Lipoxin B4 (BioDeep_00000006107)

 

Secondary id: BioDeep_00000629605

human metabolite Endogenous


代谢物信息卡片


(5S,14R,6E,8Z,10E,12E,15S)-5,14,15-Trihydroxy-6,8,10,12-eicosatetraenoic acid

化学式: C20H32O5 (352.225)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(plant) 10.24%

分子结构信息

SMILES: CCCCCC(C(C=CC=CC=CC=CC(CCCC(=O)O)O)O)O
InChI: InChI=1S/C20H32O5/c1-2-3-8-14-18(22)19(23)15-10-7-5-4-6-9-12-17(21)13-11-16-20(24)25/h4-7,9-10,12,15,17-19,21-23H,2-3,8,11,13-14,16H2,1H3,(H,24,25)/b6-4-,7-5+,12-9+,15-10+/t17-,18+,19-/m1/s1

描述信息

Lipoxins (LXs) and aspirin-triggered lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation. In addition to the well-appreciated ability of aspirin to inhibit PGs, aspirin also acetylates cyclooxygenase (COX)-2, triggering the formation of a 15-epimeric form of lipoxins, termed aspirin-triggered LXA4 (ATL). These eicosanoids (i.e. LXA4 and ATL) with a unique trihydroxytetraene structure function as stop signals in inflammation and actively participate in dampening host responses to bring the inflammation to a close, namely, resolution. LXA4 and ATL elicit the multicellular responses via a specific G protein-coupled receptor (GPCR) termed ALX that has been identified in human (PMID: 16968948, 11478982).
Lipoxins (LXs) and aspirin-triggered Lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation.
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
D000893 - Anti-Inflammatory Agents
D018501 - Antirheumatic Agents

同义名列表

24 个代谢物同义名

(5S,14R,6E,8Z,10E,12E,15S)-5,14,15-Trihydroxy-6,8,10,12-eicosatetraenoic acid; (5S,6E,8Z,10E,12E,14R,15S)-5,14,15-Trihydroxyeicosa-6,8,10,12-tetraenoic acid; (5S,6E,8Z,10E,12E,14R,15S)-5,14,15-Trihydroxyicosa-6,8,10,12-tetraenoic acid; (5S,6E,8Z,10E,12E,14R,15S)-5,14,15-Trihydroxyeicosa-6,8,10,12-tetraenoate; (5S,14R,6E,8Z,10E,12E,15S)-5,14,15-Trihydroxy-6,8,10,12-eicosatetraenoate; (5S,6E,8Z,10E,12E,14R,15S)-5,14,15-Trihydroxyicosa-6,8,10,12-tetraenoate; (6E,8Z,10E,12E)-(5S,14R,15S)-Trihydroxyicosa-6,8,10,12-tetraenoic acid; (6E,8Z,10E,12E)-(5S,14R,15S)-Trihydroxyicosa-6,8,10,12-tetraenoate; 5S,14R,15S-trihydroxy-6E,8Z,10E,12E-eicosatetraenoic acid; 5S,14R,15S-Trihydroxy-6E,8Z,10E,12E-eicosatetraenoate; 5D,14,15l-Trihydroxy-6,8,10,12-eicosatetraenoic acid; 5,14,15-trihydroxy-6,8,10,12-Eicosatetraenoic acid; 5S,14R,15S-6,10,12-trans-8-cis-TriHETE; 5S,14R,15S-8-cis-Lipoxin b; 5(S),14(R)-Lipoxin b4; 15-Epi-lipoxin b4; 5-Methyl-LXB4; 15-Epi-LXB(4); 5,14,15-Thet; lipoxin B4; LipoxinB4; lipoxin; LXB4; Lipoxin B4



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

3 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(3)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ALOX5, FPR1, FPR2, HPGD, PLA2G12A, PTGS2
Peripheral membrane protein 3 ALOX15, ALOX5, PTGS2
Endoplasmic reticulum membrane 1 PTGS2
cytosol 4 ALOX15, ALOX5, HPGD, PRKCQ
dendrite 1 THY1
nucleoplasm 2 ALOX5, HPGD
Cell membrane 11 ALOX15, C5AR1, CYSLTR2, FPR1, FPR2, ITGAM, ITGB2, LTB4R, SELP, THY1, TNF
Multi-pass membrane protein 5 C5AR1, CYSLTR2, FPR1, FPR2, LTB4R
cell surface 4 ITGAM, ITGB2, THY1, TNF
glutamatergic synapse 1 THY1
growth cone 1 THY1
neuronal cell body 1 TNF
postsynapse 1 THY1
Cytoplasm, cytosol 2 ALOX15, ALOX5
Presynapse 1 THY1
plasma membrane 13 ALOX15, C5AR1, CYSLTR2, F2, FPR1, FPR2, ITGAM, ITGB2, LTB4R, PRKCQ, SELP, THY1, TNF
Membrane 5 ALOX15, FPR1, FPR2, ITGAM, ITGB2
apical plasma membrane 1 THY1
basolateral plasma membrane 2 C5AR1, HPGD
caveola 1 PTGS2
extracellular exosome 6 F2, HPGD, ITGAM, ITGB2, SELP, THY1
endoplasmic reticulum 2 PTGS2, THY1
extracellular space 8 ALOX5, CXCL8, F2, IL10, IL4, ITGAM, SELP, TNF
perinuclear region of cytoplasm 1 ALOX5
protein-containing complex 1 PTGS2
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 3 ITGAM, ITGB2, SELP
Secreted 6 CXCL8, F2, IL10, IL4, PLA2G12A, SELP
extracellular region 9 ALOX5, CXCL8, F2, IL10, IL4, PLA2G12A, SELP, THY1, TNF
cytoplasmic side of plasma membrane 1 ALOX15
neuronal cell body membrane 1 THY1
centriolar satellite 1 PRKCQ
Nucleus membrane 1 ALOX5
nuclear membrane 1 ALOX5
external side of plasma membrane 5 ITGAM, ITGB2, SELP, THY1, TNF
Extracellular vesicle 1 ITGB2
cytoplasmic vesicle 1 C5AR1
apical part of cell 1 C5AR1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 1 ALOX5
Membrane raft 4 ITGAM, ITGB2, THY1, TNF
focal adhesion 2 ITGB2, THY1
axolemma 1 THY1
collagen-containing extracellular matrix 1 F2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 ITGB2
neuron projection 1 PTGS2
phagocytic cup 1 TNF
blood microparticle 1 F2
Lipid-anchor, GPI-anchor 1 THY1
nuclear envelope 1 ALOX5
Nucleus envelope 1 ALOX5
Lipid droplet 1 ALOX15
specific granule membrane 3 FPR2, ITGAM, ITGB2
tertiary granule membrane 3 FPR2, ITGAM, ITGB2
side of membrane 1 THY1
platelet dense granule membrane 1 SELP
plasma membrane raft 2 ITGAM, ITGB2
ficolin-1-rich granule lumen 1 ALOX5
secretory granule lumen 1 ALOX5
secretory granule membrane 2 C5AR1, FPR1
Golgi lumen 1 F2
endoplasmic reticulum lumen 2 F2, PTGS2
nuclear matrix 1 ALOX5
azurophil granule membrane 1 FPR1
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
Nucleus matrix 1 ALOX5
nuclear envelope lumen 1 ALOX5
ficolin-1-rich granule membrane 3 FPR1, FPR2, ITGB2
dendrite membrane 1 THY1
platelet alpha granule membrane 1 SELP
integrin complex 2 ITGAM, ITGB2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
platelet dense granule lumen 1 SELP
integrin alphaL-beta2 complex 1 ITGB2
integrin alphaM-beta2 complex 2 ITGAM, ITGB2
integrin alphaX-beta2 complex 1 ITGB2
Nucleus intermembrane space 1 ALOX5
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • C Frank Lee, Carla E Brown, Alexander J Nielsen, Changmo Kim, Izhar Livne-Bar, Philip J Parsons, Christophe Boldron, François Autelitano, Donald F Weaver, Jeremy M Sivak, Mark A Reed. A Stereocontrolled Total Synthesis of Lipoxin B4 and its Biological Activity as a Pro-Resolving Lipid Mediator of Neuroinflammation. Chemistry (Weinheim an der Bergstrasse, Germany). 2022 Jun; 28(35):e202200360. doi: 10.1002/chem.202200360. [PMID: 35491534]
  • Alejandro Cruz, Àngels González-Lafont, José M Lluch. Deciphering the Molecular Details of the Lipoxin Formation Mechanism in the 5(S),15(S)-DiHpETE Biosynthetic Pathway Catalyzed by Reticulocyte 15-Lipoxygenase-1. The journal of physical chemistry. B. 2020 12; 124(50):11406-11418. doi: 10.1021/acs.jpcb.0c09147. [PMID: 33274949]
  • Stephanie G Dakin, Romain A Colas, Kim Wheway, Bridget Watkins, Louise Appleton, Jonathan Rees, Stephen Gwilym, Christopher Little, Jesmond Dalli, Andrew J Carr. Proresolving Mediators LXB4 and RvE1 Regulate Inflammation in Stromal Cells from Patients with Shoulder Tendon Tears. The American journal of pathology. 2019 11; 189(11):2258-2268. doi: 10.1016/j.ajpath.2019.07.011. [PMID: 31437425]
  • Abigail R Green, Cody Freedman, Jennyfer Tena, Benjamin E Tourdot, Benjamin Liu, Michael Holinstat, Theodore R Holman. 5 S,15 S-Dihydroperoxyeicosatetraenoic Acid (5,15-diHpETE) as a Lipoxin Intermediate: Reactivity and Kinetics with Human Leukocyte 5-Lipoxygenase, Platelet 12-Lipoxygenase, and Reticulocyte 15-Lipoxygenase-1. Biochemistry. 2018 12; 57(48):6726-6734. doi: 10.1021/acs.biochem.8b00889. [PMID: 30407793]
  • Nina Kim, Katie L Lannan, Thomas H Thatcher, Stephen J Pollock, Collynn F Woeller, Richard P Phipps. Lipoxin B4 Enhances Human Memory B Cell Antibody Production via Upregulating Cyclooxygenase-2 Expression. Journal of immunology (Baltimore, Md. : 1950). 2018 12; 201(11):3343-3351. doi: 10.4049/jimmunol.1700503. [PMID: 30348736]
  • Kumiko Okada, Tetsuya Hosooka, Masakazu Shinohara, Wataru Ogawa. Modulation of lipid mediator profile may contribute to amelioration of chronic inflammation in adipose tissue of obese mice by pioglitazone. Biochemical and biophysical research communications. 2018 10; 505(1):29-35. doi: 10.1016/j.bbrc.2018.09.081. [PMID: 30236987]
  • Paul C Norris, Charles N Serhan. Metabololipidomic profiling of functional immunoresolvent clusters and eicosanoids in mammalian tissues. Biochemical and biophysical research communications. 2018 10; 504(3):553-561. doi: 10.1016/j.bbrc.2018.03.037. [PMID: 29524409]
  • Madhur P Motwani, Romain A Colas, Marc J George, Julia D Flint, Jesmond Dalli, Angela Richard-Loendt, Roel Ph De Maeyer, Charles N Serhan, Derek W Gilroy. Pro-resolving mediators promote resolution in a human skin model of UV-killed Escherichia coli-driven acute inflammation. JCI insight. 2018 03; 3(6):. doi: 10.1172/jci.insight.94463. [PMID: 29563331]
  • Izhar Livne-Bar, Jessica Wei, Hsin-Hua Liu, Samih Alqawlaq, Gah-Jone Won, Alessandra Tuccitto, Karsten Gronert, John G Flanagan, Jeremy M Sivak. Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury. The Journal of clinical investigation. 2017 12; 127(12):4403-4414. doi: 10.1172/jci77398. [PMID: 29106385]
  • Paul C Norris, Stephania Libreros, Nan Chiang, Charles N Serhan. A cluster of immunoresolvents links coagulation to innate host defense in human blood. Science signaling. 2017 Aug; 10(490):. doi: 10.1126/scisignal.aan1471. [PMID: 28765512]
  • Laurent Corcos, Danièle Lucas, Catherine Le Jossic-Corcos, Yvonne Dréano, Brigitte Simon, Emmanuelle Plée-Gautier, Yolande Amet, Jean-Pierre Salaün. Human cytochrome P450 4F3: structure, functions, and prospects. Drug metabolism and drug interactions. 2012 Apr; 27(2):63-71. doi: 10.1515/dmdi-2011-0037. [PMID: 22706230]
  • Maude Fer, Laurent Corcos, Yvonne Dréano, Emmanuelle Plée-Gautier, Jean-Pierre Salaün, François Berthou, Yolande Amet. Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. Journal of lipid research. 2008 Nov; 49(11):2379-89. doi: 10.1194/jlr.m800199-jlr200. [PMID: 18577768]
  • Shawn D Harmon, Xiang Fang, Terry L Kaduce, Shanming Hu, V Raj Gopal, John R Falck, Arthur A Spector. Oxygenation of omega-3 fatty acids by human cytochrome P450 4F3B: effect on 20-hydroxyeicosatetraenoic acid production. Prostaglandins, leukotrienes, and essential fatty acids. 2006 Sep; 75(3):169-77. doi: 10.1016/j.plefa.2006.05.005. [PMID: 16820285]
  • Charles N Serhan. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins, leukotrienes, and essential fatty acids. 2005 Sep; 73(3-4):141-62. doi: 10.1016/j.plefa.2005.05.002. [PMID: 16005201]
  • Valérie Le Quéré, Emmanuelle Plée-Gautier, Philippe Potin, Stéphanie Madec, Jean-Pierre Salaün. Human CYP4F3s are the main catalysts in the oxidation of fatty acid epoxides. Journal of lipid research. 2004 Aug; 45(8):1446-58. doi: 10.1194/jlr.m300463-jlr200. [PMID: 15145985]
  • Jason Goh, Catherine Godson, Hugh R Brady, Padraic Macmathuna. Lipoxins: pro-resolution lipid mediators in intestinal inflammation. Gastroenterology. 2003 Apr; 124(4):1043-54. doi: 10.1053/gast.2003.50154. [PMID: 12671901]
  • Timothy J Sontag, Robert S Parker. Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism. Novel mechanism of regulation of vitamin E status. The Journal of biological chemistry. 2002 Jul; 277(28):25290-6. doi: 10.1074/jbc.m201466200. [PMID: 11997390]
  • C N Serhan. Lipoxins and aspirin-triggered 15-epi-lipoxins are endogenous components of antiinflammation: emergence of the counterregulatory side. Archivum immunologiae et therapiae experimentalis. 2001; 49(3):177-88. doi: ". [PMID: 11478391]
  • M Sanak, B D Levy, C B Clish, N Chiang, K Gronert, L Mastalerz, C N Serhan, A Szczeklik. Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics. The European respiratory journal. 2000 Jul; 16(1):44-9. doi: 10.1034/j.1399-3003.2000.16a08.x. [PMID: 10933083]
  • Y Denizot, S Raher, F Trimoreau, V Praloran, A Godard. Effect of cytokines and lipid mediators on the synthesis of interleukin 1 beta by human bone marrow stromal cells. Cytokine. 2000 May; 12(5):499-502. doi: 10.1006/cyto.1999.0578. [PMID: 10857767]
  • D G Tang, Y Q Chen, K V Honn. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proceedings of the National Academy of Sciences of the United States of America. 1996 May; 93(11):5241-6. doi: 10.1073/pnas.93.11.5241. [PMID: 8643560]
  • A Papayianni, C N Serhan, H R Brady. Lipoxin A4 and B4 inhibit leukotriene-stimulated interactions of human neutrophils and endothelial cells. Journal of immunology (Baltimore, Md. : 1950). 1996 Mar; 156(6):2264-72. doi: . [PMID: 8690917]
  • C N Serhan, M Romano. Lipoxin biosynthesis and actions: role of the human platelet LX-synthase. Journal of lipid mediators and cell signalling. 1995 Oct; 12(2-3):293-306. doi: 10.1016/0929-7855(95)00035-o. [PMID: 8777573]
  • C Edenius, S Tornhamre, J A Lindgren. Stimulation of lipoxin synthesis from leukotriene A4 by endogenously formed 12-hydroperoxyeicosatetraenoic acid in activated human platelets. Biochimica et biophysica acta. 1994 Jan; 1210(3):361-7. doi: 10.1016/0005-2760(94)90241-0. [PMID: 8305492]
  • J A Lindgren, L Stenke, M Mansour, C Edenius, L Laurén, B Näsman-Glaser, I Ericsson, P Reizenstein. Formation and effects of leukotrienes and lipoxins in human bone marrow. Journal of lipid mediators. 1993 Mar; 6(1-3):313-20. doi: ". [PMID: 8357990]
  • B S Beckman, B P Despinasse, L Spriggs. Actions of lipoxins A4 and B4 on signal transduction events in Friend erythroleukemia cells. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1992 Nov; 201(2):169-73. doi: 10.3181/00379727-201-43495. [PMID: 1409732]
  • T Katoh, K Takahashi, D K DeBoer, C N Serhan, K F Badr. Renal hemodynamic actions of lipoxins in rats: a comparative physiological study. The American journal of physiology. 1992 Sep; 263(3 Pt 2):F436-42. doi: 10.1152/ajprenal.1992.263.3.f436. [PMID: 1415572]
  • M Hoedemaker, L A Lund, W C Wagner. Influence of arachidonic acid metabolites and steroids on function of bovine polymorphonuclear neutrophils. American journal of veterinary research. 1992 Sep; 53(9):1534-9. doi: NULL. [PMID: 1329587]
  • T K Uski, E D Högestätt. Effects of various cyclooxygenase and lipoxygenase metabolites on guinea-pig cerebral arteries. General pharmacology. 1992 Jan; 23(1):109-13. doi: 10.1016/0306-3623(92)90056-p. [PMID: 1592217]
  • K Takahashi, K F Badr. Functional significance of lipoxygenase metabolites of arachidonic acid in the glomerular microcirculation. Advances in prostaglandin, thromboxane, and leukotriene research. 1991; 21B(?):683-8. doi: NULL. [PMID: 1825397]
  • S Fiore, S Nigam, C N Serhan. Lipoxins trigger the release but not the oxygenation of arachidonic acid in human neutrophils: dissociation between lipid remodeling and adhesion. Advances in prostaglandin, thromboxane, and leukotriene research. 1991; 21B(?):553-6. doi: ". [PMID: 1825377]
  • S Nigam, S Fiore, F W Luscinskas, C N Serhan. Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: dissociation between lipid remodeling and adhesion. Journal of cellular physiology. 1990 Jun; 143(3):512-23. doi: 10.1002/jcp.1041430316. [PMID: 2162850]
  • S J Kim. Lipoxins formation by rat basophilic leukemia (RBL-1) cells. Research communications in chemical pathology and pharmacology. 1990 May; 68(2):159-74. doi: . [PMID: 2112773]
  • C F Ng, B K Lam, K A Pritchard, M B Stemerman, P Hejny, P Y Wong. Agonist-dependent generation of lipoxins from rat basophilic leukemia cell (RBL-1). Biochimica et biophysica acta. 1989 Aug; 1004(3):332-6. doi: 10.1016/0005-2760(89)90081-7. [PMID: 2503031]
  • R Garrick, S Y Shen, S Ogunc, P Y Wong. Transformation of leukotriene A4 to lipoxins by rat kidney mesangial cell. Biochemical and biophysical research communications. 1989 Jul; 162(2):626-33. doi: 10.1016/0006-291x(89)92356-5. [PMID: 2547366]
  • C F Ng, B K Lam, K A Pritchard, M B Stemerman, P Hejny, P Y Wong. Formation of lipoxins by rat basophilic leukemia cells. Advances in prostaglandin, thromboxane, and leukotriene research. 1989; 19(?):128-31. doi: ". [PMID: 2526456]
  • D E Sok, T S Phi, C H Jung, Y S Chung, J B Kang. Soybean lipoxygenase-catalyzed formation of lipoxin A and lipoxin B isomers from arachidonic acid via 5,15-dihydroperoxyeicosatetraenoic acid. Biochemical and biophysical research communications. 1988 Jun; 153(2):840-7. doi: 10.1016/s0006-291x(88)81172-0. [PMID: 3132921]
  • B Fitzsimmons, J Rokach. The lipoxins: synthesis and biosynthesis. Advances in experimental medicine and biology. 1988; 229(?):79-92. doi: 10.1007/978-1-4757-0937-7_7. [PMID: 3421159]
  • S Yamamoto, N Ueda, C Yokoyama, B J Fitzsimmons, J Rokach, J A Oates, A R Brash. Lipoxin syntheses by arachidonate 12- and 5-lipoxygenases purified from porcine leukocytes. Advances in experimental medicine and biology. 1988; 229(?):15-26. doi: 10.1007/978-1-4757-0937-7_2. [PMID: 3421157]
  • R Brasseur, C N Serhan, M Deleers. Computed conformational analysis of lipoxins and their ionic complexes. Advances in experimental medicine and biology. 1988; 229(?):93-106. doi: 10.1007/978-1-4757-0937-7_8. [PMID: 3421160]
  • N Ueda, C Yokoyama, S Yamamoto, B J Fitzsimmons, J Rokach, J A Oates, A R Brash. Lipoxin synthesis by arachidonate 12-lipoxygenase purified from porcine leukocytes. Biochemical and biophysical research communications. 1987 Dec; 149(3):1063-9. doi: 10.1016/0006-291x(87)90516-x. [PMID: 3122743]
  • J Rokach, B J Fitzsimmons, Y Leblanc, N Ueda, S Yamamoto. Recent progress in the chemistry and biochemistry of lipoxygenase products: the lipoxins. Advances in prostaglandin, thromboxane, and leukotriene research. 1987; 17B(?):761-7. doi: ". [PMID: 2960187]
  • C N Serhan, M Hamberg, B Samuelsson, J Morris, D G Wishka. On the stereochemistry and biosynthesis of lipoxin B. Proceedings of the National Academy of Sciences of the United States of America. 1986 Apr; 83(7):1983-7. doi: 10.1073/pnas.83.7.1983. [PMID: 3083410]
  • C N Serhan, M Hamberg, U Ramstedt, B Samuelsson. Lipoxins: stereochemistry, biosynthesis and biological activities. Advances in prostaglandin, thromboxane, and leukotriene research. 1986; 16(?):83-97. doi: ". [PMID: 2949567]
  • J Morris, D G Wishka. Synthesis of lipoxin B. Advances in prostaglandin, thromboxane, and leukotriene research. 1986; 16(?):99-109. doi: ". [PMID: 2949568]
  • B J Fitzsimmons, J Adams, J F Evans, Y Leblanc, J Rokach. The lipoxins. Stereochemical identification and determination of their biosynthesis. The Journal of biological chemistry. 1985 Oct; 260(24):13008-12. doi: 10.1016/s0021-9258(17)38829-4. [PMID: 2997152]
  • C N Serhan, P Fahlstadius, S E Dahlén, M Hamberg, B Samuelsson. Biosynthesis and biological activities of lipoxins. Advances in prostaglandin, thromboxane, and leukotriene research. 1985; 15(?):163-6. doi: ". [PMID: 2936084]
  • H S Ballard, A J Marcus. Platelet aggregation in portal cirrhosis. Archives of internal medicine. 1976 Mar; 136(3):316-9. doi: . [PMID: 4041]