14,15-DiHETrE (BioDeep_00000004029)
Secondary id: BioDeep_00001874525
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: C20H34O4 (338.2457)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 42.25%
分子结构信息
SMILES: C(/C=C\C/C=C\CCCC(=O)O)/C=C\CC(O)C(O)CCCCC
InChI: InChI=1S/C20H34O4/c1-2-3-12-15-18(21)19(22)16-13-10-8-6-4-5-7-9-11-14-17-20(23)24/h4,6-7,9-10,13,18-19,21-22H,2-3,5,8,11-12,14-17H2,1H3,(H,23,24)
描述信息
14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR ). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR . shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065) [HMDB]
14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR, shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065).
同义名列表
15 个代谢物同义名
(±)14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid; (5Z,8Z,11Z)-14,15-Dihydroxyeicosa-5,8,11-trienoic acid; (5Z,8Z,11Z)-14,15-Dihydroxyicosa-5,8,11-trienoic acid; (5Z,8Z,11Z)-14,15-Dihydroxyeicosa-5,8,11-trienoate; (5Z,8Z,11Z)-14,15-Dihydroxyicosa-5,8,11-trienoate; 14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid; 14,15-dihydroxyeicosa-5,8,11-trienoic acid; 14,15-Dihydroxy-5Z,8Z,11Z-eicosatrienoate; 14,15-Dihydroxyeicosatrienoic acid; 14,15-Dihydroxyeicosatrienoate; (±)14,15-DHET; (+/-)14,15-DiHETrE; 14,15-DiHETrE; FA 20:3;O2; 14,15-DHET
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:63966
- KEGG: C14775
- PubChem: 5283147
- PubChem: 133224
- HMDB: HMDB0002265
- Metlin: METLIN3835
- ChEMBL: CHEMBL7514
- LipidMAPS: LMFA03050010
- foodb: FDB022935
- chemspider: 4446271
- CAS: 192461-94-2
- CAS: 77667-09-5
- PMhub: MS000014736
- PubChem: 17395773
- NIKKAJI: J1.455.640K
- RefMet: 14,15-DiHETrE
- LOTUS: LTS0186562
- wikidata: Q27132938
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
47 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(46)
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
PharmGKB(0)
2 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1038/SREP37674
- 9606 - Homo sapiens: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Christian B Bergmann, Bruce D Hammock, Debin Wan, Falk Gogolla, Holly Goetzman, Charles C Caldwell, Dorothy M Supp. TPPU treatment of burned mice dampens inflammation and generation of bioactive DHET which impairs neutrophil function.
Scientific reports.
2021 08; 11(1):16555. doi:
10.1038/s41598-021-96014-2
. [PMID: 34400718] - Marcus O D Sjödin, Antonio Checa, Mingxing Yang, Sven-Erik Dahlén, Åsa M Wheelock, Anders Eklund, Johan Grunewald, Craig E Wheelock. Soluble epoxide hydrolase derived lipid mediators are elevated in bronchoalveolar lavage fluid from patients with sarcoidosis: a cross-sectional study.
Respiratory research.
2018 Dec; 19(1):236. doi:
10.1186/s12931-018-0939-0
. [PMID: 30509266] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Pinming Liu, Shaoling Zhang, Jingwei Gao, Ying Lin, Guangzi Shi, Wanbing He, Rhian M Touyz, Li Yan, Hui Huang. Downregulated Serum 14, 15-Epoxyeicosatrienoic Acid Is Associated With Abdominal Aortic Calcification in Patients With Primary Aldosteronism.
Hypertension (Dallas, Tex. : 1979).
2018 04; 71(4):592-598. doi:
10.1161/hypertensionaha.117.10644
. [PMID: 29440332] - Julia M Santos, Jung-A Park, Aby Joiakim, David A Putt, Robert N Taylor, Hyesook Kim. The role of soluble epoxide hydrolase in preeclampsia.
Medical hypotheses.
2017 Oct; 108(?):81-85. doi:
10.1016/j.mehy.2017.07.033
. [PMID: 29055406] - Kun Zhang, Yu Liu, Xiaoqiang Liu, Jie Chen, Qingqing Cai, Jingfeng Wang, Hui Huang. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids.
Oncotarget.
2015 Sep; 6(28):24699-708. doi:
10.18632/oncotarget.5084
. [PMID: 26322503] - Shasha Zhang, Guangzhi Chen, Ning Li, Meiyan Dai, Chen Chen, Peihua Wang, Huiru Tang, Samantha L Hoopes, Darryl C Zeldin, Dao Wen Wang, Xizhen Xu. CYP2J2 overexpression ameliorates hyperlipidemia via increased fatty acid oxidation mediated by the AMPK pathway.
Obesity (Silver Spring, Md.).
2015 Jul; 23(7):1401-13. doi:
10.1002/oby.21115
. [PMID: 26053032] - Jonathan W Nelson, Jennifer M Young, Rohan N Borkar, Randy L Woltjer, Joseph F Quinn, Lisa C Silbert, Marjorie R Grafe, Nabil J Alkayed. Role of soluble epoxide hydrolase in age-related vascular cognitive decline.
Prostaglandins & other lipid mediators.
2014 Oct; 113-115(?):30-7. doi:
10.1016/j.prostaglandins.2014.09.003
. [PMID: 25277097] - Tian Yang, Ran Peng, Yuan Guo, Li Shen, Shuiping Zhao, Danyan Xu. The role of 14,15-dihydroxyeicosatrienoic acid levels in inflammation and its relationship to lipoproteins.
Lipids in health and disease.
2013 Oct; 12(?):151. doi:
10.1186/1476-511x-12-151
. [PMID: 24148690] - Patricia L Podolin, Brian J Bolognese, Joseph F Foley, Edward Long, Brian Peck, Sandra Umbrecht, Xiaojun Zhang, Penny Zhu, Benjamin Schwartz, Wensheng Xie, Chad Quinn, Hongwei Qi, Sharon Sweitzer, Stephanie Chen, Marc Galop, Yun Ding, Svetlana L Belyanskaya, David I Israel, Barry A Morgan, David J Behm, Joseph P Marino, Edit Kurali, Mary S Barnette, Ruth J Mayer, Catherine L Booth-Genthe, James F Callahan. In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhibitor.
Prostaglandins & other lipid mediators.
2013 Jul; 104-105(?):25-31. doi:
10.1016/j.prostaglandins.2013.02.001
. [PMID: 23434473] - Ketul R Chaudhary, Beshay N M Zordoky, Matthew L Edin, Nasser Alsaleh, Ayman O S El-Kadi, Darryl C Zeldin, John M Seubert. Differential effects of soluble epoxide hydrolase inhibition and CYP2J2 overexpression on postischemic cardiac function in aged mice.
Prostaglandins & other lipid mediators.
2013 Jul; 104-105(?):8-17. doi:
10.1016/j.prostaglandins.2012.08.001
. [PMID: 22922020] - Lingdan Chen, Cheng Fan, Yi Zhang, Mahinur Bakri, Hua Dong, Christophe Morisseau, Krishna Rao Maddipati, Pengcheng Luo, Cong-Yi Wang, Bruce D Hammock, Mong-Heng Wang. Beneficial effects of inhibition of soluble epoxide hydrolase on glucose homeostasis and islet damage in a streptozotocin-induced diabetic mouse model.
Prostaglandins & other lipid mediators.
2013 Jul; 104-105(?):42-8. doi:
10.1016/j.prostaglandins.2012.12.001
. [PMID: 23247129] - Kenneth I Strauss, Artiom Gruzdev, Darryl C Zeldin. Altered behavioral phenotypes in soluble epoxide hydrolase knockout mice: effects of traumatic brain injury.
Prostaglandins & other lipid mediators.
2013 Jul; 104-105(?):18-24. doi:
10.1016/j.prostaglandins.2012.07.005
. [PMID: 22922090] - Akinyemi Oni-Orisan, Yangmei Deng, Robert N Schuck, Katherine N Theken, Matthew L Edin, Fred B Lih, Kimberly Molnar, Laura DeGraff, Kenneth B Tomer, Darryl C Zeldin, Craig R Lee. Dual modulation of cyclooxygenase and CYP epoxygenase metabolism and acute vascular inflammation in mice.
Prostaglandins & other lipid mediators.
2013 Jul; 104-105(?):67-73. doi:
10.1016/j.prostaglandins.2012.09.003
. [PMID: 23000418] - Gang Zhao, Ling Tu, Xuguang Li, Shenglan Yang, Chen Chen, Xizhen Xu, Peihua Wang, Dao Wen Wang. Delivery of AAV2-CYP2J2 protects remnant kidney in the 5/6-nephrectomized rat via inhibition of apoptosis and fibrosis.
Human gene therapy.
2012 Jul; 23(7):688-99. doi:
10.1089/hum.2011.135
. [PMID: 22260463] - Katherine N Theken, Robert N Schuck, Matthew L Edin, Bryant Tran, Kyle Ellis, Almasa Bass, Fred B Lih, Kenneth B Tomer, Samuel M Poloyac, Michael C Wu, Alan L Hinderliter, Darryl C Zeldin, George A Stouffer, Craig R Lee. Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease.
Atherosclerosis.
2012 Jun; 222(2):530-6. doi:
10.1016/j.atherosclerosis.2012.03.022
. [PMID: 22503544] - Gang Zhao, Jianing Wang, Xizhen Xu, Yanyan Jing, Ling Tu, Xuguang Li, Chen Chen, Katherine Cianflone, Peihua Wang, Ryan T Dackor, Darryl C Zeldin, Dao Wen Wang. Epoxyeicosatrienoic acids protect rat hearts against tumor necrosis factor-α-induced injury.
Journal of lipid research.
2012 Mar; 53(3):456-466. doi:
10.1194/jlr.m017319
. [PMID: 22223859] - Rose M Giordano, John W Newman, Theresa L Pedersen, Marisa I Ramos, Charles L Stebbins. Effects of dynamic exercise on plasma arachidonic acid epoxides and diols in human volunteers.
International journal of sport nutrition and exercise metabolism.
2011 Dec; 21(6):471-9. doi:
10.1123/ijsnem.21.6.471
. [PMID: 22089302] - Penny Zhu, Brian Peck, Hermes Licea-Perez, James F Callahan, Catherine Booth-Genthe. Development of a semi-automated LC/MS/MS method for the simultaneous quantitation of 14,15-epoxyeicosatrienoic acid, 14,15-dihydroxyeicosatrienoic acid, leukotoxin and leukotoxin diol in human plasma as biomarkers of soluble epoxide hydrolase activity in vivo.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Sep; 879(25):2487-93. doi:
10.1016/j.jchromb.2011.06.042
. [PMID: 21798825] - Changlong Zheng, Luyun Wang, Rui Li, Ben Ma, Ling Tu, Xizhen Xu, Ryan T Dackor, Darryl C Zeldin, Dao Wen Wang. Gene delivery of cytochrome p450 epoxygenase ameliorates monocrotaline-induced pulmonary artery hypertension in rats.
American journal of respiratory cell and molecular biology.
2010 Dec; 43(6):740-9. doi:
10.1165/rcmb.2009-0161oc
. [PMID: 20118222] - Bin Xiao, Xuguang Li, Jiangtao Yan, Xuefeng Yu, Guangtian Yang, Xiao Xiao, James W Voltz, Darryl C Zeldin, Dao Wen Wang. Overexpression of cytochrome P450 epoxygenases prevents development of hypertension in spontaneously hypertensive rats by enhancing atrial natriuretic peptide.
The Journal of pharmacology and experimental therapeutics.
2010 Sep; 334(3):784-94. doi:
10.1124/jpet.110.167510
. [PMID: 20501636] - Xizhen Xu, Chun Xia Zhao, Luyun Wang, Ling Tu, Xiaosai Fang, Changlong Zheng, Matthew L Edin, Darryl C Zeldin, Dao Wen Wang. Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice.
Diabetes.
2010 Apr; 59(4):997-1005. doi:
10.2337/db09-1241
. [PMID: 20068141] - Wenri Zhang, Jeffrey J Iliff, Caitlyn J Campbell, Ruikang K Wang, Patricia D Hurn, Nabil J Alkayed. Role of soluble epoxide hydrolase in the sex-specific vascular response to cerebral ischemia.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
2009 Aug; 29(8):1475-81. doi:
10.1038/jcbfm.2009.65
. [PMID: 19471280] - Sarbani Ghosh, Po-Chang Chiang, Jan L Wahlstrom, Hideji Fujiwara, Jon G Selbo, Steven L Roberds. Oral delivery of 1,3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats.
Basic & clinical pharmacology & toxicology.
2008 May; 102(5):453-8. doi:
10.1111/j.1742-7843.2008.00213.x
. [PMID: 18312493] - Xiang Fang, Shanming Hu, Bingkun Xu, Gary D Snyder, Shawn Harmon, Jianrong Yao, Yi Liu, Bhavani Sangras, J R Falck, Neal L Weintraub, Arthur A Spector. 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-alpha.
American journal of physiology. Heart and circulatory physiology.
2006 Jan; 290(1):H55-63. doi:
10.1152/ajpheart.00427.2005
. [PMID: 16113065] - Xiang Fang, Neal L Weintraub, Ryan B McCaw, Shanming Hu, Shawn D Harmon, James B Rice, Bruce D Hammock, Arthur A Spector. Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels.
American journal of physiology. Heart and circulatory physiology.
2004 Dec; 287(6):H2412-20. doi:
10.1152/ajpheart.00527.2004
. [PMID: 15284062] - Martin Spiecker, Harald Darius, Thomas Hankeln, Muhidien Soufi, Alexander M Sattler, Jürgen R Schaefer, Koichi Node, Jan Börgel, Andreas Mügge, Klaus Lindpaintner, Anika Huesing, Bernhard Maisch, Darryl C Zeldin, James K Liao. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2.
Circulation.
2004 Oct; 110(15):2132-6. doi:
10.1161/01.cir.0000143832.91812.60
. [PMID: 15466638] - N L Weintraub, X Fang, T L Kaduce, M VanRollins, P Chatterjee, A A Spector. Epoxide hydrolases regulate epoxyeicosatrienoic acid incorporation into coronary endothelial phospholipids.
The American journal of physiology.
1999 11; 277(5):H2098-108. doi:
10.1152/ajpheart.1999.277.5.h2098
. [PMID: 10564166] - C L Oltman, N L Weintraub, M VanRollins, K C Dellsperger. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation.
Circulation research.
1998 Nov; 83(9):932-9. doi:
10.1161/01.res.83.9.932
. [PMID: 9797342]