Cirsimaritin (BioDeep_00000000971)

 

Secondary id: BioDeep_00000017599, BioDeep_00000270029, BioDeep_00000865640

human metabolite PANOMIX_OTCML-2023 blood metabolite


Metabolite Card


5-Hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-4H-chromen-4-one

Formula: C17H14O6 (314.0790344)
Chinese Names: 蓟黄素
Spectrum Hits: Top Source Homo sapiens(blood) 0.05%

Molecular Structure

SMILES: COC1=C(C(=C2C(=C1)OC(=CC2=O)C3=CC=C(C=C3)O)O)OC
InChI: InChI=1S/C17H14O6/c1-21-14-8-13-15(16(20)17(14)22-2)11(19)7-12(23-13)9-3-5-10(18)6-4-9/h3-8,18,20H,1-2H3

Description

Cirsimaritin, also known as 4,5-dihydroxy-6,7-dimethoxyflavone or scrophulein, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsimaritin is considered to be a flavonoid lipid molecule. Cirsimaritin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsimaritin can be found in a number of food items such as italian oregano, lemon verbena, winter savory, and rosemary, which makes cirsimaritin a potential biomarker for the consumption of these food products.

Synonyms

7 synonym names

5-Hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-4H-chromen-4-one; 4,5-dihydroxy-6,7-dimethoxy-flavone; 4,5-dihydroxy-6,7-dimethoxyflavone; 7-Methylcapillarisin; Cirsimaritin; Scrophulein; skrofulein



Cross Reference

14 cross reference id

Classification Terms

Related Pathways

Reactome(0)

BioCyc(1)

PlantCyc(1)

Biological Process

82 related biological process reactions.

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(80)

  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: H+ + NADPH + O2 + genkwanin ⟶ H2O + NADP+ + scutellarein 7-methyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: H+ + NADPH + O2 + apigenin-7,4'-dimethyl ether ⟶ H2O + NADP+ + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + apigenin ⟶ SAH + genkwanin
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: H+ + NADPH + O2 + apigenin-7,4'-dimethyl ether ⟶ H2O + NADP+ + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + scutellarein 7-methyl ether ⟶ H+ + SAH + cirsimaritin

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

118 organism taxonomy source information

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



Literature Reference

  • Lukasz Szoka, Jolanta Nazaruk, Marcin Stocki, Valery Isidorov. Santin and cirsimaritin from Betula pubescens and Betula pendula buds induce apoptosis in human digestive system cancer cells. Journal of cellular and molecular medicine. 2021 12; 25(24):11085-11096. doi: 10.1111/jcmm.17031. [PMID: 34755444]
  • Zahra Sadeghi, Milena Masullo, Antonietta Cerulli, Filomena Nazzaro, Mahdi Moridi Farimani, Sonia Piacente. Terpenoid Constituents of Perovskia artemisioides Aerial Parts with Inhibitory Effects on Bacterial Biofilm Growth. Journal of natural products. 2021 01; 84(1):26-36. doi: 10.1021/acs.jnatprod.0c00832. [PMID: 33378620]
  • Ramiro Quintanilla-Licea, Javier Vargas-Villarreal, María Julia Verde-Star, Verónica Mayela Rivas-Galindo, Ángel David Torres-Hernández. Antiprotozoal Activity against Entamoeba histolytica of Flavonoids Isolated from Lippia graveolens Kunth. Molecules (Basel, Switzerland). 2020 May; 25(11):. doi: 10.3390/molecules25112464. [PMID: 32466359]
  • Angela Bisio, Anna M Schito, Francesca Pedrelli, Ombeline Danton, Jakob K Reinhardt, Giulio Poli, Tiziano Tuccinardi, Thomas Bürgi, Francesco De Riccardis, Mauro Giacomini, Daniela Calzia, Isabella Panfoli, Gian Carlo Schito, Matthias Hamburger, Nunziatina De Tommasi. Antibacterial and ATP Synthesis Modulating Compounds from Salvia tingitana. Journal of natural products. 2020 04; 83(4):1027-1042. doi: 10.1021/acs.jnatprod.9b01024. [PMID: 32182064]
  • Perihan Koysu, Nusret Genc, Mahfuz Elmastas, Huseyin Aksit, Ramazan Erenler. Isolation, identification of secondary metabolites from Salvia absconditiflora and evaluation of their antioxidative properties. Natural product research. 2019 Dec; 33(24):3592-3595. doi: 10.1080/14786419.2018.1488700. [PMID: 30445824]
  • Ilias Stefanis, Dimitra Hadjipavlou-Litina, Anna-Rita Bilia, Anastasia Karioti. LC-MS- and NMR-Guided Isolation of Monoterpene Dimers from Cultivated Thymus vulgaris Varico 3 Hybrid and Their Antityrosinase Activity. Planta medica. 2019 Aug; 85(11-12):941-946. doi: 10.1055/a-0927-7041. [PMID: 31163460]
  • Golnoush Mirzahosseini, Azadeh Manayi, Mahnaz Khanavi, Maliheh Safavi, Ali Salari, Alireza Madjid Ansari, Hassan San'ati, Mahdi Vazirian. Bio-guided isolation of Centaurea bruguierana subsp. belangerana cytotoxic components. Natural product research. 2019 Jun; 33(11):1687-1690. doi: 10.1080/14786419.2018.1428590. [PMID: 29457735]
  • Xiaopu Ren, Yingjie Bao, Yuxia Zhu, Shixin Liu, Zengqi Peng, Yawei Zhang, Guanghong Zhou. Isorhamnetin, Hispidulin, and Cirsimaritin Identified in Tamarix ramosissima Barks from Southern Xinjiang and Their Antioxidant and Antimicrobial Activities. Molecules (Basel, Switzerland). 2019 Jan; 24(3):. doi: 10.3390/molecules24030390. [PMID: 30678248]
  • Haiyan Yan, Huiqiang Wang, Linlin Ma, Xueping Ma, Jinqiu Yin, Shuo Wu, Hua Huang, Yuhuan Li. Cirsimaritin inhibits influenza A virus replication by downregulating the NF-κB signal transduction pathway. Virology journal. 2018 05; 15(1):88. doi: 10.1186/s12985-018-0995-6. [PMID: 29783993]
  • Jun Yeon Park, Hyun Young Kim, Takayuki Shibamoto, Tae Su Jang, Sang Cheon Lee, Jae Suk Shim, Dae-Hyun Hahm, Hae-Jeung Lee, Sanghyun Lee, Ki Sung Kang. Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells. Bioorganic & medicinal chemistry letters. 2017 09; 27(17):3968-3973. doi: 10.1016/j.bmcl.2017.07.070. [PMID: 28784292]
  • Radhakrishnan Srivedavyasasri, Taylor Hayes, Samir A Ross. Phytochemical and biological evaluation of Salvia apiana. Natural product research. 2017 Sep; 31(17):2058-2061. doi: 10.1080/14786419.2016.1269096. [PMID: 28025900]
  • Zhipei Sang, Xiaoming Qiang, Yan Li, Rui Xu, Zhongcheng Cao, Qing Song, Ting Wang, Xiaoyu Zhang, Hongyan Liu, Zhenghuai Tan, Yong Deng. Design, synthesis and evaluation of scutellarein-O-acetamidoalkylbenzylamines as potential multifunctional agents for the treatment of Alzheimer's disease. European journal of medicinal chemistry. 2017 Jul; 135(?):307-323. doi: 10.1016/j.ejmech.2017.04.054. [PMID: 28458136]
  • Myoung-Sook Shin, Jun Yeon Park, Jaemin Lee, Hye Hyun Yoo, Dae-Hyun Hahm, Sang Cheon Lee, Sanghyun Lee, Gwi Seo Hwang, Kiwon Jung, Ki Sung Kang. Anti-inflammatory effects and corresponding mechanisms of cirsimaritin extracted from Cirsium japonicum var. maackii Maxim. Bioorganic & medicinal chemistry letters. 2017 07; 27(14):3076-3080. doi: 10.1016/j.bmcl.2017.05.051. [PMID: 28554870]
  • Dahae Lee, Ki Hyun Kim, Jaemin Lee, Gwi Seo Hwang, Hye Lim Lee, Dae-Hyun Hahm, Chang Ki Huh, Sang Cheon Lee, Sanghyun Lee, Ki Sung Kang. Protective effect of cirsimaritin against streptozotocin-induced apoptosis in pancreatic beta cells. The Journal of pharmacy and pharmacology. 2017 Jul; 69(7):875-883. doi: 10.1111/jphp.12719. [PMID: 28397263]
  • Zhipei Sang, Yan Li, Xiaoming Qiang, Ganyuan Xiao, Qiang Liu, Zhenghuai Tan, Yong Deng. Multifunctional scutellarin-rivastigmine hybrids with cholinergic, antioxidant, biometal chelating and neuroprotective properties for the treatment of Alzheimer's disease. Bioorganic & medicinal chemistry. 2015 Feb; 23(4):668-80. doi: 10.1016/j.bmc.2015.01.005. [PMID: 25614117]
  • Anna Berim, Jeong-Jin Park, David R Gang. Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase. The Plant journal : for cell and molecular biology. 2014 Nov; 80(3):385-95. doi: 10.1111/tpj.12642. [PMID: 25139498]
  • Yoshiaki Amakura, Morio Yoshimura, Masashi Takaoka, Haruka Toda, Tomoaki Tsutsumi, Rieko Matsuda, Reiko Teshima, Masafumi Nakamura, Hiroshi Handa, Takashi Yoshida. Characterization of natural aryl hydrocarbon receptor agonists from cassia seed and rosemary. Molecules (Basel, Switzerland). 2014 Apr; 19(4):4956-66. doi: 10.3390/molecules19044956. [PMID: 24747651]
  • Kaan Polatoğlu, Omer Cem Karakoç, Fatih Demirci, Ayhan Gökçe, Nezhun Gören. Chemistry and biological activities of Tanacetum chiliophyllum var. oligocephalum extracts. Journal of AOAC International. 2013 Nov; 96(6):1222-7. doi: 10.5740/jaoacint.sgepolatoglu. [PMID: 24645497]
  • Ghazaal Moghaddam, Soltan Ahmad Ebrahimi, Nahid Rahbar-Roshandel, Alireza Foroumadi. Antiproliferative activity of flavonoids: influence of the sequential methoxylation state of the flavonoid structure. Phytotherapy research : PTR. 2012 Jul; 26(7):1023-8. doi: 10.1002/ptr.3678. [PMID: 22184071]
  • Ahmad Reza Gohari, Seyed Nasser Ostad, Fahimeh Moradi-Afrapoli, Maryam Malmir, Shohreh Tavajohi, Hassan Akbari, Soodabeh Saeidnia. Evaluation of the cytotoxicity of Satureja spicigera and its main compounds. TheScientificWorldJournal. 2012; 2012(?):203861. doi: 10.1100/2012/203861. [PMID: 22623883]
  • Mohamed Ben Sghaier, Ines Skandrani, Nouha Nasr, Marie-Genviève Dijoux Franca, Leila Chekir-Ghedira, Kamel Ghedira. Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: a structure-activity relationship study. Environmental toxicology and pharmacology. 2011 Nov; 32(3):336-48. doi: 10.1016/j.etap.2011.07.003. [PMID: 22004952]
  • I Borrás Linares, D Arráez-Román, M Herrero, E Ibáñez, A Segura-Carretero, A Fernández-Gutiérrez. Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. Journal of chromatography. A. 2011 Oct; 1218(42):7682-90. doi: 10.1016/j.chroma.2011.07.021. [PMID: 21835416]
  • Gjoshe Stefkov, Svetlana Kulevanova, Biljana Miova, Suzana Dinevska-Kjovkarovska, Per Mølgaard, Anna K Jäger, Knud Josefsen. Effects of Teucrium polium spp. capitatum flavonoids on the lipid and carbohydrate metabolism in rats. Pharmaceutical biology. 2011 Sep; 49(9):885-92. doi: 10.3109/13880209.2011.552187. [PMID: 21619454]
  • Cheryl Lans, Nancy Turner. Organic parasite control for poultry and rabbits in British Columbia, Canada. Journal of ethnobiology and ethnomedicine. 2011 Jul; 7(?):21. doi: 10.1186/1746-4269-7-21. [PMID: 21756341]
  • Chia-Feng Kuo, Jeng-De Su, Chun-Hung Chiu, Chiung-Chi Peng, Chi-Huang Chang, Tzu-Ying Sung, Shiau-Huei Huang, Wen-Chin Lee, Charng-Cherng Chyau. Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves. Journal of agricultural and food chemistry. 2011 Apr; 59(8):3674-85. doi: 10.1021/jf104837w. [PMID: 21375325]
  • Naisheng Bai, Kan He, Marc Roller, Ching-Shu Lai, Xi Shao, Min-Hsiung Pan, Antoine Bily, Chi-Tang Ho. Flavonoid glycosides from Microtea debilis and their cytotoxic and anti-inflammatory effects. Fitoterapia. 2011 Mar; 82(2):168-72. doi: 10.1016/j.fitote.2010.08.014. [PMID: 20804824]
  • Mi-Sook Chung, Gun-Hee Kim. Effects of Elsholtzia splendens and Cirsium japonicum on premenstrual syndrome. Nutrition research and practice. 2010 Aug; 4(4):290-4. doi: 10.4162/nrp.2010.4.4.290. [PMID: 20827344]
  • Marios A Menelaou, Hidelisa P Henandez, Francisco A Macías, Jeffrey D Weidenhamer, G Bruce Williamson, Frank R Fronczek, Helga D Fischer, Nikolaus H Fischer. Constituents of Calamintha ashei: effects on Florida sandhill species. Natural product communications. 2010 May; 5(5):685-94. doi: . [PMID: 20521531]
  • Priyabrata Pattanayak, Pritishova Behera, Debajyoti Das, Sangram K Panda. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacognosy reviews. 2010 Jan; 4(7):95-105. doi: 10.4103/0973-7847.65323. [PMID: 22228948]
  • Hichem Henchiri, Bernard Bodo, Alexandre Deville, Lionel Dubost, Lazhar Zourgui, Aly Raies, Philippe Grellier, Lengo Mambu. Sesquiterpenoids from Teucrium ramosissimum. Phytochemistry. 2009 Jul; 70(11-12):1435-41. doi: 10.1016/j.phytochem.2009.08.012. [PMID: 19766274]
  • Ye Yin, Fang-Yuan Gong, Xing-Xin Wu, Yang Sun, Yi-Hua Li, Ting Chen, Qiang Xu. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. Journal of ethnopharmacology. 2008 Oct; 120(1):1-6. doi: 10.1016/j.jep.2008.07.029. [PMID: 18721870]
  • E Nyiligira, A M Viljoen, F R Van Heerden, R L Van Zyl, S F Van Vuuren, P A Steenkamp. Phytochemistry and in vitro pharmacological activities of South African Vitex (Verbenaceae) species. Journal of ethnopharmacology. 2008 Oct; 119(3):680-5. doi: 10.1016/j.jep.2008.07.004. [PMID: 18678237]
  • Juan C Luis, Raquel Martín, Ignacio Frías, Francisco Valdés. Enhanced carnosic acid levels in two rosemary accessions exposed to cold stress conditions. Journal of agricultural and food chemistry. 2007 Oct; 55(20):8062-6. doi: 10.1021/jf0712393. [PMID: 17760410]
  • Simin Khaliq, Franz-Josef Volk, August Wilhelm Frahm. Phytochemical investigation of Perovskia abrotanoides. Planta medica. 2007 Jan; 73(1):77-83. doi: 10.1055/s-2006-951766. [PMID: 17315312]
  • Takahiko Isobe, Matsumi Doe, Yoshiki Morimoto, Kumiko Nagata, Ayumi Ohsaki. The anti-Helicobacter pylori flavones in a Brazilian plant, Hyptis fasciculata, and the activity of methoxyflavones. Biological & pharmaceutical bulletin. 2006 May; 29(5):1039-41. doi: 10.1248/bpb.29.1039. [PMID: 16651742]
  • Masateru Ono, Hiroaki Morinaga, Chikako Masuoka, Tsuyoshi Ikeda, Masafumi Okawa, Junei Kinjo, Toshihiro Nohara. New Bisabolane-Type Sesquiterpenes from the Aerial Parts of Lippia dulcis. Chemical & pharmaceutical bulletin. 2005 Sep; 53(9):1175-7. doi: 10.1248/cpb.53.1175. [PMID: 16141591]
  • Zheng-wen Yu, Hai-yan Zhu, Xiao-sheng Yang, Qian-yun Sun, Xiao-jiang Hao. [Study on chemical constituents from Incarvillea arguta and their accelerating PC-12 cell differentiation]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Sep; 30(17):1335-8. doi: . [PMID: 16323541]
  • Sheng Lin, Qi-Wei Zhang, Ning-Ning Zhang, Yong-Xin Zhang. [Determination of flavonoids in buds of Herba Artemisiae Scopariae by HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Apr; 30(8):591-4. doi: . [PMID: 16011282]
  • Filippo Cottiglia, Laura Casu, Leonardo Bonsignore, Mariano Casu, Costantino Floris, Silvio Sosa, Gianmario Altinier, Roberto Della Loggia. Topical anti-inflammatory activity of flavonoids and a new xanthone from Santolina insularis. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2005 Jan; 60(1-2):63-6. doi: 10.1515/znc-2005-1-212. [PMID: 15787246]
  • Hidenori Kuwabara, Kyoko Mouri, Hideaki Otsuka, Ryoji Kasai, Kazuo Yamasaki. Tricin from a malagasy connaraceous plant with potent antihistaminic activity. Journal of natural products. 2003 Sep; 66(9):1273-5. doi: 10.1021/np030020p. [PMID: 14510616]
  • Dominique Kavvadias, Vanessa Monschein, Philipp Sand, Peter Riederer, Peter Schreier. Constituents of sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta medica. 2003 Feb; 69(2):113-7. doi: 10.1055/s-2003-37712. [PMID: 12624814]
  • Elena Ibañez, Alena Kubátová, F Javier Señoráns, Sofia Cavero, Guillermo Reglero, Steven B Hawthorne. Subcritical water extraction of antioxidant compounds from rosemary plants. Journal of agricultural and food chemistry. 2003 Jan; 51(2):375-82. doi: 10.1021/jf025878j. [PMID: 12517098]
  • C Weimann, U Goransson, U Pongprayoon-Claeson, P Claeson, L Bohlin, H Rimpler, M Heinrich. Spasmolytic effects of baccharis conferta and some of its constituents. The Journal of pharmacy and pharmacology. 2002 Jan; 54(1):99-104. doi: 10.1211/0022357021771797. [PMID: 11829135]
  • P Valentão, P B Andrade, F Areias, F Ferreres, R M Seabra. Analysis of vervain flavonoids by HPLC/Diode array detector method. Its application to quality control. Journal of agricultural and food chemistry. 1999 Nov; 47(11):4579-82. doi: 10.1021/jf990444i. [PMID: 10552853]
  • S Moro, A M van Rhee, L H Sanders, K A Jacobson. Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model. Journal of medicinal chemistry. 1998 Jan; 41(1):46-52. doi: 10.1021/jm970446z. [PMID: 9438021]
  • J A Hasrat, T De Bruyne, J P De Backer, G Vauquelin, A J Vlietinck. Cirsimarin and cirsimaritin, flavonoids of Microtea debilis (Phytolaccaceae) with adenosine antagonistic properties in rats: leads for new therapeutics in acute renal failure. The Journal of pharmacy and pharmacology. 1997 Nov; 49(11):1150-6. doi: 10.1111/j.2042-7158.1997.tb06059.x. [PMID: 9401955]
  • J A Hasrat, L Pieters, M Claeys, A Vlietinck, J P De Backer, G Vauquelin. Adenosine-1 active ligands: cirsimarin, a flavone glycoside from Microtea debilis. Journal of natural products. 1997 Jun; 60(6):638-41. doi: 10.1021/np970025k. [PMID: 9214739]
  • X D Ji, N Melman, K A Jacobson. Interactions of flavonoids and other phytochemicals with adenosine receptors. Journal of medicinal chemistry. 1996 Feb; 39(3):781-8. doi: 10.1021/jm950661k. [PMID: 8576921]
  • . . . . doi: . [PMID: 22923679]