Saponarin (BioDeep_00000000948)

natural product PANOMIX_OTCML-2023


代谢物信息卡片


5-hydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

化学式: C27H30O15 (594.1585)
中文名称: 皂草甙, 皂草苷
谱图信息: 最多检出来源 Viridiplantae(plant) 19.02%

分子结构信息

SMILES: C1(O[C@H]2[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O2)=CC2OC(C3C=CC(O)=CC=3)=CC(=O)C=2C(O)=C1[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1
InChI: InChI=1/C27H30O15/c28-7-15-19(32)22(35)24(37)26(40-15)18-14(41-27-25(38)23(36)20(33)16(8-29)42-27)6-13-17(21(18)34)11(31)5-12(39-13)9-1-3-10(30)4-2-9/h1-6,15-16,19-20,22-30,32-38H,7-8H2/t15-,16-,19-,20-,22+,23+,24-,25-,26+,27-/m1/s1

描述信息

7-O-(beta-D-glucosyl)isovitexin is a C-glycosyl compound that is isovitexin in which the hydroxyl hydrogen at position 7 is replaced by a beta-D-glucosyl residue. It has a role as a metabolite. It is a C-glycosyl compound, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an isovitexin.
Saponarin is a natural product found in Hibiscus syriacus, Moraea sisyrinchium, and other organisms with data available.
Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3].
Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3].

同义名列表

32 个代谢物同义名

5-hydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one; 5-hydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-7-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one; 5-hydroxy-2-(4-hydroxyphenyl)-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]-7-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; 5-hydroxy-2-(4-hydroxyphenyl)-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-7-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; 4H-1-Benzopyran-4-one, 3-((6-O-(6-deoxy-beta-L-mannofuranosyl)-beta-O-galactofuranosyl)oxy)-7-((6-deoxy-beta-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-; (1S)-1,5-anhydro-1-[7-(beta-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-6-yl]-D-glucitol; 4H-1-Benzopyran-4-one, 6-.beta.-D-glucopyranosyl-7-(.beta.-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)-; 6-.BETA.-D-GLUCOPYRANOSYL-7-(.BETA.-D-GLUCOPYRANOSYLOXY)-5-HYDROXY-2-(4-HYDROXYPHENYL)-4H-1-BENZOPYRAN-4-ONE; ISOVITEXIN 7-.BETA.-D-GLUCOPYRANOSIDE; Isovitexin-7-O-beta-D-glucopyranoside; apigenin 6-C-glucosyl-7-O-glucoside; 6-C-GLUCOSYL-7-O-GLUCOSYLAPIGENIN; ISOVITEXIN 7-.BETA.-D-GLUCOSIDE; 7-O-(beta-D-glucosyl)isovitexin; HGUVPEBGCAVWID-KETMJRJWSA-N; Saponaretin-7-O-glucoside; Isovitexin-7-O-glucoside; isovitexin 7-O-glucoside; ISOVITEXIN 7-GLUCOSIDE; 7-O-GLUCOSYLISOVITEXIN; SAPONARIN [MI]; Petrocomoside; Saponarin; AC1L9B2G; 5-hydroxy-2-(4-hydroxyphenyl)-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-7-[[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone; 5-hydroxy-2-(4-hydroxyphenyl)-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-methylol-tetrahydropyran-2-yl]-7-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-methylol-tetrahydropyran-2-yl]oxy-chromone; 5-hydroxy-2-(4-hydroxyphenyl)-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-7-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-chromen-4-one; 20310-89-8; C08064; 4,5-Dihydroxy-6- (beta-D-glucopyranosyl) -7- (beta-D-glucopyranosyloxy) flavone; Apigenin-6-C-glucoside -7-O-glucoside; Saponarin



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

107 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 AIMP2, HPGDS, NOS3, PTGS2, STAT1, TLR4
Peripheral membrane protein 1 PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 2 CD4, PTGS2
Nucleus 3 AIMP2, NOS3, STAT1
cytosol 5 AIMP2, GSR, HPGDS, NOS3, STAT1
dendrite 1 STAT1
nucleoplasm 3 HPGDS, NOS3, STAT1
RNA polymerase II transcription regulator complex 1 STAT1
Cell membrane 4 CD4, CD8A, TLR4, TNF
cell surface 2 TLR4, TNF
Golgi apparatus 1 NOS3
Golgi membrane 2 INS, NOS3
lysosomal membrane 2 EGF, GAA
neuronal cell body 1 TNF
Cytoplasm, cytosol 1 AIMP2
Lysosome 1 GAA
plasma membrane 9 BCHE, CD4, CD8A, EGF, GAA, IFNLR1, NOS3, TLR4, TNF
Membrane 5 AIMP2, EGF, GAA, IFNLR1, TLR4
axon 1 STAT1
caveola 2 NOS3, PTGS2
extracellular exosome 4 EGF, GAA, GSR, HP
Lysosome membrane 1 GAA
endoplasmic reticulum 1 PTGS2
extracellular space 9 BCHE, EGF, HP, IL10, IL2, IL4, IL6, INS, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 3 NOS3, STAT1, TLR4
mitochondrion 1 GSR
protein-containing complex 2 PTGS2, STAT1
intracellular membrane-bounded organelle 2 GAA, HPGDS
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 4 CD4, CD8A, IFNLR1, TLR4
Secreted 8 BCHE, GAA, HP, IL10, IL2, IL4, IL6, INS
extracellular region 11 BCHE, CD8A, EGF, GAA, HP, IL10, IL2, IL4, IL6, INS, TNF
[Isoform 2]: Secreted 1 CD8A
mitochondrial matrix 1 GSR
external side of plasma membrane 5 CD4, CD8A, GSR, TLR4, TNF
nucleolus 1 STAT1
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
Early endosome 2 CD4, TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 2 CD4, TNF
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 CD8A, TLR4
neuron projection 1 PTGS2
chromatin 1 STAT1
phagocytic cup 2 TLR4, TNF
cytoskeleton 1 NOS3
blood microparticle 2 BCHE, HP
endosome lumen 1 INS
tertiary granule membrane 1 GAA
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
lipopolysaccharide receptor complex 1 TLR4
plasma membrane raft 1 CD8A
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 5 BCHE, CD4, IL6, INS, PTGS2
platelet alpha granule lumen 1 EGF
specific granule lumen 1 HP
tertiary granule lumen 1 HP
endocytic vesicle membrane 1 NOS3
transport vesicle 1 INS
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
nuclear envelope lumen 1 BCHE
clathrin-coated endocytic vesicle membrane 2 CD4, EGF
ficolin-1-rich granule membrane 1 GAA
[Isoform 1]: Cell membrane 1 CD8A
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
endocytic vesicle lumen 1 HP
haptoglobin-hemoglobin complex 1 HP
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 2 CD4, CD8A
interleukin-6 receptor complex 1 IL6
autolysosome lumen 1 GAA
ISGF3 complex 1 STAT1
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Yu Ri Kim, Sun Young Lee, So Min Lee, Insop Shim, Mi Young Lee. Effect of Hibiscus syriacus Linnaeus extract and its active constituent, saponarin, in animal models of stress-induced sleep disturbances and pentobarbital-induced sleep. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Feb; 146(?):112301. doi: 10.1016/j.biopha.2021.112301. [PMID: 34915415]
  • Jae Sil Kim, Eunseon Jeong, So Min Jo, Joonho Park, Ji Yeon Kim. Comparative Study of the Effects of Light Controlled Germination Conditions on Saponarin Content in Barley Sprouts and Lipid Accumulation Suppression in HepG2 Hepatocyte and 3T3-L1 Adipocyte Cells Using Barley Sprout Extracts. Molecules (Basel, Switzerland). 2020 Nov; 25(22):. doi: 10.3390/molecules25225349. [PMID: 33207773]
  • Francisco Oiram Filho, Ebenézer de Oliveira Silva, Mônica Maria de Almeida Lopes, Paulo Riceli Vasconselos Ribeiro, Andréia Hansen Oster, Jhonyson Arruda Carvalho Guedes, Dávila de Souza Zampieri, Patrícia do Nascimento Bordallo, Guilherme Julião Zocolo. Effect of pulsed light on postharvest disease control-related metabolomic variation in melon (Cucumis melo) artificially inoculated with Fusarium pallidoroseum. PloS one. 2020; 15(4):e0220097. doi: 10.1371/journal.pone.0220097. [PMID: 32310943]
  • Kyoko Mashima, Mayu Hatano, Hideyuki Suzuki, Makoto Shimosaka, Goro Taguchi. Identification and Characterization of Apigenin 6-C-Glucosyltransferase Involved in Biosynthesis of Isosaponarin in Wasabi (Eutrema japonicum). Plant & cell physiology. 2019 Dec; 60(12):2733-2743. doi: 10.1093/pcp/pcz164. [PMID: 31418788]
  • Dominic Brauch, Andrea Porzel, Erika Schumann, Klaus Pillen, Hans-Peter Mock. Changes in isovitexin-O-glycosylation during the development of young barley plants. Phytochemistry. 2018 Apr; 148(?):11-20. doi: 10.1016/j.phytochem.2018.01.001. [PMID: 29421507]
  • Yun-Hee Lee, Joung-Hee Kim, Sou Hyun Kim, Ji Youn Oh, Woo Duck Seo, Kyung-Mi Kim, Jae-Chul Jung, Young-Suk Jung. Barley Sprouts Extract Attenuates Alcoholic Fatty Liver Injury in Mice by Reducing Inflammatory Response. Nutrients. 2016 Jul; 8(7):. doi: 10.3390/nu8070440. [PMID: 27455313]
  • Guillaume Chomicki, Luc P R Bidel, Feng Ming, Mario Coiro, Xuan Zhang, Yaofeng Wang, Yves Baissac, Christian Jay-Allemand, Susanne S Renner. The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. The New phytologist. 2015 Feb; 205(3):1330-1341. doi: 10.1111/nph.13106. [PMID: 25345817]
  • Takayuki Shibamoto. A novel gas chromatographic method for determination of malondialdehyde from oxidized DNA. Methods in molecular biology (Clifton, N.J.). 2015; 1208(?):49-62. doi: 10.1007/978-1-4939-1441-8_4. [PMID: 25323498]
  • Kyung Hye Seo, Mi Jin Park, Ji-Eun Ra, Sang-Ik Han, Min-Hee Nam, Jin Hyo Kim, Jin Hwan Lee, Woo Duck Seo. Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells. Food & function. 2014 Nov; 5(11):3005-13. doi: 10.1039/c4fo00612g. [PMID: 25238253]
  • Yue-ming Zuo, Dian-hang Liu, Zhong-li Zhang, Miao-ting Cai. [Study on chemical components of Tripterospermum chinense]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2014 Nov; 37(11):2002-4. doi: . [PMID: 26027120]
  • Rumyana Simeonova, Magdalena Kondeva-Burdina, Vessela Vitcheva, Ilina Krasteva, Vassil Manov, Mitka Mitcheva. Protective effects of the apigenin-O/C-diglucoside saponarin from Gypsophila trichotoma on carbone tetrachloride-induced hepatotoxicity in vitro/in vivo in rats. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2014 Jan; 21(2):148-54. doi: 10.1016/j.phymed.2013.07.014. [PMID: 24011529]
  • Rumyana Simeonova, Vessela Vitcheva, Magdalena Kondeva-Burdina, Ilina Krasteva, Vassil Manov, Mitka Mitcheva. Hepatoprotective and antioxidant effects of saponarin, isolated from Gypsophila trichotoma Wend. on paracetamol-induced liver damage in rats. BioMed research international. 2013; 2013(?):757126. doi: 10.1155/2013/757126. [PMID: 23878818]
  • Masashi Nagai, Keiko Akita, Kazuno Yamada, Isao Okunishi. The effect of isosaponarin isolated from wasabi leaf on collagen synthesis in human fibroblasts and its underlying mechanism. Journal of natural medicines. 2010 Jul; 64(3):305-12. doi: 10.1007/s11418-010-0412-y. [PMID: 20349148]
  • Stephanie Kaspar, Andrea Matros, Hans-Peter Mock. Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B radiation of barley (Hordeum vulgare L.) seedlings. Journal of proteome research. 2010 May; 9(5):2402-11. doi: 10.1021/pr901113z. [PMID: 20307098]
  • Subhabrata Sengupta, Abhishek Mukherjee, Riddhi Goswami, Srabanti Basu. Hypoglycemic activity of the antioxidant saponarin, characterized as alpha-glucosidase inhibitor present in Tinospora cordifolia. Journal of enzyme inhibition and medicinal chemistry. 2009 Jun; 24(3):684-90. doi: 10.1080/14756360802333075. [PMID: 18951283]
  • Krasimira Marinova, Katja Kleinschmidt, Gottfried Weissenböck, Markus Klein. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant physiology. 2007 May; 144(1):432-44. doi: 10.1104/pp.106.094748. [PMID: 17369433]
  • Nathalie Frangne, Thomas Eggmann, Carsten Koblischke, Gottfried Weissenböck, Enrico Martinoia, Markus Klein. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H(+)-antiport and ATP-binding cassette-type mechanisms. Plant physiology. 2002 Feb; 128(2):726-33. doi: 10.1104/pp.010590. [PMID: 11842175]