11,12-Epoxyeicosatrienoic acid (BioDeep_00000001718)

Main id: BioDeep_00000628861

 

human metabolite Endogenous blood metabolite


代谢物信息卡片


(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoic acid

化学式: C20H32O3 (320.2351)
中文名称: 11(12)-环氧-5Z,8Z,14Z-二十碳三烯酸
谱图信息: 最多检出来源 Macaca mulatta(lipidsearch) 39.04%

分子结构信息

SMILES: CCCCC/C=C\CC1C(C/C=C\C/C=C\CCCC(=O)O)O1
InChI: InChI=1S/C20H32O3/c1-2-3-4-5-9-12-15-18-19(23-18)16-13-10-7-6-8-11-14-17-20(21)22/h6,8-10,12-13,18-19H,2-5,7,11,14-17H2,1H3,(H,21,22)/b8-6+,12-9+,13-10+

描述信息

11,12-Epoxyeicosatrienoic acid (CAS: 81276-02-0) is an epoxyeicosatrienoic acid (EET). Induction of CYP2C8 in native coronary artery endothelial cells by beta-naphthoflavone enhances the formation of 11,12-epoxyeicosatrienoic acid, as well as endothelium-derived hyperpolarizing factor-mediated hyperpolarization and relaxation. Transfection of coronary arteries with CYP2C8 antisense oligonucleotides resulted in decreased levels of CYP2C and attenuated the endothelium-derived hyperpolarizing factor-mediated vascular responses. Thus, a CYP-epoxygenase product is an essential component of the endothelium-derived hyperpolarizing factor-mediated relaxation in the porcine coronary artery, and CYP2C8 fulfills the criteria for the coronary endothelium-derived hyperpolarization factor synthase. The role of EETs in the regulation of the cerebral circulation has become more important since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence has shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes (PMID: 17494091, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554). EETs function as autocrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted into natural EETs by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid into four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been shown to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and the brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs into dihydroxyeicosatrienoic acids.
11,12-EpETrE or 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid is an epoxyeicosatrienoic acid or an EET derived from arachadonic acid. EETs function as autacrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted to natural epoxyeicosatrienoic acids (EETs) by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid to four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been show to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have antiinflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs to dihydroxyeicosatrienoic acids. [HMDB]
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

同义名列表

33 个代谢物同义名

(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoic acid; (5Z,8Z)-10-[(2S,3R)-3-(2Z)-2-Octen-1-yl-2-oxiranyl]-5,8-decadienoic acid; 11,12-Epoxy-5,8,14-eicosatrienoic acid, (2alpha(5Z,8Z),3alpha(Z))-isomer; (5Z,8Z)-10-[3-(2Z)-2-Octen-1-yl-2-oxiranyl]-5,8-decadienoic acid; 10-[3-(2-Octen-1-yl)-2-oxiranyl]-5,8-decadienoic acid; (11S,12R)-Epoxy-(5Z,8Z,14Z)-eicosatrienoic acid; 10-[3-(2-Octenyl)oxiranyl]-5,8-decadienoic acid; (11S,12R)-Epoxy-(5Z,8Z,14Z)-icosatrienoic acid; 11S,12R-epoxy-5Z,8Z,14Z-eicosatrienoic acid; (11S,12R)-Epoxy-(5Z,8Z,14Z)-eicosatrienoate; (11S,12R)-Epoxy-(5Z,8Z,14Z)-icosatrienoate; 11(12)-Epoxy-5Z,8Z,14Z-eicosatrienoic acid; 11S,12R-Epoxy-5Z,8Z,14Z-eicosatrienoate; 11,12-Oxido-5,8,14-eicosatrienoic acid; 11,12-Epoxyeicosa-5,8,14-trienoic acid; 11,12-Epoxy-5,8,14-eicosatrienoic acid; (11S,12R)-Oxidoarachidonic acid; 11,12-Epoxyeicosatrienoic acid; 11,12-Epoxyeicosatrienoate; 11(S),12(R)-EpETrE; cis-11(12)-EpEtrE; (11S,12R)-EpETrE; 11(S),12(R)-EET; 11S,12R-EpETrE; 11(12)-EpETrE; 11,12-EpETrE; 11S,12R-EET; 11(12)-EET; 11,12-EET; (±)11(12)-epoxy-5Z,8Z,14Z-eicosatrienoic acid; 10-(3-oct-2-enyloxiran-2-yl)deca-5,8-dienoic acid; (±)11(12)-EET; 11(12)-Epoxy-5Z,8Z,14Z-eicosatrienoic acid



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ANG, CASP3, CYP2C8, CYP2C9, CYP2J2, MAPK14, NOS3, PIK3CA, PKIA, PPARG, PRKX, PTGS2, TRPC6
Peripheral membrane protein 2 CYP1B1, PTGS2
Endoplasmic reticulum membrane 5 CYP1B1, CYP2C8, CYP2C9, CYP2J2, PTGS2
Nucleus 7 ANG, CASP3, MAPK14, NOS3, PKIA, PPARG, PRKX
cytosol 7 ANG, CASP3, EPHX2, MAPK14, NOS3, PIK3CA, PPARG
nucleoplasm 5 CASP3, MAPK14, NOS3, PPARG, PRKX
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 4 PECAM1, TNF, TRPC6, TRPV4
lamellipodium 2 PIK3CA, TRPV4
ruffle membrane 1 TRPV4
Multi-pass membrane protein 3 KCNJ11, TRPC6, TRPV4
cell junction 1 PECAM1
cell surface 2 TNF, TRPV4
glutamatergic synapse 3 CASP3, KCNJ11, MAPK14
Golgi apparatus 1 NOS3
Golgi membrane 1 NOS3
growth cone 2 ANG, TRPV4
neuronal cell body 4 ANG, CASP3, KCNJ11, TNF
presynaptic membrane 1 KCNJ11
acrosomal vesicle 1 KCNJ11
endosome 1 KCNJ11
plasma membrane 10 CYP2C8, CYP2C9, KCNJ11, KNG1, NOS3, PECAM1, PIK3CA, TNF, TRPC6, TRPV4
Membrane 5 CYP1B1, CYP2J2, KCNJ11, TRPC6, TRPV4
apical plasma membrane 1 TRPV4
caveola 2 NOS3, PTGS2
extracellular exosome 4 CYP2J2, EPHX2, KNG1, PECAM1
endoplasmic reticulum 2 PTGS2, TRPV4
extracellular space 4 ANG, KNG1, PECAM1, TNF
perinuclear region of cytoplasm 3 NOS3, PIK3CA, PPARG
adherens junction 1 TRPV4
intercalated disc 2 KCNJ11, PIK3CA
mitochondrion 2 CYP1B1, MAPK14
protein-containing complex 2 PECAM1, PTGS2
intracellular membrane-bounded organelle 5 CYP1B1, CYP2C8, CYP2C9, CYP2J2, PPARG
Microsome membrane 4 CYP1B1, CYP2C9, CYP2J2, PTGS2
filopodium 1 TRPV4
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 PECAM1
Secreted 1 ANG
extracellular region 4 ANG, KNG1, MAPK14, TNF
Cell projection, cilium 1 TRPV4
external side of plasma membrane 2 PECAM1, TNF
actin cytoskeleton 1 ANG
T-tubule 1 KCNJ11
slit diaphragm 1 TRPC6
nucleolus 1 ANG
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
cell-cell junction 1 PECAM1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 TRPV4
Membrane raft 2 PECAM1, TNF
focal adhesion 1 TRPV4
axolemma 1 KCNJ11
Cell junction, adherens junction 1 TRPV4
Peroxisome 1 EPHX2
basement membrane 1 ANG
peroxisomal matrix 1 EPHX2
collagen-containing extracellular matrix 1 KNG1
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 PPARG
neuron projection 1 PTGS2
cilium 1 TRPV4
chromatin 1 PPARG
phagocytic cup 1 TNF
Chromosome 1 ANG
cytoskeleton 1 NOS3
Secreted, extracellular space 1 KNG1
Nucleus, nucleolus 1 ANG
spindle pole 1 MAPK14
blood microparticle 1 KNG1
nuclear envelope 1 KCNJ11
monoatomic ion channel complex 1 KCNJ11
cell body fiber 1 KCNJ11
inward rectifying potassium channel 1 KCNJ11
Cytoplasm, Stress granule 2 ANG, NOS3
cytoplasmic stress granule 2 ANG, NOS3
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
secretory granule membrane 1 PECAM1
endoplasmic reticulum lumen 2 KNG1, PTGS2
cortical actin cytoskeleton 1 TRPV4
platelet alpha granule lumen 1 KNG1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle membrane 1 NOS3
endocytic vesicle 1 ANG
cytoplasmic microtubule 1 TRPV4
death-inducing signaling complex 1 CASP3
[Isoform 1]: Cell membrane 1 TRPV4
[Isoform Long]: Cell membrane 1 PECAM1
platelet alpha granule membrane 1 PECAM1
[Isoform 2]: Endoplasmic reticulum 1 TRPV4
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
[Isoform 5]: Cell membrane 1 TRPV4
[Isoform Delta15]: Cell junction 1 PECAM1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
cation channel complex 1 TRPC6
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[Isoform 4]: Endoplasmic reticulum 1 TRPV4
[Isoform 6]: Endoplasmic reticulum 1 TRPV4


文献列表

  • Liman Luo, Yan Yang, Menglu Fu, Jinlan Luo, Wenhua Li, Ling Tu, Ruolan Dong. 11,12-EET suppressed LPS induced TF expression and thrombus formation by accelerating mRNA degradation rate via strengthening PI3K-Akt signaling pathway and inhibiting p38-TTP pathway. Prostaglandins & other lipid mediators. 2023 Apr; 167(?):106740. doi: 10.1016/j.prostaglandins.2023.106740. [PMID: 37119935]
  • Yiwei Fang, Zheng Zhang, Yun Zhao, Guoqiang Sun, Meilin Peng, Chunyan Liu, Guilin Yi, Kai Zhao, Hui Yang. The value of lipid metabolites 9,10-DOA and 11,12-EET in prenatal diagnosis of fetal heart defects. Clinica chimica acta; international journal of clinical chemistry. 2023 Apr; 544(?):117330. doi: 10.1016/j.cca.2023.117330. [PMID: 37037297]
  • Shuiqing Hu, Jinlan Luo, Menglu Fu, Liman Luo, Yueting Cai, Wenhua Li, Yuanyuan Li, Ruolan Dong, Yan Yang, Ling Tu, Xizhen Xu. Soluble epoxide hydrolase deletion attenuated nicotine-induced arterial stiffness via limiting the loss of SIRT1. American journal of physiology. Heart and circulatory physiology. 2021 08; 321(2):H353-H368. doi: 10.1152/ajpheart.00979.2020. [PMID: 34142887]
  • John D Imig, Md Abdul Hye Khan, Anna Burkhan, Guan Chen, Adeniyi Michael Adebesin, John R Falck. Kidney-Targeted Epoxyeicosatrienoic Acid Analog, EET-F01, Reduces Inflammation, Oxidative Stress, and Cisplatin-Induced Nephrotoxicity. International journal of molecular sciences. 2021 Mar; 22(6):. doi: 10.3390/ijms22062793. [PMID: 33801911]
  • John D Imig, Wojciech K Jankiewicz, Abdul H Khan. Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics: 2019 Lewis K. Dahl Memorial Lecture. Hypertension (Dallas, Tex. : 1979). 2020 07; 76(1):3-15. doi: 10.1161/hypertensionaha.120.13898. [PMID: 32475311]
  • Cuiping Zhang, Zuojian Hu, Ke Wang, Lujie Yang, Yue Li, Hartmut Schlüter, Pengyuan Yang, Jiaxu Hong, Hongxiu Yu. Lipidomic profiling of virus infection identifies mediators that resolve herpes simplex virus-induced corneal inflammatory lesions. The Analyst. 2020 Jun; 145(11):3967-3976. doi: 10.1039/d0an00263a. [PMID: 32319474]
  • Ming-Xiao Wang, Li-Jun Wang, Yu Xiao, Dan-Dan Zhang, Xin-Peng Duan, Wen-Hui Wang. Epoxyeicosatrienoic acid metabolites inhibit Kir4.1/Kir5.1 in the distal convoluted tubule. American journal of physiology. Renal physiology. 2020 06; 318(6):F1369-F1376. doi: 10.1152/ajprenal.00018.2020. [PMID: 32308018]
  • Marco Rahm, Juliane Merl-Pham, Jerzy Adamski, Stefanie M Hauck. Time-resolved phosphoproteomic analysis elucidates hepatic 11,12-Epoxyeicosatrienoic acid signaling pathways. Prostaglandins & other lipid mediators. 2020 02; 146(?):106387. doi: 10.1016/j.prostaglandins.2019.106387. [PMID: 31669255]
  • Marco Raffaele, Lars Bellner, Shailendra P Singh, Gaia Favero, Rita Rezzani, Luigi Fabrizio Rodella, John R Falck, Nader G Abraham, Luca Vanella. Epoxyeicosatrienoic intervention improves NAFLD in leptin receptor deficient mice by an increase in PGC1α-HO-1-PGC1α-mitochondrial signaling. Experimental cell research. 2019 07; 380(2):180-187. doi: 10.1016/j.yexcr.2019.04.029. [PMID: 31039348]
  • Lu Liu, Nitin Puri, Marco Raffaele, Joseph Schragenheim, Shailendra P Singh, J Alyce Bradbury, Lars Bellner, Luca Vanella, Darryl C Zeldin, Jian Cao, Nader G Abraham. Ablation of soluble epoxide hydrolase reprogram white fat to beige-like fat through an increase in mitochondrial integrity, HO-1-adiponectin in vitro and in vivo. Prostaglandins & other lipid mediators. 2018 09; 138(?):1-8. doi: 10.1016/j.prostaglandins.2018.07.004. [PMID: 30041041]
  • Yuan Guo, Fei Luo, Xv Zhang, Jingyuan Chen, Li Shen, Yi Zhu, Danyan Xu. TPPU enhanced exercise-induced epoxyeicosatrienoic acid concentrations to exert cardioprotection in mice after myocardial infarction. Journal of cellular and molecular medicine. 2018 03; 22(3):1489-1500. doi: 10.1111/jcmm.13412. [PMID: 29265525]
  • Xiaoyan Huang, Yuguang Wang, Yi Wang, Liang Yang, Jia Wang, Yue Gao. Ophiopogonin D Reduces Myocardial Ischemia-Reperfusion Injury via Upregulating CYP2J3/EETs in Rats. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2018; 49(4):1646-1658. doi: 10.1159/000493500. [PMID: 30227401]
  • Theresa Aliwarga, Brianne S Raccor, Rozenn N Lemaitre, Nona Sotoodehnia, Sina A Gharib, Libin Xu, Rheem A Totah. Enzymatic and free radical formation of cis- and trans- epoxyeicosatrienoic acids in vitro and in vivo. Free radical biology & medicine. 2017 11; 112(?):131-140. doi: 10.1016/j.freeradbiomed.2017.07.015. [PMID: 28734877]
  • Yong Zhou, Tian Liu, Jia-Xi Duan, Ping Li, Guo-Ying Sun, Yong-Ping Liu, Jun Zhang, Liang Dong, Kin Sing Stephen Lee, Bruce D Hammock, Jian-Xin Jiang, Cha-Xiang Guan. Soluble Epoxide Hydrolase Inhibitor Attenuates Lipopolysaccharide-Induced Acute Lung Injury and Improves Survival in Mice. Shock (Augusta, Ga.). 2017 05; 47(5):638-645. doi: 10.1097/shk.0000000000000767. [PMID: 27753791]
  • Amy A Rand, Bogdan Barnych, Christophe Morisseau, Tomas Cajka, Kin Sing Stephen Lee, Dipak Panigrahy, Bruce D Hammock. Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids. Proceedings of the National Academy of Sciences of the United States of America. 2017 04; 114(17):4370-4375. doi: 10.1073/pnas.1616893114. [PMID: 28396419]
  • Ingrid Fleming. The factor in EDHF: Cytochrome P450 derived lipid mediators and vascular signaling. Vascular pharmacology. 2016 11; 86(?):31-40. doi: 10.1016/j.vph.2016.03.001. [PMID: 26975734]
  • Bei Wang, Hesong Zeng, Zheng Wen, Chen Chen, Dao Wen Wang. CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1. Aging cell. 2016 10; 15(5):940-52. doi: 10.1111/acel.12507. [PMID: 27416746]
  • Marco Di Pascoli, Francesca Zampieri, Alberto Verardo, Paola Pesce, Cristian Turato, Paolo Angeli, David Sacerdoti, Massimo Bolognesi. Inhibition of epoxyeicosatrienoic acid production in rats with cirrhosis has beneficial effects on portal hypertension by reducing splanchnic vasodilation. Hepatology (Baltimore, Md.). 2016 09; 64(3):923-30. doi: 10.1002/hep.28686. [PMID: 27312119]
  • Alexandra Sporková, Rami N Reddy, John R Falck, John D Imig, Libor Kopkan, Janusz Sadowski, Luděk Červenka. Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive Rats' Exhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids. The American journal of the medical sciences. 2016 05; 351(5):513-9. doi: 10.1016/j.amjms.2016.02.030. [PMID: 27140711]
  • Dorothee J Funk, Bernd L Sorg, Klaus Kopka, Heinz H Schmeiser. Epoxyeicosatrienoic acids (EETs) form adducts with DNA in vitro. Prostaglandins & other lipid mediators. 2016 03; 123(?):63-7. doi: 10.1016/j.prostaglandins.2016.04.006. [PMID: 27166927]
  • Pulin Li, Jamie L Lahvic, Vera Binder, Emily K Pugach, Elizabeth B Riley, Owen J Tamplin, Dipak Panigrahy, Teresa V Bowman, Francesca G Barrett, Garrett C Heffner, Shannon McKinney-Freeman, Thorsten M Schlaeger, George Q Daley, Darryl C Zeldin, Leonard I Zon. Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature. 2015 Jul; 523(7561):468-71. doi: 10.1038/nature14569. [PMID: 26201599]
  • John D Imig. Epoxyeicosatrienoic acids, hypertension, and kidney injury. Hypertension (Dallas, Tex. : 1979). 2015 Mar; 65(3):476-82. doi: 10.1161/hypertensionaha.114.03585. [PMID: 25583156]
  • Yan Ma, Peng Zhang, Jie Li, Jun Lu, Jianjun Ge, Zhiwei Zhao, Xin Ma, Song Wan, Xiaoqiang Yao, Bing Shen. Epoxyeicosatrienoic acids act through TRPV4-TRPC1-KCa1.1 complex to induce smooth muscle membrane hyperpolarization and relaxation in human internal mammary arteries. Biochimica et biophysica acta. 2015 Mar; 1852(3):552-9. doi: 10.1016/j.bbadis.2014.12.010. [PMID: 25511389]
  • Wenshu Chen, Shijiang Yang, Wei Ping, Xiangning Fu, Qinzi Xu, Jianing Wang. CYP2J2 and EETs protect against lung ischemia/reperfusion injury via anti-inflammatory effects in vivo and in vitro. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2015; 35(5):2043-54. doi: 10.1159/000374011. [PMID: 25870948]
  • Wen-Hui Wang, Chengbiao Zhang, Dao-Hong Lin, Lijun Wang, Joan P Graves, Darryl C Zeldin, Jorge H Capdevila. Cyp2c44 epoxygenase in the collecting duct is essential for the high K+ intake-induced antihypertensive effect. American journal of physiology. Renal physiology. 2014 Aug; 307(4):F453-60. doi: 10.1152/ajprenal.00123.2014. [PMID: 24966089]
  • Yindi Ding, Timo Frömel, Rüdiger Popp, John R Falck, Wolf-Hagen Schunck, Ingrid Fleming. The biological actions of 11,12-epoxyeicosatrienoic acid in endothelial cells are specific to the R/S-enantiomer and require the G(s) protein. The Journal of pharmacology and experimental therapeutics. 2014 Jul; 350(1):14-21. doi: 10.1124/jpet.114.214254. [PMID: 24763066]
  • Yingmei Liu, Xiaodan Lu, Sinh Nguyen, Jean L Olson, Heather K Webb, Deanna L Kroetz. Epoxyeicosatrienoic acids prevent cisplatin-induced renal apoptosis through a p38 mitogen-activated protein kinase-regulated mitochondrial pathway. Molecular pharmacology. 2013 Dec; 84(6):925-34. doi: 10.1124/mol.113.088302. [PMID: 24092818]
  • Md Abdul Hye Khan, Jing Liu, Ganesh Kumar, Stephen X Skapek, John R Falck, John D Imig. Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2013 Aug; 27(8):2946-56. doi: 10.1096/fj.12-218040. [PMID: 23603837]
  • Annemarieke E Loot, Isabelle Moneke, Benjamin Keserü, Matthias Oelze, Tetyana Syzonenko, Andreas Daiber, Ingrid Fleming. 11,12-EET stimulates the association of BK channel α and β(1) subunits in mitochondria to induce pulmonary vasoconstriction. PloS one. 2012; 7(9):e46065. doi: 10.1371/journal.pone.0046065. [PMID: 23029390]
  • Guangzhi Chen, Peihua Wang, Gang Zhao, Gang Xu, Artiom Gruzdev, Darryl C Zeldin, Dao Wen Wang. Cytochrome P450 epoxygenase CYP2J2 attenuates nephropathy in streptozotocin-induced diabetic mice. Prostaglandins & other lipid mediators. 2011 Nov; 96(1-4):63-71. doi: 10.1016/j.prostaglandins.2011.06.009. [PMID: 21742052]
  • Karen Wagner, Bora Inceoglu, Bruce D Hammock. Soluble epoxide hydrolase inhibition, epoxygenated fatty acids and nociception. Prostaglandins & other lipid mediators. 2011 Nov; 96(1-4):76-83. doi: 10.1016/j.prostaglandins.2011.08.001. [PMID: 21854866]
  • David Sacerdoti, Houli Jiang, Silvia Gaiani, John C McGiff, Angelo Gatta, Massimo Bolognesi. 11,12-EET increases porto-sinusoidal resistance and may play a role in endothelial dysfunction of portal hypertension. Prostaglandins & other lipid mediators. 2011 Nov; 96(1-4):72-5. doi: 10.1016/j.prostaglandins.2011.08.002. [PMID: 21856435]
  • Luca Vanella, Dong Hyun Kim, Komal Sodhi, Ignazio Barbagallo, Angela P Burgess, John R Falck, Michal L Schwartzman, Nader G Abraham. Crosstalk between EET and HO-1 downregulates Bach1 and adipogenic marker expression in mesenchymal stem cell derived adipocytes. Prostaglandins & other lipid mediators. 2011 Nov; 96(1-4):54-62. doi: 10.1016/j.prostaglandins.2011.07.005. [PMID: 21821145]
  • Mohamed Abukhashim, Glenis J Wiebe, John M Seubert. Regulation of forskolin-induced cAMP production by cytochrome P450 epoxygenase metabolites of arachidonic acid in HEK293 cells. Cell biology and toxicology. 2011 Oct; 27(5):321-32. doi: 10.1007/s10565-011-9190-x. [PMID: 21519968]
  • Tengis S Pavlov, Daria V Ilatovskaya, Vladislav Levchenko, David L Mattson, Richard J Roman, Alexander Staruschenko. Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). American journal of physiology. Renal physiology. 2011 Sep; 301(3):F672-81. doi: 10.1152/ajprenal.00597.2010. [PMID: 21697242]
  • Houli Jiang, John Quilley, Anabel B Doumad, Angela G Zhu, John R Falck, Bruce D Hammock, Charles T Stier, Mairead A Carroll. Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats. American journal of physiology. Heart and circulatory physiology. 2011 Jun; 300(6):H1990-6. doi: 10.1152/ajpheart.01267.2010. [PMID: 21398593]
  • Moritz Schmelzle, Levent Dizdar, Hanno Matthaei, Stephan E Baldus, Judith Wolters, Nina Lindenlauf, Ingmar Bruns, Ron-Patrick Cadeddu, Feride Kröpil, Stefan A Topp, Jan Schulte am Esch, Claus F Eisenberger, Wolfram T Knoefel, Nikolas H Stoecklein. Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostaglandins & other lipid mediators. 2011 Feb; 94(1-2):25-33. doi: 10.1016/j.prostaglandins.2010.12.001. [PMID: 21167292]
  • Peng Sun, Dao-Hong Lin, Peng Yue, Houli Jiang, Katherine H Gotlinger, Michal L Schwartzman, John R Falck, Mohan Goli, Wen-Hui Wang. High potassium intake enhances the inhibitory effect of 11,12-EET on ENaC. Journal of the American Society of Nephrology : JASN. 2010 Oct; 21(10):1667-77. doi: 10.1681/asn.2009111110. [PMID: 20595684]
  • Komal Sodhi, Kazuyoshi Inoue, Katherine H Gotlinger, Martina Canestraro, Luca Vanella, Dong Hyun Kim, Vijay L Manthati, Sreenivasulu Reddy Koduru, John R Falck, Michal L Schwartzman, Nader G Abraham. Epoxyeicosatrienoic acid agonist rescues the metabolic syndrome phenotype of HO-2-null mice. The Journal of pharmacology and experimental therapeutics. 2009 Dec; 331(3):906-16. doi: 10.1124/jpet.109.157545. [PMID: 19717790]
  • Peng Sun, Wen Liu, Dao-Hong Lin, Peng Yue, Rowena Kemp, Lisa M Satlin, Wen-Hui Wang. Epoxyeicosatrienoic acid activates BK channels in the cortical collecting duct. Journal of the American Society of Nephrology : JASN. 2009 Mar; 20(3):513-23. doi: 10.1681/asn.2008040427. [PMID: 19073823]
  • Elvira L Liclican, John C McGiff, John R Falck, Mairéad A Carroll. Failure to upregulate the adenosine2A receptor-epoxyeicosatrienoic acid pathway contributes to the development of hypertension in Dahl salt-sensitive rats. American journal of physiology. Renal physiology. 2008 Dec; 295(6):F1696-704. doi: 10.1152/ajprenal.90502.2008. [PMID: 18829737]
  • ZhiJian Wang, Yuan Wei, John R Falck, Krishnam Raju Atcha, Wen-Hui Wang. Arachidonic acid inhibits basolateral K channels in the cortical collecting duct via cytochrome P-450 epoxygenase-dependent metabolic pathways. American journal of physiology. Renal physiology. 2008 Jun; 294(6):F1441-7. doi: 10.1152/ajprenal.00038.2008. [PMID: 18417544]
  • Pietro Minuz, Houli Jiang, Cristiano Fava, Lucia Turolo, Stefania Tacconelli, Marco Ricci, Paola Patrignani, Alberto Morganti, Alessandro Lechi, John C McGiff. Altered release of cytochrome p450 metabolites of arachidonic acid in renovascular disease. Hypertension (Dallas, Tex. : 1979). 2008 May; 51(5):1379-85. doi: 10.1161/hypertensionaha.107.105395. [PMID: 18378855]
  • John D Imig, Christiana Dimitropoulou, D Sudarshan Reddy, Richard E White, John R Falck. Afferent arteriolar dilation to 11, 12-EET analogs involves PP2A activity and Ca2+-activated K+ Channels. Microcirculation (New York, N.Y. : 1994). 2008 Feb; 15(2):137-50. doi: 10.1080/10739680701456960. [PMID: 18260004]
  • Hui Huang, Christophe Morisseau, JingFeng Wang, Tianxin Yang, John R Falck, Bruce D Hammock, Mong-Heng Wang. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. American journal of physiology. Renal physiology. 2007 Jul; 293(1):F342-9. doi: 10.1152/ajprenal.00004.2007. [PMID: 17442729]
  • Natasha T Snider, Andrei M Kornilov, Ute M Kent, Paul F Hollenberg. Anandamide metabolism by human liver and kidney microsomal cytochrome p450 enzymes to form hydroxyeicosatetraenoic and epoxyeicosatrienoic acid ethanolamides. The Journal of pharmacology and experimental therapeutics. 2007 May; 321(2):590-7. doi: 10.1124/jpet.107.119321. [PMID: 17272674]
  • Christiana Dimitropoulou, Lashondra West, Mary B Field, Richard E White, L Manmohan Reddy, John R Falck, John D Imig. Protein phosphatase 2A and Ca2+-activated K+ channels contribute to 11,12-epoxyeicosatrienoic acid analog mediated mesenteric arterial relaxation. Prostaglandins & other lipid mediators. 2007 Feb; 83(1-2):50-61. doi: 10.1016/j.prostaglandins.2006.09.008. [PMID: 17259072]
  • David Sacerdoti, Claudia Colombrita, Marco Di Pascoli, Michal L Schwartzman, Massimo Bolognesi, John R Falck, Angelo Gatta, Nader G Abraham. 11,12-epoxyeicosatrienoic acid stimulates heme-oxygenase-1 in endothelial cells. Prostaglandins & other lipid mediators. 2007 Jan; 82(1-4):155-61. doi: 10.1016/j.prostaglandins.2006.07.001. [PMID: 17164143]
  • Jian Gang Jiang, Rui Juan Chen, Bin Xiao, Shilin Yang, Jia Ning Wang, Yong Wang, L Ashley Cowart, Xiao Xiao, Dao Wen Wang, Yong Xia. Regulation of endothelial nitric-oxide synthase activity through phosphorylation in response to epoxyeicosatrienoic acids. Prostaglandins & other lipid mediators. 2007 Jan; 82(1-4):162-74. doi: 10.1016/j.prostaglandins.2006.08.005. [PMID: 17164144]
  • Peng Sun, Dao-Hong Lin, Tong Wang, Elisa Babilonia, Zhijian Wang, Yan Jin, Rowena Kemp, Alberto Nasjletti, Wen-Hui Wang. Low Na intake suppresses expression of CYP2C23 and arachidonic acid-induced inhibition of ENaC. American journal of physiology. Renal physiology. 2006 Dec; 291(6):F1192-200. doi: 10.1152/ajprenal.00112.2006. [PMID: 16849695]
  • Peeter Kööbi, Tuija I Vehmas, Pasi Jolma, Jarkko Kalliovalkama, Meng Fan, Onni Niemelä, Heikki Saha, Mika Kähönen, Pauli Ylitalo, Jaana Rysä, Heikki Ruskoaho, Ilkka Pörsti. High-calcium vs high-phosphate intake and small artery tone in advanced experimental renal insufficiency. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2006 Oct; 21(10):2754-61. doi: 10.1093/ndt/gfl270. [PMID: 16837509]
  • Mairéad A Carroll, Anabel B Doumad, Jing Li, Monica K Cheng, J R Falck, John C McGiff. Adenosine2A receptor vasodilation of rat preglomerular microvessels is mediated by EETs that activate the cAMP/PKA pathway. American journal of physiology. Renal physiology. 2006 Jul; 291(1):F155-61. doi: 10.1152/ajprenal.00231.2005. [PMID: 16478979]
  • Houli Jiang, John Quilley, L Manmohan Reddy, John R Falck, Patrick Y K Wong, John C McGiff. Red blood cells: reservoirs of cis- and trans-epoxyeicosatrienoic acids. Prostaglandins & other lipid mediators. 2005 Jan; 75(1-4):65-78. doi: 10.1016/j.prostaglandins.2004.10.003. [PMID: 15789616]
  • Dominik N Muller, Juergen Theuer, Erdenechimeg Shagdarsuren, Eva Kaergel, Horst Honeck, Joon-Keun Park, Marija Markovic, Eduardo Barbosa-Sicard, Ralf Dechend, Maren Wellner, Torsten Kirsch, Anette Fiebeler, Michael Rothe, Hermann Haller, Friedrich C Luft, Wolf-Hagen Schunck. A peroxisome proliferator-activated receptor-alpha activator induces renal CYP2C23 activity and protects from angiotensin II-induced renal injury. The American journal of pathology. 2004 Feb; 164(2):521-32. doi: 10.1016/s0002-9440(10)63142-2. [PMID: 14742258]
  • G O Ogungbade, L A Akinsanmi, H Jiang, A O Oyekan. Role of epoxyeicosatrienoic acids in renal functional response to inhibition of NO production in the rat. American journal of physiology. Renal physiology. 2003 Nov; 285(5):F955-64. doi: 10.1152/ajprenal.00092.2003. [PMID: 12865253]
  • Motoaki Miyazono, Daling Zhu, Raphael Nemenoff, Elizabeth R Jacobs, Ethan P Carter. Increased epoxyeicosatrienoic acid formation in the rat kidney during liver cirrhosis. Journal of the American Society of Nephrology : JASN. 2003 Jul; 14(7):1766-75. doi: 10.1097/01.asn.0000076074.63334.99. [PMID: 12819236]
  • Y-J Chen, H Jiang, J Quilley. The nitric oxide- and prostaglandin-independent component of the renal vasodilator effect of thimerosal is mediated by epoxyeicosatrienoic acids. The Journal of pharmacology and experimental therapeutics. 2003 Mar; 304(3):1292-8. doi: 10.1124/jpet.102.042671. [PMID: 12604709]
  • Kathryn M Gauthier, Christina Deeter, U Murali Krishna, Y Krishna Reddy, Muralidhar Bondlela, J R Falck, William B Campbell. 14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circulation research. 2002 May; 90(9):1028-36. doi: 10.1161/01.res.0000018162.87285.f8. [PMID: 12016270]
  • Michael Potente, U Ruth Michaelis, Beate Fisslthaler, Rudi Busse, Ingrid Fleming. Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. The Journal of biological chemistry. 2002 May; 277(18):15671-6. doi: 10.1074/jbc.m110806200. [PMID: 11867622]
  • J D Imig, X Zhao, J R Falck, S Wei, J H Capdevila. Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid. Journal of hypertension. 2001 May; 19(5):983-92. doi: 10.1097/00004872-200105000-00020. [PMID: 11393683]
  • M Fukao, H S Mason, J L Kenyon, B Horowitz, K D Keef. Regulation of BK(Ca) channels expressed in human embryonic kidney 293 cells by epoxyeicosatrienoic acid. Molecular pharmacology. 2001 Jan; 59(1):16-23. doi: 10.1124/mol.59.1.16. [PMID: 11125019]
  • M Medhora, J Narayanan, D Harder. Dual regulation of the cerebral microvasculature by epoxyeicosatrienoic acids. Trends in cardiovascular medicine. 2001 Jan; 11(1):38-42. doi: 10.1016/s1050-1738(01)00082-2. [PMID: 11413051]
  • Z Yu, F Xu, L M Huse, C Morisseau, A J Draper, J W Newman, C Parker, L Graham, M M Engler, B D Hammock, D C Zeldin, D L Kroetz. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circulation research. 2000 Nov; 87(11):992-8. doi: 10.1161/01.res.87.11.992. [PMID: 11090543]
  • Z Yu, L M Huse, P Adler, L Graham, J Ma, D C Zeldin, D L Kroetz. Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney. Molecular pharmacology. 2000 May; 57(5):1011-20. doi: . [PMID: 10779386]
  • J Chen, J H Capdevila, D C Zeldin, R L Rosenberg. Inhibition of cardiac L-type calcium channels by epoxyeicosatrienoic acids. Molecular pharmacology. 1999 Feb; 55(2):288-95. doi: 10.1124/mol.55.2.288. [PMID: 9927620]
  • C L Oltman, N L Weintraub, M VanRollins, K C Dellsperger. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circulation research. 1998 Nov; 83(9):932-9. doi: 10.1161/01.res.83.9.932. [PMID: 9797342]
  • J M Pascual, A McKenzie, J R Yankaskas, J R Falck, D C Zeldin. Epoxygenase metabolites of arachidonic acid affect electrophysiologic properties of rat tracheal epithelial cells1. The Journal of pharmacology and experimental therapeutics. 1998 Aug; 286(2):772-9. doi: . [PMID: 9694933]
  • S Imaoka, Y Funae. [The physiological role of P450-derived arachidonic acid metabolites]. Nihon yakurigaku zasshi. Folia pharmacologica Japonica. 1998 Jul; 112(1):23-31. doi: 10.1254/fpj.112.23. [PMID: 9755459]
  • S Arima, Y Endo, H Yaoita, K Omata, S Ogawa, K Tsunoda, M Abe, K Takeuchi, K Abe, S Ito. Possible role of P-450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole. The Journal of clinical investigation. 1997 Dec; 100(11):2816-23. doi: 10.1172/jci119829. [PMID: 9389747]
  • M H Wang, D E Stec, M Balazy, V Mastyugin, C S Yang, R J Roman, M L Schwartzman. Cloning, sequencing, and cDNA-directed expression of the rat renal CYP4A2: arachidonic acid omega-hydroxylation and 11,12-epoxidation by CYP4A2 protein. Archives of biochemistry and biophysics. 1996 Dec; 336(2):240-50. doi: 10.1006/abbi.1996.0554. [PMID: 8954571]
  • J D Imig, L G Navar, R J Roman, K K Reddy, J R Falck. Actions of epoxygenase metabolites on the preglomerular vasculature. Journal of the American Society of Nephrology : JASN. 1996 Nov; 7(11):2364-70. doi: 10.1681/asn.v7112364. [PMID: 8959626]
  • M VanRollins, P M Kochanek, R W Evans, J K Schiding, E M Nemoto. Optimization of epoxyeicosatrienoic acid syntheses to test their effects on cerebral blood flow in vivo. Biochimica et biophysica acta. 1995 Jun; 1256(3):263-74. doi: 10.1016/0005-2760(95)00029-c. [PMID: 7786887]
  • X Fang, M VanRollins, T L Kaduce, A A Spector. Epoxyeicosatrienoic acid metabolism in arterial smooth muscle cells. Journal of lipid research. 1995 Jun; 36(6):1236-46. doi: 10.1016/s0022-2275(20)41131-9. [PMID: 7666001]
  • B A Escalante, R Staudinger, M Schwartzman, N Abraham. Amiloride-sensitive ion transport inhibition by epoxyeicosatrienoic acids in renal epithelial cells. Advances in prostaglandin, thromboxane, and leukotriene research. 1995; 23(?):207-9. doi: NULL. [PMID: 7732836]
  • B E Daikh, J M Lasker, J L Raucy, D R Koop. Regio- and stereoselective epoxidation of arachidonic acid by human cytochromes P450 2C8 and 2C9. The Journal of pharmacology and experimental therapeutics. 1994 Dec; 271(3):1427-33. doi: . [PMID: 7996455]
  • Y H Ma, M L Schwartzman, R J Roman. Altered renal P-450 metabolism of arachidonic acid in Dahl salt-sensitive rats. The American journal of physiology. 1994 Aug; 267(2 Pt 2):R579-89. doi: 10.1152/ajpregu.1994.267.2.r579. [PMID: 8067471]
  • J D Imig, A P Zou, P R Ortiz de Montellano, Z Sui, R J Roman. Cytochrome P-450 inhibitors alter afferent arteriolar responses to elevations in pressure. The American journal of physiology. 1994 May; 266(5 Pt 2):H1879-85. doi: 10.1152/ajpheart.1994.266.5.h1879. [PMID: 8203587]
  • A Karara, S Wei, D Spady, L Swift, J H Capdevila, J R Falck. Arachidonic acid epoxygenase: structural characterization and quantification of epoxyeicosatrienoates in plasma. Biochemical and biophysical research communications. 1992 Feb; 182(3):1320-5. doi: 10.1016/0006-291x(92)91877-s. [PMID: 1540175]
  • K Omata, N G Abraham, B Escalante, M L Schwartzman. Age-related changes in renal cytochrome P-450 arachidonic acid metabolism in spontaneously hypertensive rats. The American journal of physiology. 1992 Jan; 262(1 Pt 2):F8-16. doi: 10.1152/ajprenal.1992.262.1.f8. [PMID: 1733300]
  • M A Carroll, M P Garcia, J R Falck, J C McGiff. Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites. The Journal of pharmacology and experimental therapeutics. 1992 Jan; 260(1):104-9. doi: . [PMID: 1731035]
  • F Catella, J Lawson, G Braden, D J Fitzgerald, E Shipp, G A FitzGerald. Biosynthesis of P450 products of arachidonic acid in humans: increased formation in cardiovascular disease. Advances in prostaglandin, thromboxane, and leukotriene research. 1991; 21A(?):193-6. doi: NULL. [PMID: 1705382]
  • F Catella, J A Lawson, D J Fitzgerald, G A FitzGerald. Endogenous biosynthesis of arachidonic acid epoxides in humans: increased formation in pregnancy-induced hypertension. Proceedings of the National Academy of Sciences of the United States of America. 1990 Aug; 87(15):5893-7. doi: 10.1073/pnas.87.15.5893. [PMID: 2198572]
  • A Karara, E Dishman, H Jacobson, J R Falck, J H Capdevila. Arachidonic acid epoxygenase. Stereochemical analysis of the endogenous epoxyeicosatrienoic acids of human kidney cortex. FEBS letters. 1990 Jul; 268(1):227-30. doi: 10.1016/0014-5793(90)81014-f. [PMID: 2384159]
  • G A Ulsaker, G Teien. Gas chromatographic-mass spectrometric identification of four triene monoepoxides of arachidonic acid in human plasma. The Analyst. 1990 Mar; 115(3):259-62. doi: 10.1039/an9901500259. [PMID: 2327589]
  • M A Carroll, M Schwartzman, D Sacerdoti, J C McGiff. Novel renal arachidonate metabolites. The American journal of the medical sciences. 1988 Apr; 295(4):268-74. doi: 10.1097/00000441-198804000-00009. [PMID: 2834948]
  • D Schlondorff, E Petty, J A Oates, M Jacoby, S D Levine. Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder. The American journal of physiology. 1987 Sep; 253(3 Pt 2):F464-70. doi: 10.1152/ajprenal.1987.253.3.f464. [PMID: 2820243]