Trifolirhizin (BioDeep_00000018697)

 

Secondary id: BioDeep_00000003613, BioDeep_00000230242, BioDeep_00000270493, BioDeep_00000270770

human metabolite PANOMIX_OTCML-2023 Antitumor activity natural product


代谢物信息卡片


2-(hydroxymethyl)-6-{5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2(10),3,8,13,15,17-hexaen-16-yloxy}oxane-3,4,5-triol

化学式: C22H22O10 (446.1213)
中文名称: 三叶豆紫檀苷, 红车轴草根甙
谱图信息: 最多检出来源 Viridiplantae(plant) 17.38%

分子结构信息

SMILES: C1C2C(C3=C(O1)C=C(C=C3)OC4C(C(C(C(O4)CO)O)O)O)OC5=CC6=C(C=C25)OCO6
InChI: InChI=1S/C22H22O10/c23-6-17-18(24)19(25)20(26)22(32-17)30-9-1-2-10-13(3-9)27-7-12-11-4-15-16(29-8-28-15)5-14(11)31-21(10)12/h1-5,12,17-26H,6-8H2

描述信息

Maackiain O-beta-D-galactopyranoside is found in herbs and spices. Maackiain O-beta-D-galactopyranoside is isolated from Trifolium pratense (red clover).
Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2].
Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2].

同义名列表

5 个代谢物同义名

2-(hydroxymethyl)-6-{5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2(10),3,8,13,15,17-hexaen-16-yloxy}oxane-3,4,5-triol; (-)-Maackiain 3-O-glucoside; Sophojaponicin B1; Trifolirhizin; Trifolirhizin



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

3 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(3)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

82 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 AIMP2, ANXA5, CTNNB1, EGFR, MAPK8, MMP3, MTOR, NLRP3, PIK3CA, PRKAA2, PTGS2, RUNX2, SPN, TXNIP, TYR
Peripheral membrane protein 4 ANXA5, HK1, MTOR, PTGS2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 3 EGFR, MTOR, PTGS2
Nucleus 10 AIMP2, CTNNB1, EGFR, MAPK8, MMP3, MTOR, NLRP3, PRKAA2, RUNX2, SPN
cytosol 12 AIMP2, ANXA5, CTNNB1, HK1, MAPK8, MMP3, MTOR, NLRP3, PIK3CA, PRKAA2, RUNX2, TXNIP
dendrite 2 MTOR, PRKAA2
phagocytic vesicle 1 MTOR
centrosome 1 CTNNB1
nucleoplasm 6 CTNNB1, MAPK8, MTOR, PRKAA2, RUNX2, SPN
Cell membrane 2 CTNNB1, EGFR
Cytoplasmic side 1 MTOR
lamellipodium 2 CTNNB1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 2 MTOR, NLRP3
Synapse 2 CTNNB1, MAPK8
cell cortex 1 CTNNB1
cell junction 2 CTNNB1, EGFR
cell surface 2 EGFR, SPN
glutamatergic synapse 2 CTNNB1, EGFR
Golgi apparatus 1 PRKAA2
Golgi membrane 3 EGFR, MTOR, NLRP3
lysosomal membrane 1 MTOR
neuronal cell body 1 PRKAA2
presynaptic membrane 1 CTNNB1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 3 AIMP2, HK1, NLRP3
Lysosome 2 MTOR, TYR
endosome 1 EGFR
plasma membrane 4 CTNNB1, EGFR, PIK3CA, SPN
Membrane 8 AIMP2, ANXA5, CTNNB1, EGFR, MTOR, NLRP3, PRKAA2, SPN
apical plasma membrane 1 EGFR
axon 2 MAPK8, PRKAA2
basolateral plasma membrane 2 CTNNB1, EGFR
caveola 1 PTGS2
extracellular exosome 5 ANXA5, BMP3, CTNNB1, MMP9, SPN
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 NLRP3, PTGS2
extracellular space 7 BMP3, EGFR, IL6, MMP1, MMP3, MMP9, SPN
perinuclear region of cytoplasm 4 CTNNB1, EGFR, PIK3CA, TYR
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 3 HK1, MMP3, NLRP3
protein-containing complex 3 CTNNB1, EGFR, PTGS2
intracellular membrane-bounded organelle 1 TYR
Microsome membrane 2 MTOR, PTGS2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 3 EGFR, SPN, TYR
Secreted 4 BMP3, IL6, MMP3, NLRP3
extracellular region 8 ANXA5, BMP3, IL6, MMP1, MMP3, MMP9, NLRP3, SPN
Mitochondrion outer membrane 2 HK1, MTOR
mitochondrial outer membrane 2 HK1, MTOR
transcription regulator complex 2 CTNNB1, RUNX2
nuclear membrane 1 EGFR
external side of plasma membrane 2 ANXA5, SPN
Secreted, extracellular space, extracellular matrix 2 MMP1, MMP9
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
Wnt signalosome 1 CTNNB1
Melanosome membrane 1 TYR
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
Golgi-associated vesicle 1 TYR
postsynaptic membrane 1 CTNNB1
Membrane raft 2 EGFR, HK1
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 3 ANXA5, CTNNB1, EGFR
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
extracellular matrix 2 MMP1, MMP3
basement membrane 1 SPN
intracellular vesicle 1 EGFR
Nucleus, PML body 2 MTOR, SPN
PML body 2 MTOR, SPN
collagen-containing extracellular matrix 2 ANXA5, MMP9
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
nuclear speck 1 PRKAA2
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 EGFR
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 2 RUNX2, SPN
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
fibrillar center 1 SPN
nuclear envelope 1 MTOR
Endomembrane system 3 CTNNB1, MTOR, NLRP3
microvillus 1 SPN
microtubule organizing center 1 NLRP3
Cell projection, microvillus 1 SPN
Melanosome 1 TYR
cytoplasmic stress granule 1 PRKAA2
euchromatin 1 CTNNB1
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 MMP9
endoplasmic reticulum lumen 2 IL6, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
tertiary granule lumen 1 MMP9
beta-catenin-TCF complex 1 CTNNB1
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGFR
uropod 1 SPN
protein-DNA complex 1 CTNNB1
basal dendrite 1 MAPK8
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Cell projection, uropodium 1 SPN
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
interleukin-6 receptor complex 1 IL6
endothelial microparticle 1 ANXA5
beta-catenin-TCF7L2 complex 1 CTNNB1
[CD43 cytoplasmic tail]: Nucleus 1 SPN
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Hyung-Mun Yun, Mi Hyeon Cho, Hoibin Jeong, Soo Hyun Kim, Yun Hee Jeong, Kyung-Ran Park. Osteogenic Activities of Trifolirhizin as a Bioactive Compound for the Differentiation of Osteogenic Cells. International journal of molecular sciences. 2023 Dec; 24(23):. doi: 10.3390/ijms242317103. [PMID: 38069425]
  • Xing Jiang, Haihui Yin, Wenqing Su, Haiyan Quan, Xinye Yuan, Xu Feng, Pei Li, Yan He, Junhui Xiao, Rong Li. Trifolirhizin inhibits proliferation, migration and invasion in nasopharyngeal carcinoma cells via PI3K/Akt signaling pathway suppression. Biochemical and biophysical research communications. 2023 May; 667(?):111-119. doi: 10.1016/j.bbrc.2023.05.030. [PMID: 37216826]
  • Qing Zhang, Shufang Wang, Shanyun Ji. Trifolirhizin regulates the balance of Th17/Treg cells and inflammation in the ulcerative colitis mice through inhibiting the TXNIP-mediated activation of NLRP3 inflammasome. Clinical and experimental pharmacology & physiology. 2022 08; 49(8):787-796. doi: 10.1111/1440-1681.13654. [PMID: 35575951]
  • Guangfei Wei, Yongzhong Chen, Xiaotong Guo, Jianhe Wei, Linlin Dong, Shilin Chen. Biosyntheses characterization of alkaloids and flavonoids in Sophora flavescens by combining metabolome and transcriptome. Scientific reports. 2021 04; 11(1):7388. doi: 10.1038/s41598-021-86970-0. [PMID: 33795823]
  • Jin-Qiang Li, Chao-Jiang Xiao, Ye-Meng Li, Xin-Yan Tian, Xiang Dong, Bei Jiang. Astrernestin, a novel aurone-phenylpropanoid adduct from the roots of Astragalus ernestii. Natural product research. 2020 Oct; 34(20):2894-2899. doi: 10.1080/14786419.2019.1596101. [PMID: 30990071]
  • Soyoung Kim, Yu Jeong Jeong, Su Hyun Park, Sung-Chul Park, Saet Buyl Lee, Jiyoung Lee, Suk Weon Kim, Bo-Keun Ha, Hyun-Soon Kim, HyeRan Kim, Young Bae Ryu, Jae Cheol Jeong, Cha Young Kim. The Synergistic Effect of Co-Treatment of Methyl Jasmonate and Cyclodextrins on Pterocarpan Production in Sophora flavescens Cell Cultures. International journal of molecular sciences. 2020 May; 21(11):. doi: 10.3390/ijms21113944. [PMID: 32486319]
  • Xinzhou Yang, Shihao Deng, Mi Huang, Jialin Wang, Li Chen, Mingrui Xiong, Jie Yang, Sijiang Zheng, Xinhua Ma, Ping Zhao, Yunjiang Feng. Chemical constituents from Sophora tonkinensis and their glucose transporter 4 translocation activities. Bioorganic & medicinal chemistry letters. 2017 03; 27(6):1463-1466. doi: 10.1016/j.bmcl.2017.01.078. [PMID: 28236591]
  • Xingang Lu, Jianxia Ma, Hongfu Qiu, Liu Yang, Lei Cao, Jie Shen. Anti-proliferation effects of trifolirhizin on MKN45 cells and possible mechanism. Oncology reports. 2016 Nov; 36(5):2785-2792. doi: 10.3892/or.2016.5125. [PMID: 27666116]
  • Taijun Yin, Guanyi Yang, Yong Ma, Beibei Xu, Ming Hu, Ming You, Song Gao. Developing an activity and absorption-based quality control platform for Chinese traditional medicine: Application to Zeng-Sheng-Ping(Antitumor B). Journal of ethnopharmacology. 2015 Aug; 172(?):195-201. doi: 10.1016/j.jep.2015.06.019. [PMID: 26099633]
  • Jaeyoung Kwon, Sunita Basnet, Jin Woo Lee, Eun-Kyoung Seo, Nanzad Tsevegsuren, Bang Yeon Hwang, Dongho Lee. Chemical constituents isolated from the Mongolian medicinal plant Sophora alopecuroides L. and their inhibitory effects on LPS-induced nitric oxide production in RAW 264.7 macrophages. Bioorganic & medicinal chemistry letters. 2015 Aug; 25(16):3314-8. doi: 10.1016/j.bmcl.2015.05.062. [PMID: 26073007]
  • Kong-hai Ni, Zheng-de Wen, Xin-ce Huang, Chen-xi Wang, Tian-tian Ye, Guo-xin Hu, Meng-tao Zhou. Determination of trifolirhizin in rat plasma by UPLC: Application to a pharmacokinetic study. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2015 May; 990(?):181-4. doi: 10.1016/j.jchromb.2015.03.031. [PMID: 25880690]
  • Soo Min Jang, Soo Hyeon Bae, Woong-Kee Choi, Jung Bae Park, Doyun Kim, Jee Sun Min, Hunseung Yoo, Minseok Kang, Keun Ho Ryu, Soo Kyung Bae. Pharmacokinetic properties of trifolirhizin, (-)-maackiain, (-)-sophoranone and 2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran after intravenous and oral administration of Sophora tonkinensis extract in rats. Xenobiotica; the fate of foreign compounds in biological systems. 2015; 45(12):1092-104. doi: 10.3109/00498254.2015.1041181. [PMID: 26068519]
  • Hunseung Yoo, Keun Ho Ryu, Soo Kyung Bae, Jinwoong Kim. Simultaneous determination of trifolirhizin, (-)-maackiain, (-)-sophoranone, and 2-(2,4-dihydroxyphenyl)-5,6-methylenedioxybenzofuran from Sophora tonkinensis in rat plasma by liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. Journal of separation science. 2014 Nov; 37(22):3235-44. doi: 10.1002/jssc.201400691. [PMID: 25156071]
  • Nan Yang, Banghao Liang, Kamal Srivastava, Jia Zeng, Jixun Zhan, LaVerne Brown, Hugh Sampson, Joseph Goldfarb, Charles Emala, Xiu-Min Li. The Sophora flavescens flavonoid compound trifolirhizin inhibits acetylcholine induced airway smooth muscle contraction. Phytochemistry. 2013 Nov; 95(?):259-267. doi: 10.1016/j.phytochem.2013.07.023. [PMID: 23993294]
  • Chi Zhang, Yue Ma, Hui-Min Gao, Xiao-Qian Liu, Liang-Mian Chen, Qi-Wei Zhang, Zhi-Min Wang, An-Ping Li. [Non-alkaloid components from Sophora flavescens]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2013 Oct; 38(20):3520-4. doi: . [PMID: 24490565]
  • Quan Liu, Rui Xu, Zhiqiang Yan, Hui Jin, Haiyan Cui, Liqin Lu, Denghong Zhang, Bo Qin. Phytotoxic allelochemicals from roots and root exudates of Trifolium pratense. Journal of agricultural and food chemistry. 2013 Jul; 61(26):6321-7. doi: 10.1021/jf401241e. [PMID: 23738849]
  • Maged S Abdel-Kader. Preliminary pharmacological study of the pterocarpans macckian and trifolirhizin isolated from the roots of Ononis vaginalis. Pakistan journal of pharmaceutical sciences. 2010 Apr; 23(2):182-7. doi: . [PMID: 20363697]
  • Huiping Zhou, Herman Lutterodt, Zhihong Cheng, Liangli Lucy Yu. Anti-Inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots. Journal of agricultural and food chemistry. 2009 Jun; 57(11):4580-5. doi: 10.1021/jf900340b. [PMID: 19402641]
  • Sook Kyung Hyun, Won-Hee Lee, Da Mi Jeong, Youngsoo Kim, Jae Sue Choi. Inhibitory effects of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synthesis. Biological & pharmaceutical bulletin. 2008 Jan; 31(1):154-8. doi: 10.1248/bpb.31.154. [PMID: 18175961]
  • Guang-zhu Jin, Hui-shun Piao. [Studies on chemical constituents from roots of Caragana microphylla]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2007 Apr; 32(8):698-700. doi: . [PMID: 17608223]
  • E R Woo, J H Kwak, H J Kim, H Park. A new prenylated flavonol from the roots of Sophora flavescens. Journal of natural products. 1998 Dec; 61(12):1552-4. doi: 10.1021/np980103j. [PMID: 9868163]