. Cytotoxic lavandulyl flavanones from Sophora flavescens. Journal of natural products. 2000 May; 63(5):680-1. doi: 10.1021/np990567x. [PMID: 10843587]
  • L C Chang, C Gerhäuser, L Song, N R Farnsworth, J M Pezzuto, A D Kinghorn. Activity-guided isolation of constituents of Tephrosia purpurea with the potential to induce the phase II enzyme, quinone reductase. Journal of natural products. 1997 Sep; 60(9):869-73. doi: 10.1021/np970236p. [PMID: 9322358]
  • S Soby, R Bates, H van Etten. Oxidation of the phytoalexin maackiain to 6,6-dihydroxy-maackiain by Colletotrichum gloeosporioides. Phytochemistry. 1997 Jul; 45(5):925-9. doi: 10.1016/s0031-9422(97)00082-4. [PMID: 9214775]
  • S K Chaudhuri, L Huang, F Fullas, D M Brown, M C Wani, M E Wall. Isolation and structure identification of an active DNA strand-scission agent, (+)-3,4-di-hydroxy-8,9-methylenedioxypterocarpan. Journal of natural products. 1995 Dec; 58(12):1966-9. doi: 10.1021/np50126a030. [PMID: 8691215]
  • L Skinnider, A Stoessl. The effect of the phytoalexins, lubimin, (-)-maackiain, pinosylvin, and the related compounds dehydroloroglossol and hordatine M on human lymphoblastoid cell lines. Experientia. 1986 May; 42(5):568-70. doi: 10.1007/bf01946707. [PMID: 3709764]
  • H V Gelboin, D West, E Gozukara, S Natori, M Nagao, T Sugimura. (-)Maackiain acetate specifically inhibits different forms of aryl hydrocarbon hydroxylase in rat and man. Nature. 1981 Jun; 291(5817):659-61. doi: 10.1038/291659a0. [PMID: 7242671]
  • . . . . doi: . [PMID: 16504226]