Geranial (BioDeep_00000002662)
Secondary id: BioDeep_00000396896, BioDeep_00000638325
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C10H16O (152.1201)
中文名称: (E)-3,7-二甲基-2,6-辛二烯醛, 柠檬醛, 3,7-二甲基-2,6-辛二烯醛, 草甘磷
谱图信息:
最多检出来源 Viridiplantae(plant) 18.81%
分子结构信息
SMILES: C/C(C)=C\CC/C(C)=C/C=O
InChI: InChI=1S/C10H16O/c1-9(2)5-4-6-10(3)7-8-11/h5,7-8H,4,6H2,1-3H3
描述信息
Geranial, also known as 3,7-dimethyl-2,6-octadienal, citral or lemonal, belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Thus, citral is considered to be an isoprenoid lipid. Two different isomers of 3,7-dimethyl-2,6-octadienal exist. The E-isomer or trans-isomer is known as geranial or citral A. The Z-isomer or cis-isomer is known as neral or citral B. 3,7-dimethyl-2,6-octadienal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Citral is present in the oils of several plants, including lemon myrtle (90-98\\\\%), Litsea citrata (90\\\\%), Litsea cubeba, lemongrass (65-80\\\\%), lemon tea-tree (70-80\\\\%), Ocimum gratissimum, Lindera citriodora, Calypranthes parriculata, petitgrain, lemon verbena, lemon ironbark, lemon balm, lime, lemon and orange. Citral has also been reported to be found in Cannabis sativa (PMID:6991645 , 26657499 ). Citral has a strong lemon (citrus) odor. Nerals lemon odor is less intense, but sweeter. Citral is therefore an aroma compound used in perfumery for its citrus effect. Citral is also used as a flavor and for fortifying lemon oil. It has strong antimicrobial qualities (PMID:28974979 ) and pheromonal effects in nematodes and insects (PMID:26973536 ). Citral is used in the synthesis of vitamin A, lycopene, ionone, and methylionone (a compound used to mask the smell of smoke).
Occurs in lemon grass oil (Cymbopogon citratus), lemon, orange and many other essential oils; flavouring ingredient. Geranial is found in many foods, some of which are watermelon, nutmeg, cloud ear fungus, and yellow wax bean.
Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1].
Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1].
同义名列表
39 个代谢物同义名
trans-3,7-Dimethyl-2,6-octadien-1-al; (2E)-3,7-Dimethyl-2,6-octadien-1-al; trans-3,7-Dimethyl-2,6-octadienal; 3,7-Dimethyl-trans-2,6-octadienal; 3,7-Dimethyl-(2E)-2,6-octadienal; (2E)-3,7-dimethylocta-2,6-dienal; (2E)-3,7-Dimethyl-2,6-octadienal; 3,7-Dimethyl-(e)-2,6-octadienal; (e)-3,7-Dimethylocta-2,6-dienal; (e)-3,7-Dimethyl-2,6-octadienal; 3,7-Dimethyl-2,6-octadien-1-al; 3,7-Dimethyl-2,6-octadienal; (E)-alpha-Citral; trans-Geranial; alpha -Citral; beta-Geranial; Geranaldehyde; (2E)-Geranial; trans-Citral; alpha-Citral; (e)-Geranial; β-Geranial; (E)-Citral; (Z)-Citral; beta-Neral; (E)-Neral; Geranial; Citral-a; Α-citral; Citral a; a-Citral; Genanial; Geranal; β-Neral; Lemonal; Citral; Citral; Geranial; 3,7-Dimethyl-2,6-octadienal
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:137934
- ChEBI: CHEBI:23316
- ChEBI: CHEBI:16980
- KEGG: C01499
- PubChem: 638011
- PubChem: 8843
- HMDB: HMDB0035078
- Metlin: METLIN41069
- ChEMBL: CHEMBL1080997
- ChEMBL: CHEMBL2297541
- Wikipedia: Citral
- MetaCyc: GERANIAL
- KNApSAcK: C00003035
- foodb: FDB013702
- chemspider: 553578
- CAS: 147060-73-9
- CAS: 5392-40-5
- CAS: 141-27-5
- PMhub: MS000004319
- PubChem: 4668
- LipidMAPS: LMPR0102010003
- PDB-CCD: GRQ
- 3DMET: B00306
- NIKKAJI: J2.026E
- NIKKAJI: J3.073B
- medchemexpress: HY-N7083
- LOTUS: LTS0246122
- wikidata: Q410888
- KNApSAcK: 16980
分类词条
相关代谢途径
Reactome(0)
代谢反应
105 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- geraniol and nerol degradation:
H2O + neral ⟶ acetaldehyde + sulcatone
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- carotenoid cleavage:
all-trans-β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- β myrcene degradation:
(3S)-linalool ⟶ β-myrcene + H2O
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(100)
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
H2O + geranyl diphosphate ⟶ diphosphate + geraniol
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
- geraniol and geranial biosynthesis:
NADP+ + geraniol ⟶ H+ + NADPH + geranial
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
130 个相关的物种来源信息
- 282720 - Achillea aspleniifolia: 10.1080/10412905.1992.9698109
- 13329 - Achillea millefolium: 10.1080/10412905.1992.9698109
- 282770 - Achillea virescens: 10.1080/10412905.1992.9698109
- 199615 - Aframomum angustifolium: 10.1080/10412905.1994.9698405
- 212130 - Aleuroglyphus ovatus: 10.1271/BBB1961.52.1299
- 925377 - Aloysia citrodora:
- 542672 - Aloysia triphylla:
- 542672 - Aloysia triphylla: 10.1055/S-0028-1099422
- 94327 - Alpinia galanga: 10.1002/FFJ.1105
- 72342 - Artemisia fragrans: 10.1002/CBER.19731060919
- 385370 - Aster scaber: 10.1021/JF00034A033
- 72900 - Baccharis dracunculifolia: 10.1002/(SICI)1099-1026(199601)11:1<15::AID-FFJ541>3.0.CO;2-H
- 39976 - Backhousia citriodora: 10.1080/10412905.2000.9712204
- 41492 - Bellis perennis: 10.1016/0031-9422(95)00183-8
- 97729 - Boesenbergia rotunda: 10.1016/0031-9422(93)80020-S
- 199133 - Bupleurum fruticescens: 10.1055/S-2006-959755
- 3426 - Canella winterana: 10.1080/10412905.1998.9700906
- 48032 - Carum carvi: 10.1021/JF00047A021
- 50282 - Centaurea benedicta: 10.1055/S-0028-1099484
- 119266 - Cinnamomum sieboldii: 10.1248/YAKUSHI1947.106.1_17
- 128608 - Cinnamomum verum: 10.1021/JF60218A031
- 3654 - Citrullus lanatus: 10.1271/BBB1961.49.3145
- 2706 - Citrus: 10.1080/10412905.1993.9698179
- 558547 - Citrus deliciosa:
- 37334 - Citrus maxima:
- 171251 - Citrus medica:
- 85571 - Citrus reticulata:
- 85571 - Citrus reticulata Blanco: -
- 37690 - Citrus trifoliata:
- 37690 - Citrus trifoliata: 10.1007/BF00580068
- 55188 - Citrus unshiu:
- 475932 - Citrus wilsonii: 10.1007/BF00579447
- 260635 - Condea emoryi: 10.1021/NP50034A039
- 4047 - Coriandrum sativum: 10.1080/10412905.1996.9700565
- 2815075 - Croton grewioides: 10.1021/NP50017A019
- 105371 - Curcuma amada: 10.1002/PTR.2137
- 136217 - Curcuma longa:
- 66014 - Cymbopogon citratus:
- 152208 - Cymbopogon distans: 10.1021/NP50042A025
- 79835 - Cymbopogon flexuosus:
- 79840 - Cymbopogon nardus: 10.5897/JMPR10.078
- 1414754 - Cymbopogon winterianus: 10.1080/10412905.1991.9697955
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 325714 - Diplotaenia cachrydifolia:
- 180015 - Dracocephalum kotschyi:
- 180015 - Dracocephalum kotschyi: 10.1248/CPB.52.1249
- 39296 - Dracocephalum moldavica: 10.1002/FFJ.2730030305
- 39296 - Dracocephalum moldavica: 10.1248/CPB.52.1249
- 91514 - Elionurus muticus: 10.1002/(SICI)1099-1026(200003/04)15:2<100::AID-FFJ874>3.0.CO;2-Y
- 662901 - Elsholtzia ciliata: 10.1080/10412905.1996.9700569
- 1874231 - Elsholtzia eriostachya: 10.1080/10412905.1992.9698130
- 698833 - Elsholtzia fruticosa: 10.1055/S-2006-961490
- 377494 - Elwendia persica: 10.1007/BF00630023
- 881203 - Eucalyptus pulverulenta: 10.1055/S-2007-969442
- 3494 - Ficus carica: -
- 5314 - Ganoderma: -
- 5315 - Ganoderma lucidum: 10.1016/J.PHYTOCHEM.2005.10.025
- 4028 - Geranium: 10.1080/10412905.1993.9698254
- 112363 - Helichrysum odoratissimum: 10.1080/10412905.1993.9698235
- 714477 - Homalomena Occulta (Lour.) Schott: -
- 9606 - Homo sapiens: -
- 16752 - Houttuynia cordata: 10.3390/MOLECULES200610298
- 3486 - Humulus lupulus: 10.1021/JF00067A018
- 126435 - Lantana camara: 10.1055/S-0028-1099554
- 649173 - Lantana strigocamara: 10.1055/S-0028-1099554
- 320345 - Lippia alba:
- 151069 - Litchi chinensis: 10.1021/JF60230A021
- 155299 - Litsea cubeba:
- 3411 - Magnolia salicifolia: 10.1076/PHBI.35.2.84.13279
- 3750 - Malus domestica: 10.1021/JF00025A025
- 283210 - Malus pumila: 10.1021/JF00025A025
- 29780 - Mangifera indica: 10.1016/0031-9422(88)80124-9
- 39338 - Melissa officinalis:
- 39338 - Melissa officinalis: 10.1016/S0031-6865(97)00026-5
- 1898872 - Micromeria biflora: 10.1080/10412905.1997.9700709
- 1945650 - Micromeria maderensis: 10.1002/FFJ.2730100313
- 39344 - Monarda fistulosa:
- 39344 - Monarda fistulosa: 10.1055/S-0028-1099434
- 354505 - Murraya kwangsiensis: 10.1002/FFJ.1058
- 119949 - Myrtus communis: 10.1080/10412905.1991.9700498
- 39347 - Nepeta cataria: 10.1016/S0031-9422(00)86089-6
- 1000421 - Nepeta nepetella: 10.1055/S-2007-969632
- 39350 - Ocimum basilicum: 10.1016/S0944-7113(11)80031-0
- 145953 - Ophrys sphegodes: 10.1016/S0031-9422(00)81276-5
- 35924 - Paeonia lactiflora: 10.1016/S0031-9422(00)94541-2
- 1477641 - Pectis brevipedunculata: 10.1021/NP50044A039
- 169596 - Pectis elongata: 10.1080/10412905.1995.9698464
- 73188 - Pelargonium citronellum: 10.1080/10412905.1993.9698214
- 163050 - Pelargonium ternifolium: 10.1080/10412905.1993.9698209
- 253086 - Pelargonium vitifolium: 10.1080/10412905.1992.9698083
- 48386 - Perilla frutescens:
- 48386 - Perilla Frutescens: -
- 48386 - Perilla frutescens: 10.1016/0031-9422(90)87094-B
- 270461 - Pieris melete: 10.1007/BF01947255
- 78633 - Pieris napi: 10.1007/BF01947255
- 260139 - Pimenta racemosa:
- 199225 - Pinellia ternata (Thunb. )Breit.: -
- 405322 - Piper cubeba: 10.1016/S0031-9422(97)00762-0
- 425151 - Piper fimbriulatum: 10.1016/S0031-9422(97)00762-0
- 434234 - Pistacia atlantica: 10.1023/B:CONC.0000025459.72590.9E
- 33090 - Plants: -
- 62097 - Plumeria rubra: 10.1002/FFJ.2730060407
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 120290 - Psidium guajava: 10.1002/FFJ.2730060314
- 242839 - Rhodiola crenulata: 10.1016/S0031-9422(02)00004-3
- 203015 - Rhodiola rosea: 10.1016/S0031-9422(02)00004-3
- 74632 - Rosa gallica: 10.1016/S0031-9422(00)81688-X
- 74632 - Rosa gallica: 10.1080/10412905.1995.9698472
- 268906 - Salvia fruticosa: 10.1021/JF970031M
- 38869 - Salvia sclarea: 10.1076/PHBI.35.3.218.13295
- 4113 - Solanum tuberosum: 10.1007/BF02853856
- 223625 - Suidasia medanensis: 10.1080/00021369.1989.10869703
- 547782 - Symphyotrichum undulatum: 10.1021/JF00034A033
- 219868 - Syzygium aromaticum: 10.1271/BBB1961.49.1583
- 1484035 - Thapsia maxima: 10.1080/10412905.1992.9698111
- 512635 - Thapsia villosa: 10.1080/10412905.1992.9698111
- 543980 - Thymbra capitata: 10.1080/10412905.1995.9698524
- 2878271 - Thymus camphoratus: 10.1016/S0031-9422(97)00117-9
- 1194133 - Thymus longicaulis: 10.1080/10412905.1993.9698222
- 751873 - Thymus pulegioides: 10.1016/0305-1978(94)90086-8
- 1718167 - Thymus sibthorpii: 10.1055/S-2007-969172
- 1132411 - Thymus sipyleus: 10.1055/S-2007-969176
- 462584 - Xenophyllum poposum: 10.1076/1388-0209(200007)3831-SFT197
- 1671342 - Zanthoxylum chalybeum: 10.1080/10412905.1999.9701154
- 4577 - Zea mays: 10.1021/JF60218A022
- 136225 - Zingiber mioga: 10.1271/BBB1961.55.1655
- 94328 - Zingiber officinale:
- 94328 - Zingiber officinale Rosc.: -
- 94328 - Zingiber Officinale Roscoe: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Kunyao Luo, Xinquan Hu, Yanzheng Li, Meixian Guo, Xing Liu, Yingying Zhang, Weiwei Zhuo, Baowei Yang, Xin Wang, Chao Shi. Revealing the mechanism of citral induced entry of Vibrio vulnificus into viable but not culturable (VBNC) state based on transcriptomics.
International journal of food microbiology.
2024 May; 416(?):110656. doi:
10.1016/j.ijfoodmicro.2024.110656
. [PMID: 38461733] - Nikola Nowak, Wiktoria Grzebieniarz, Lesław Juszczak, Agnieszka Cholewa-Wójcik, Beata Synkiewicz-Musialska, Verena Huber, Didier Touraud, Werner Kunz, Ewelina Jamróz. Influence of Curcuma Longa extract in citral addition on functional properties of thin films with triple-layer structure based on furcellaran and gelatin.
International journal of biological macromolecules.
2024 May; 266(Pt 2):131344. doi:
10.1016/j.ijbiomac.2024.131344
. [PMID: 38574923] - Kotaro Takano, Scott Carver, Yolandi Vermaak, Katja Fischer, Robert J Harvey, Kate E Mounsey. Assessment of the in vitro acaricidal activity of Bravecto® (fluralaner) and a proposed orange oil-based formulation vehicle for the treatment of Sarcoptes scabiei.
Parasites & vectors.
2024 Apr; 17(1):194. doi:
10.1186/s13071-024-06275-9
. [PMID: 38664829] - Simin Feng, Jialu Sheng, Jiahao Yu, Yang Lin, Ping Shao. Enhancing acid stability of citral through internal structure modulation in nanostructured lipid carriers with solid lipids and phospholipids.
Food research international (Ottawa, Ont.).
2024 Apr; 182(?):114148. doi:
10.1016/j.foodres.2024.114148
. [PMID: 38519178] - Patrícia Gabrielly da Silva Pires, Sandra Layse Ferreira Sarrazin, Deise Juliane Dos Anjos de Souza, Rosa Helena Veras Mourão, Lais Tatiele Massing, Herman Ascenção Silva Nunes, Adenilson Souza Barroso, Ricardo Bezerra de Oliveira. Antiedema and antinociceptive potential of the essential oil of Pectis elongata Kunt (Asteraceae) from the Brazilian Amazon.
Journal of ethnopharmacology.
2024 Mar; 322(?):117643. doi:
10.1016/j.jep.2023.117643
. [PMID: 38135233] - Yana Kazachkova. Smells like lemons: MYB-ADH gene cluster regulates citral biosynthesis in Litsea cubeba.
Plant physiology.
2024 Feb; 194(3):1263-1265. doi:
10.1093/plphys/kiad617
. [PMID: 37976167] - Ce Shi, Xu Liu, Yangyang Chen, Jinming Dai, Changzhu Li, Shifa Felemban, Manal M Khowdiary, Haiying Cui, Lin Lin. Inhibitory effects of citral on the production of virulence factors in Staphylococcus aureus and its potential application in M preservation.
International journal of food microbiology.
2024 Jan; 413(?):110581. doi:
10.1016/j.ijfoodmicro.2024.110581
. [PMID: 38246026] - C S Chanotiya, Yatish Pant, R K Lal, Pankaj Kumar, Parmanand Kumar, Laldingngheti Bawitlung, Manoj Semwal, P K Trivedi, Anirban Pal. Radiocarbon (14C) accelerator mass spectrometry as a convenient tool for differentiation of flavor chemicals of synthetic origin from biobased sources and their in-vivo toxicity assessment.
The Science of the total environment.
2024 Jan; 908(?):168357. doi:
10.1016/j.scitotenv.2023.168357
. [PMID: 37951255] - Lanlan Sun, Ronghui Ma, Hongle Xu, Wangcang Su, Fei Xue, Renhai Wu, Chuantao Lu. Protective mechanisms of neral as a plant-derived safener against fenoxaprop-p-ethyl injury in rice.
Pest management science.
2023 Nov; ?(?):. doi:
10.1002/ps.7854
. [PMID: 37940406] - Roghayeh Setareh, Khosro Mohammadi-Ghermezgoli, Hossein Ghaffari-Setoubadi, Saeideh Alizadeh-Salteh. The effectiveness of hot-air, infrared and hybrid drying techniques for lemongrass: appearance acceptability, essential oil yield, and volatile compound preservation.
Scientific reports.
2023 11; 13(1):18820. doi:
10.1038/s41598-023-44934-6
. [PMID: 37914737] - Winnie Alencar-Luciano, Marciane Magnani, Olga Martín-Belloso, Laura Salvia-Trujillo. Effect of digestible versus non-digestible citral nanoemulsions on human gut microorganisms: An in vitro digestion study.
Food research international (Ottawa, Ont.).
2023 11; 173(Pt 1):113313. doi:
10.1016/j.foodres.2023.113313
. [PMID: 37803624] - Yunxiao Zhao, Yicun Chen, Ming Gao, Yangdong Wang. Alcohol dehydrogenases regulated by a MYB44 transcription factor underlie Lauraceae citral biosynthesis.
Plant physiology.
2023 Oct; ?(?):. doi:
10.1093/plphys/kiad553
. [PMID: 37831423] - Laure Martinelli, Camille Bihanic, Aurélie Bony, Florence Gros, Corentin Conart, Sébastien Fiorucci, Hervé Casabianca, Frédéric Schiets, Giorgiana Chietera, Benoît Boachon, Bernard Blerot, Sylvie Baudino, Frédéric Jullien, Denis Saint-Marcoux. Citronellol biosynthesis in pelargonium is a multi-step pathway involving PRISE enzymes.
Plant physiology.
2023 Oct; ?(?):. doi:
10.1093/plphys/kiad550
. [PMID: 37831417] - Evgeny Nikitin, Igor Fitsev, Anastasia Egorova, Lidia Logvinenko, Dmitriy Terenzhev, Feruzakhon Bekmuratova, Adelya Rakhmaeva, Georgiy Shumatbaev, Alsu Gatiyatullina, Oksana Shevchuk, Tatiana Kalinnikova. Five Different Artemisia L. Species Ethanol Extracts' Phytochemical Composition and Their Antimicrobial and Nematocide Activity.
International journal of molecular sciences.
2023 Sep; 24(18):. doi:
10.3390/ijms241814372
. [PMID: 37762675] - Juliana Mainenti Leal Lopes, Laís Stehling de Queiroz Nascimento, Vinicius Carius Souza, Elyabe Monteiro de Matos, Evandro Alexandre Fortini, Richard Michael Grazul, Marcelo Oliveira Santos, Douglas E Soltis, Pamela S Soltis, Wagner Campos Otoni, Lyderson Facio Viccini. Water stress modulates terpene biosynthesis and morphophysiology at different ploidal levels in Lippia alba (Mill.) N. E. Brown (Verbenaceae).
Protoplasma.
2023 Sep; ?(?):. doi:
10.1007/s00709-023-01890-2
. [PMID: 37665420] - Krishnendu Adhikary, Pradipta Banerjee, Saurav Barman, Bidyut Bandyopadhyay, Debasis Bagchi. Nutritional Aspects, Chemistry Profile, Extraction Techniques of Lemongrass Essential Oil and It's Physiological Benefits.
Journal of the American Nutrition Association.
2023 Aug; ?(?):1-18. doi:
10.1080/27697061.2023.2245435
. [PMID: 37579058] - Amel Boudechicha, Abdelhakim Aouf, Amr Farouk, Hatem S Ali, Manal F Elkhadragy, Hany M Yehia, Ahmed Noah Badr. Microfluidizing Technique Application for Algerian Cymbopogon citratus (DC.) Stapf Effects Enhanced Volatile Content, Antimicrobial, and Anti-Mycotoxigenic Properties.
Molecules (Basel, Switzerland).
2023 Jul; 28(14):. doi:
10.3390/molecules28145367
. [PMID: 37513240] - Shuai Cheng, Ruiying Su, Luyi Song, Xiangyang Bai, Hui Yang, Zhuo Li, Zhenye Li, Xiangjun Zhan, Xiaodong Xia, Xin Lü, Chao Shi. Citral and trans-cinnamaldehyde, two plant-derived antimicrobial agents can induce Staphylococcus aureus into VBNC state with different characteristics.
Food microbiology.
2023 Jun; 112(?):104241. doi:
10.1016/j.fm.2023.104241
. [PMID: 36906323] - Zahra Amiriyan Chelan, Rouhollah Amini, Adel Dabbagh Mohammadi Nasab. Essential oil yield and compositions of Dracocephalum moldavica L. in intercropping with fenugreek, inoculation with mycorrhizal fungi and bacteria.
Scientific reports.
2023 May; 13(1):8039. doi:
10.1038/s41598-023-35156-x
. [PMID: 37198236] - Zinnat Shahina, Ragothaman M Yennamalli, Tanya E S Dahms. Key essential oil components delocalize Candida albicans Kar3p and impact microtubule structure.
Microbiological research.
2023 Apr; 272(?):127373. doi:
10.1016/j.micres.2023.127373
. [PMID: 37058783] - Amanda Figueiredo, Luís Adriano Anholeto, Diego Faria Cola, Rafaela Regina Fantatto, Yousmel Alemán Gainza, Isabella Barbosa Dos Santos, Gabriel Pedroso Viçozzi, Daiana Silva Ávila, Leonardo Fernandes Fraceto, Ana Carolina de Souza Chagas. Acaricides containing zein nanoparticles: A tool for a lower impact control of the cattle tick Rhipicephalus microplus.
Veterinary parasitology.
2023 Mar; 318(?):109918. doi:
10.1016/j.vetpar.2023.109918
. [PMID: 37054578] - Hui Yang, Xiangjun Zhan, Luyi Song, Shuai Cheng, Ruiying Su, Yingying Zhang, Du Guo, Xin Lü, Xiaodong Xia, Chao Shi. Synergistic antibacterial and anti-biofilm mechanisms of ultrasound combined with citral nanoemulsion against Staphylococcus aureus 29213.
International journal of food microbiology.
2023 Feb; 391-393(?):110150. doi:
10.1016/j.ijfoodmicro.2023.110150
. [PMID: 36870235] - Tanapoom Moungthipmalai, Cheepchanok Puwanard, Jirapon Aungtikun, Sirawut Sittichok, Mayura Soonwera. Ovicidal toxicity of plant essential oils and their major constituents against two mosquito vectors and their non-target aquatic predators.
Scientific reports.
2023 Feb; 13(1):2119. doi:
10.1038/s41598-023-29421-2
. [PMID: 36746998] - David López-González, Elisa Graña, Marta Teijeira, Mercedes Verdeguer, Manuel J Reigosa, Adela M Sánchez-Moreiras, Fabrizio Araniti. Similarities on the mode of action of the terpenoids citral and farnesene in Arabidopsis seedlings involve interactions with DNA binding proteins.
Plant physiology and biochemistry : PPB.
2023 Feb; 196(?):507-519. doi:
10.1016/j.plaphy.2023.02.004
. [PMID: 36764266] - Sabita Dangol, Darbin Kumar Poudel, Pawan Kumar Ojha, Salina Maharjan, Ambika Poudel, Rakesh Satyal, Anil Rokaya, Sujan Timsina, Noura S Dosoky, Prabodh Satyal, William N Setzer. Essential Oil Composition Analysis of Cymbopogon Species from Eastern Nepal by GC-MS and Chiral GC-MS, and Antimicrobial Activity of Some Major Compounds.
Molecules (Basel, Switzerland).
2023 Jan; 28(2):. doi:
10.3390/molecules28020543
. [PMID: 36677603] - Ming Cai, Wan Xu, Yan Xu, Huitang Pan, Qixiang Zhang. Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from Lagerstroemia caudata by Headspace Solid-Phase Microextraction and GC-MS.
Molecules (Basel, Switzerland).
2023 Jan; 28(2):. doi:
10.3390/molecules28020478
. [PMID: 36677543] - Long Guo, Xiaoxue Mao, Yi Li, Zhiqin Zhou. Polymethoxylated flavonoids (PMFs)-loaded citral nanoemulsion controls green mold in citrus by damaging the cell membrane of Penicillium digitatum.
Fungal biology.
2023 Jan; 127(1-2):854-864. doi:
10.1016/j.funbio.2022.12.003
. [PMID: 36746557] - Judit Kolozsváriné Nagy, Ágnes M Móricz, Andrea Böszörményi, Ágnes Ambrus, Ildikó Schwarczinger. Antibacterial effect of essential oils and their components against Xanthomonas arboricola pv. pruni revealed by microdilution and direct bioautographic assays.
Frontiers in cellular and infection microbiology.
2023; 13(?):1204027. doi:
10.3389/fcimb.2023.1204027
. [PMID: 37389207] - Saeid Gasemi, Hassan Mahdavikia, Esmaeil Rezaei-Chiyaneh, Farzad Banaei-Asl, Aria Dolatabadian, Amir Sadeghpour. Co-inoculation of mycorrhizal fungi and plant growth-promoting rhizobacteria improve growth, biochemical and physiological attributes in Dracocephalum kotschyi Boiss. under water deficit stress.
PeerJ.
2023; 11(?):e16474. doi:
10.7717/peerj.16474
. [PMID: 38047030] - Hui Yang, Luyi Song, Peiwen Sun, Ruiying Su, Shuqi Wang, Shuai Cheng, Xiangjun Zhan, Xin Lü, Xiaodong Xia, Chao Shi. Synergistic bactericidal effect of ultrasound combined with citral nanoemulsion on Salmonella and its application in the preservation of purple kale.
Ultrasonics sonochemistry.
2023 Jan; 92(?):106269. doi:
10.1016/j.ultsonch.2022.106269
. [PMID: 36571884] - Zinnat Shahina, Easter Ndlovu, Omkaar Persaud, Taranum Sultana, Tanya E S Dahms. Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral.
Microbiology spectrum.
2022 12; 10(6):e0318322. doi:
10.1128/spectrum.03183-22
. [PMID: 36394350] - Valtcho D Zheljazkov, Giuseppe Micalizzi, Solomon Yilma, Charles L Cantrell, Amber Reichley, Luigi Mondello, Ivanka Semerdjieva, Tzenka Radoukova. Melissa officinalis L. as a Sprout Suppressor in Solanum tuberosum L. and an Alternative to Synthetic Pesticides.
Journal of agricultural and food chemistry.
2022 Nov; 70(44):14205-14219. doi:
10.1021/acs.jafc.2c05942
. [PMID: 36306427] - Hao Huang, Fatima-Ezzahra Ettoumi, Li Li, Yanqun Xu, Zisheng Luo. Emulsification-based interfacial synthesis of citral-loaded hollow MIL-88A for the inhibition of potato tuber sprouting.
Food chemistry.
2022 Nov; 393(?):133360. doi:
10.1016/j.foodchem.2022.133360
. [PMID: 35679707] - Daniel E K Kabotso, David Neglo, Pius Kwashie, Irene A Agbo, Daniel A Abaye. GC/MS Composition and Resistance Modulatory Inhibitory Activities of Three Extracts of Lemongrass: Citral Modulates the Activities of Five Antibiotics at Sub-Inhibitory Concentrations on Methicillin-Resistant Staphylococcus aureus.
Chemistry & biodiversity.
2022 Sep; 19(9):e202200296. doi:
10.1002/cbdv.202200296
. [PMID: 36026557] - Ana Carolina Mendes Hacke, Fernanda D'Avila da Silva, Dhésmon Lima, José Carlos Rebuglio Vellosa, João Batista Teixeira Rocha, Jacqueline Aparecida Marques, Romaiana Picada Pereira. Cytotoxicity of Cymbopogon citratus (DC) Stapf fractions, essential oil, citral, and geraniol in human leukocytes and erythrocytes.
Journal of ethnopharmacology.
2022 Jun; 291(?):115147. doi:
10.1016/j.jep.2022.115147
. [PMID: 35227781] - Yanpeng Yang, Sheng Ma, Kailun Guo, Du Guo, Jiahui Li, Muxue Wang, Yutang Wang, Chunling Zhang, Xiaodong Xia, Chao Shi. Efficacy of 405-nm LED illumination and citral used alone and in combination for the inactivation of Cronobacter sakazakii in reconstituted powdered infant formula.
Food research international (Ottawa, Ont.).
2022 04; 154(?):111027. doi:
10.1016/j.foodres.2022.111027
. [PMID: 35337579] - Steven Sprenger, Tibebe Woldemariam, Simeon Kotchoni, Hatem A Elshabrawy, Lakshmi Shankar Chaturvedi. Lemongrass essential oil and its major constituent citral isomers modulate adipogenic gene expression in 3T3-L1 cells.
Journal of food biochemistry.
2022 02; 46(2):e14037. doi:
10.1111/jfbc.14037
. [PMID: 34981531] - Xiubing Gao, Xianfeng Hu, Feixu Mo, Yi Ding, Ming Li, Rongyu Li. Repellency Mechanism of Natural Guar Gum-Based Film Incorporated with Citral against Brown Planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae).
International journal of molecular sciences.
2022 Jan; 23(2):. doi:
10.3390/ijms23020758
. [PMID: 35054952] - Bushra Shamsheer, Nadia Riaz, Zubaida Yousaf, Sajjad Hyder, Arusa Aftab, Rashid Iqbal, Muhammad Habib Ur Rahman, Ibrahim Al-Ashkar, Khalid F Almutairi, Ayman El Sabagh. Genetic diversity analysis for wild and cultivated accessions of Cymbopogon citratus (D.C.) Stapf using phytochemical and molecular markers.
PeerJ.
2022; 10(?):e13505. doi:
10.7717/peerj.13505
. [PMID: 35789659] - Eleonora Casula, Maria Manconi, Tania Belen Lopez-Mendez, Jose Luis Pedraz, Esteban Calvo, Antonio Lozano, Marco Zaru, Ines Castangia, Germano Orrù, Sara Fais, Maria Letizia Manca. Complementary effect of Zingiber officinalis extract and citral in counteracting non allergic nasal congestion by simultaneous loading in ad hoc formulated phospholipid vesicles.
Colloids and surfaces. B, Biointerfaces.
2022 Jan; 209(Pt 2):112170. doi:
10.1016/j.colsurfb.2021.112170
. [PMID: 34740093] - Meilin Li, Shunlong Liu, Zhijuan Yin, Charlotte Bernigaud, Jacques Guillot, Fang Fang. Activity of terpenes derived from essential oils against Sarcoptes scabiei eggs.
Parasites & vectors.
2021 Dec; 14(1):600. doi:
10.1186/s13071-021-05094-6
. [PMID: 34886874] - Daniela Ailincai, Maricel Agop, Ioana Cristina Marinas, Andrei Zala, Stefan Andrei Irimiciuc, Lucian Dobreci, Tudor-Cristian Petrescu, Constantin Volovat. Theoretical model for the diclofenac release from PEGylated chitosan hydrogels.
Drug delivery.
2021 Dec; 28(1):261-271. doi:
10.1080/10717544.2021.1876181
. [PMID: 33501878] - Yeyen Laorenza, Nathdanai Harnkarnsujarit. Carvacrol, citral and α-terpineol essential oil incorporated biodegradable films for functional active packaging of Pacific white shrimp.
Food chemistry.
2021 Nov; 363(?):130252. doi:
10.1016/j.foodchem.2021.130252
. [PMID: 34118755] - Kuan-Tseng Lee, Chen-Yeon Chu, Shen-Shih Chiang. Ameliorating Effect on Aβ-Induced Alzheimer's Mice by Litsea cubeba Persoon Powder.
Molecules (Basel, Switzerland).
2021 Sep; 26(18):. doi:
10.3390/molecules26185709
. [PMID: 34577179] - Chongwu Yang, Muhammad Attiq Rehman, Xianhua Yin, Catherine D Carrillo, Q I Wang, Chengbo Yang, Joshua Gong, Moussa S Diarra. Antimicrobial Resistance Phenotypes and Genotypes of Escherichia coli Isolates from Broiler Chickens Fed Encapsulated Cinnamaldehyde and Citral.
Journal of food protection.
2021 08; 84(8):1385-1399. doi:
10.4315/jfp-21-033
. [PMID: 33770170] - Ana Carolina Mendes Hacke, Edmar Miyoshi, Jacqueline Aparecida Marques, Romaiana Picada Pereira. Cymbopogon citratus (DC.) Stapf, citral and geraniol exhibit anticonvulsant and neuroprotective effects in pentylenetetrazole-induced seizures in zebrafish.
Journal of ethnopharmacology.
2021 Jul; 275(?):114142. doi:
10.1016/j.jep.2021.114142
. [PMID: 33910044] - Yin Zheng, Yanhong Shang, Mengyun Li, Yunzhou Li, Wuqing Ouyang. Antifungal Activities of cis-trans Citral Isomers against Trichophyton rubrum with ERG6 as a Potential Target.
Molecules (Basel, Switzerland).
2021 Jul; 26(14):. doi:
10.3390/molecules26144263
. [PMID: 34299538] - Suelen F Pereira, Adenilson Barroso, Rosa H V Mourão, Caio P Fernandes. A Low Energy Approach for the Preparation of Nano-Emulsions with a High Citral-Content Essential Oil.
Molecules (Basel, Switzerland).
2021 Jun; 26(12):. doi:
10.3390/molecules26123666
. [PMID: 34208560] - Julian Thielmann, Maria Theobald, Andrea Wutz, Tomislav Krolo, Alexandra Buergy, Julia Niederhofer, Frank Welle, Peter Muranyi. Litsea cubeba fruit essential oil and its major constituent citral as volatile agents in an antimicrobial packaging material.
Food microbiology.
2021 Jun; 96(?):103725. doi:
10.1016/j.fm.2020.103725
. [PMID: 33494898] - Qijun Zhao, Yi Ding, Xingchen Song, Shijiang Liu, Ming Li, Rongyu Li, Hongchun Ruan. Proteomic analysis reveals that naturally produced citral can significantly disturb physiological and metabolic processes in the rice blast fungus Magnaporthe oryzae.
Pesticide biochemistry and physiology.
2021 Jun; 175(?):104835. doi:
10.1016/j.pestbp.2021.104835
. [PMID: 33993960] - Víctor Manuel Muñoz-Pérez, Mario I Ortiz, Andrés Salas-Casa, Jessica Pérez-Guerrero, Narmi Castillo-Pacheco, Guillermo Barragán-Ramírez, Mario Hernándes-Alejandro. In vitro effects of citral on the human myometrium: Potential adjunct therapy to prevent preterm births.
Birth defects research.
2021 05; 113(8):613-622. doi:
10.1002/bdr2.1873
. [PMID: 33484091] - Katherine Miranda-Cadena, Marisol Dias, Augusto Costa-Barbosa, Tony Collins, Cristina Marcos-Arias, Elena Eraso, Célia Pais, Guillermo Quindós, Paula Sampaio. Development and Characterization of Monoolein-Based Liposomes of Carvacrol, Cinnamaldehyde, Citral, or Thymol with Anti-Candida Activities.
Antimicrobial agents and chemotherapy.
2021 03; 65(4):. doi:
10.1128/aac.01628-20
. [PMID: 33468460] - Chengchen Duan, Anna Evison, Lucy Taylor, Simone Onur, Karl Morten, Helen Townley. The common diabetes drug metformin can diminish the action of citral against Rhabdomyosarcoma cells in vitro.
Phytotherapy research : PTR.
2021 Mar; 35(3):1378-1388. doi:
10.1002/ptr.6898
. [PMID: 33280183] - Alaguvel Valliammai, Anthonymuthu Selvaraj, Poobalan Mathumitha, Chairmandurai Aravindraja, Shunmugiah Karutha Pandian. Polymeric antibiofilm coating comprising synergistic combination of citral and thymol prevents methicillin-resistant Staphylococcus aureus biofilm formation on titanium.
Materials science & engineering. C, Materials for biological applications.
2021 Feb; 121(?):111863. doi:
10.1016/j.msec.2021.111863
. [PMID: 33579493] - Huihan Ma, Yu Zhao, Zijie Lu, Ronglian Xing, Xuemei Yao, Zhaoxia Jin, Yanyan Wang, Fang Yu. Citral-loaded chitosan/carboxymethyl cellulose copolymer hydrogel microspheres with improved antimicrobial effects for plant protection.
International journal of biological macromolecules.
2020 Dec; 164(?):986-993. doi:
10.1016/j.ijbiomac.2020.07.164
. [PMID: 32693145] - Maycon T Emílio-Silva, Vinicius P Rodrigues, Gabriela Bueno, Rie Ohara, Marina G Martins, José A C Horta-Júnior, Luiz G S Branco, Lúcia R M Rocha, Clélia A Hiruma-Lima. Hypothermic Effect of Acute Citral Treatment during LPS-induced Systemic Inflammation in Obese Mice: Reduction of Serum TNF-α and Leptin Levels.
Biomolecules.
2020 10; 10(10):. doi:
10.3390/biom10101454
. [PMID: 33080865] - Peizhou Chen, Christopher Ference, Xiuxiu Sun, Ying Lin, Lianjiang Tan, Tian Zhong. Antimicrobial Efficacy of Liposome-Encapsulated Citral and Its Effect on the Shelf Life of Shatangju Mandarin.
Journal of food protection.
2020 Aug; 83(8):1315-1322. doi:
10.4315/jfp-20-115
. [PMID: 32294203] - Ana C S Souza, Laís K Silva, Thais B Queiroz, Eduardo S Marques, Clélia A Hiruma-Lima, Isabel O M Gaivão, Edson L Maistro. Citral presents cytotoxic and genotoxic effects in human cultured cells.
Drug and chemical toxicology.
2020 Jul; 43(4):435-440. doi:
10.1080/01480545.2019.1585445
. [PMID: 30889987] - Noraini Nordin, Swee Keong Yeap, Heshu Sulaiman Rahman, Nur Rizi Zamberi, Nurul Elyani Mohamad, Nadiah Abu, Mas Jaffri Masarudin, Rasedee Abdullah, Noorjahan Banu Alitheen. Antitumor and Anti-Metastatic Effects of Citral-Loaded Nanostructured Lipid Carrier in 4T1-Induced Breast Cancer Mouse Model.
Molecules (Basel, Switzerland).
2020 Jun; 25(11):. doi:
10.3390/molecules25112670
. [PMID: 32526880] - Elisa Graña, Carla Díaz-Tielas, Adela M Sánchez-Moreiras, Manuel J Reigosa, María Celeiro, Ruben Abagyan, Marta Teijeira, Mary V Duke, Tracy Clerk, Zhiqiang Pan, Stephen O Duke. Transcriptome and binding data indicate that citral inhibits single strand DNA-binding proteins.
Physiologia plantarum.
2020 May; 169(1):99-109. doi:
10.1111/ppl.13055
. [PMID: 31828797] - Elisa Gayán, Elise Geens, Daniel Berdejo, Diego García-Gonzalo, Rafael Pagán, Abram Aertsen, Chris W Michiels. Combination of mild heat and plant essential oil constituents to inactivate resistant variants of Escherichia coli in buffer and in coconut water.
Food microbiology.
2020 May; 87(?):103388. doi:
10.1016/j.fm.2019.103388
. [PMID: 31948629] - Xiubing Gao, Can Guo, Ming Li, Rongyu Li, Xiaomao Wu, Anlong Hu, Xianfeng Hu, Feixu Mo, Shuai Wu. Physicochemical Properties and Bioactivity of a New Guar Gum-Based Film Incorporated with Citral to Brown Planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae).
Molecules (Basel, Switzerland).
2020 Apr; 25(9):. doi:
10.3390/molecules25092044
. [PMID: 32353929] - Jian Ju, Yunfei Xie, Hang Yu, Yahui Guo, Yuliang Cheng, Rongrong Zhang, Weirong Yao. Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation.
Food chemistry.
2020 Apr; 310(?):125974. doi:
10.1016/j.foodchem.2019.125974
. [PMID: 31835216] - Laura Giamperi, Anahi Elena Ada Bucchini, Donata Ricci, Bruno Tirillini, Marcello Nicoletti, Rianasoambolanoro Rakotosaona, Filippo Maggi. Vepris macrophylla (Baker) I. Verd Essential Oil: An Antifungal Agent against Phytopathogenic Fungi.
International journal of molecular sciences.
2020 Apr; 21(8):. doi:
10.3390/ijms21082776
. [PMID: 32316699] - Clarissa M D Mota, Caroline Rodrigues-Santos, Ruither O G Carolino, Janete A Anselmo-Franci, Luiz G S Branco. Citral-induced analgesia is associated with increased spinal serotonin, reduced spinal nociceptive signaling, and reduced systemic oxidative stress in arthritis.
Journal of ethnopharmacology.
2020 Mar; 250(?):112486. doi:
10.1016/j.jep.2019.112486
. [PMID: 31846747] - Gholamreza Gohari, Asghar Mohammadi, Ali Akbari, Sima Panahirad, Mohammad Reza Dadpour, Vasileios Fotopoulos, Seisuke Kimura. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica.
Scientific reports.
2020 01; 10(1):912. doi:
10.1038/s41598-020-57794-1
. [PMID: 31969653] - Michiru Kimura, Michiho Ito. Bioconversion of essential oil components of Perilla frutescens by Saccharomyces cerevisiae.
Journal of natural medicines.
2020 Jan; 74(1):189-199. doi:
10.1007/s11418-019-01363-y
. [PMID: 31576496] - Amr Farouk, Mamdouh El-Kalyoubi, Hatem Ali, Magda Abd El Mageed, Mohamed Khallaf, Shimaa Moawad. Effects of Carriers on Spray-dried Flavors and Their Functional Characteristics.
Pakistan journal of biological sciences : PJBS.
2020 Jan; 23(3):257-263. doi:
10.3923/pjbs.2020.257.263
. [PMID: 31944086] - Mohd Adil, Mohd Hassan Baig, H P Vasantha Rupasinghe. Impact of Citral and Phloretin, Alone and in Combination, on Major Virulence Traits of Streptococcus pyogenes.
Molecules (Basel, Switzerland).
2019 Nov; 24(23):. doi:
10.3390/molecules24234237
. [PMID: 31766432] - Chanda Vilas Dhumal, Kunal Pal, Preetam Sarkar. Synthesis, characterization, and antimicrobial efficacy of composite films from guar gum/sago starch/whey protein isolate loaded with carvacrol, citral and carvacrol-citral mixture.
Journal of materials science. Materials in medicine.
2019 Oct; 30(10):117. doi:
10.1007/s10856-019-6317-8
. [PMID: 31624921] - Nana Long, Huaqiao Tang, Fenghui Sun, Lin Lin, Min Dai. Effect and mechanism of citral against methicillin-resistant Staphylococcus aureus in vivo.
Journal of the science of food and agriculture.
2019 Jul; 99(9):4423-4429. doi:
10.1002/jsfa.9677
. [PMID: 30891759] - Neha Upadhyay, Vipin Kumar Singh, Abhishek Kumar Dwivedy, Somenath Das, Anand Kumar Chaudhari, Nawal Kishore Dubey. Assessment of Melissa officinalis L. essential oil as an eco-friendly approach against biodeterioration of wheat flour caused by Tribolium castaneum Herbst.
Environmental science and pollution research international.
2019 May; 26(14):14036-14049. doi:
10.1007/s11356-019-04688-z
. [PMID: 30852752] - Sourav Das, Zoltán Gazdag, Lajos Szente, Mátyás Meggyes, Györgyi Horváth, Beáta Lemli, Sándor Kunsági-Máté, Mónika Kuzma, Tamás Kőszegi. Antioxidant and antimicrobial properties of randomly methylated β cyclodextrin - captured essential oils.
Food chemistry.
2019 Apr; 278(?):305-313. doi:
10.1016/j.foodchem.2018.11.047
. [PMID: 30583377] - Lijun Zhou, Zhilin Zhang, Mi Wei, Yongjian Xie, Shan He, Hongan Shi, Zhufeng Lin. Evaluation of the antifungal activity of individual and combined monoterpenes against Rhizopus stolonifer and Absidia coerulea.
Environmental science and pollution research international.
2019 Mar; 26(8):7804-7809. doi:
10.1007/s11356-019-04278-z
. [PMID: 30675711] - Noraini Nordin, Swee Keong Yeap, Heshu Sulaiman Rahman, Nur Rizi Zamberi, Nadiah Abu, Nurul Elyani Mohamad, Chee Wun How, Mas Jaffri Masarudin, Rasedee Abdullah, Noorjahan Banu Alitheen. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells.
Scientific reports.
2019 02; 9(1):1614. doi:
10.1038/s41598-018-38214-x
. [PMID: 30733560] - Carine de Freitas Souza, Sharine Descovi, Matheus Dellaméa Baldissera, Kalyne Bertolin, Adriane Erbice Bianchini, Rosa Helena Veraz Mourão, Denise Schmidt, Berta Maria Heinzmann, Alfredo Antoniazzi, Bernardo Baldisserotto, Gonzalo Martinez-Rodríguez. Involvement of HPI-axis in anesthesia with Lippia alba essential oil citral and linalool chemotypes: gene expression in the secondary responses in silver catfish.
Fish physiology and biochemistry.
2019 Feb; 45(1):155-166. doi:
10.1007/s10695-018-0548-3
. [PMID: 30120603] - Amarjeet Kumar, Vithal Balavant Kudachikar. Development, characterisation and efficacy evaluation of biochemical fungicidal formulations for postharvest control of anthracnose (Colletotrichum gloeosporioides Penz) disease in mango.
Journal of microencapsulation.
2019 Jan; 36(1):83-95. doi:
10.1080/02652048.2019.1600593
. [PMID: 30920322] - Rūta Jurevičiūtė, Kristina Ložienė, Maurizio Bruno, Antonella Maggio, Sergio Rosselli. Composition of essential oil of lemon thyme (Thymus × citriodorus) at different hydrodistillation times.
Natural product research.
2019 Jan; 33(1):80-88. doi:
10.1080/14786419.2018.1434642
. [PMID: 29394873] - Aleksandra Zielińska, Carlos Martins-Gomes, Nuno R Ferreira, Amélia M Silva, Izabela Nowak, Eliana B Souto. Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®.
International journal of pharmaceutics.
2018 Dec; 553(1-2):428-440. doi:
10.1016/j.ijpharm.2018.10.065
. [PMID: 30385373] - Giacomo Braschi, Diana I Serrazanetti, Lorenzo Siroli, Francesca Patrignani, Maria De Angelis, Rosalba Lanciotti. Gene expression responses of Listeria monocytogenes Scott A exposed to sub-lethal concentrations of natural antimicrobials.
International journal of food microbiology.
2018 Dec; 286(?):170-178. doi:
10.1016/j.ijfoodmicro.2018.07.026
. [PMID: 30172105] - Huaqiao Tang, Nana Long, Min Dai, Lin Lin, Jianlong Li, Fenghui Sun, Lijuan Guo. Effect of citral on mouse hepatic cytochrome P450 enzymes.
Pharmaceutical biology.
2018 Dec; 56(1):337-343. doi:
10.1080/13880209.2018.1470191
. [PMID: 29969356] - L Siroli, G Braschi, A de Jong, J Kok, F Patrignani, R Lanciotti. Transcriptomic approach and membrane fatty acid analysis to study the response mechanisms of Escherichia coli to thyme essential oil, carvacrol, 2-(E)-hexanal and citral exposure.
Journal of applied microbiology.
2018 Nov; 125(5):1308-1320. doi:
10.1111/jam.14048
. [PMID: 30028070] - Sarwat Yousuf, Shaista Emad, Saara Ahmad, Sara Qadeer, Sana Sadaf, Sheeza Sheikh, Yousra Sarfaraz, Bushra Jabeen Mehdi, Tahira Perveen. Alteration in redox profile and behavioral effects following repeated administration of citral in rats.
Pakistan journal of pharmaceutical sciences.
2018 Nov; 31(6 (Supplementary):2639-2644. doi:
NULL
. [PMID: 30587473] - Jiong Xu, Mian Zhang, Xiangping Zhang, Hanyu Yang, Binbin Sun, Zhongjian Wang, Yaqian Zhou, Shuting Wang, Xiaodong Liu, Li Liu. Contribution of Hepatic Retinaldehyde Dehydrogenase Induction to Impairment of Glucose Metabolism by High-Fat-Diet Feeding in C57BL/6J Mice.
Basic & clinical pharmacology & toxicology.
2018 Nov; 123(5):539-548. doi:
10.1111/bcpt.13039
. [PMID: 29753302] - Séverin Nguemezi Tchameni, Staelle Njamou Mbiakeu, Modeste Lambert Sameza, Pierre Michel Dongmo Jazet, François Tchoumbougnang. Using Citrus aurantifolia essential oil for the potential biocontrol of Colocasia esculenta (taro) leaf blight caused by Phytophthora colocasiae.
Environmental science and pollution research international.
2018 Oct; 25(30):29929-29935. doi:
10.1007/s11356-017-0506-0
. [PMID: 29150804] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Huaixiang Tian, Zhuoyan Lu, Danfeng Li, Jing Hu. Preparation and characterization of citral-loaded solid lipid nanoparticles.
Food chemistry.
2018 May; 248(?):78-85. doi:
10.1016/j.foodchem.2017.11.091
. [PMID: 29329873] - Andrea Tarazona, José V Gómez, Rafael Gavara, Rufino Mateo-Castro, José V Gimeno-Adelantado, Misericordia Jiménez, Eva M Mateo. Risk management of ochratoxigenic fungi and ochratoxin A in maize grains by bioactive EVOH films containing individual components of some essential oils.
International journal of food microbiology.
2018 Mar; 269(?):107-119. doi:
10.1016/j.ijfoodmicro.2018.02.002
. [PMID: 29421354] - Larissa Venzon, Luísa Nathália Bolda Mariano, Lincon Bordignon Somensi, Thaise Boeing, Priscila de Souza, Theodoro Marcel Wagner, Sérgio Faloni de Andrade, Luciane Angela Nottar Nesello, Luísa Mota da Silva. Essential oil of Cymbopogon citratus (lemongrass) and geraniol, but not citral, promote gastric healing activity in mice.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2018 Feb; 98(?):118-124. doi:
10.1016/j.biopha.2017.12.020
. [PMID: 29248831] - Cheng Seng Tan, Maizom Hassan, Zeti Azura Mohamed Hussein, Ismanizan Ismail, Kok Lian Ho, Chyan Leong Ng, Zamri Zainal. Structural and kinetic studies of a novel nerol dehydrogenase from Persicaria minor, a nerol-specific enzyme for citral biosynthesis.
Plant physiology and biochemistry : PPB.
2018 Feb; 123(?):359-368. doi:
10.1016/j.plaphy.2017.12.033
. [PMID: 29304481] - Carine de Freitas Souza, Matheus Dellaméa Baldissera, Adriane Erbice Bianchini, Elisia Gomes da Silva, Rosa Helena Veraz Mourão, Lenise Vargas Flores da Silva, Denise Schmidt, Berta Maria Heinzmann, Bernardo Baldisserotto. Citral and linalool chemotypes of Lippia alba essential oil as anesthetics for fish: a detailed physiological analysis of side effects during anesthetic recovery in silver catfish (Rhamdia quelen).
Fish physiology and biochemistry.
2018 Feb; 44(1):21-34. doi:
10.1007/s10695-017-0410-z
. [PMID: 28948452] - Remigius Chizzola, Ulrike Lohwasser, Chlodwig Franz. Biodiversity within Melissa officinalis: Variability of Bioactive Compounds in a Cultivated Collection.
Molecules (Basel, Switzerland).
2018 Jan; 23(2):. doi:
10.3390/molecules23020294
. [PMID: 29385035] - Chien-Chun Li, Hsiang-Fu Yu, Chun-Hua Chang, Yun-Ta Liu, Hsien-Tsung Yao. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats.
Journal of food and drug analysis.
2018 01; 26(1):432-438. doi:
10.1016/j.jfda.2017.01.008
. [PMID: 29389585] - Renilde Cordeiro de Souza, Mateus Matiuzzi da Costa, Bernardo Baldisserotto, Berta Maria Heinzmann, Denise Schmidt, Braulio Otomar Caron, Carlos Eduardo Copatti. Antimicrobial and synergistic activity of essential oils of Aloysia triphylla and Lippia alba against Aeromonas spp.
Microbial pathogenesis.
2017 Dec; 113(?):29-33. doi:
10.1016/j.micpath.2017.10.013
. [PMID: 29038058] - Maycon T Emílio-Silva, Clarissa M D Mota, Clélia A Hiruma-Lima, José Antunes-Rodrigues, Evelin C Cárnio, Luiz G S Branco. Antipyretic Effects of Citral and Possible Mechanisms of Action.
Inflammation.
2017 Oct; 40(5):1735-1741. doi:
10.1007/s10753-017-0615-4
. [PMID: 28667503] - Hajo Kries, Franziska Kellner, Mohamed Omar Kamileen, Sarah E O'Connor. Inverted stereocontrol of iridoid synthase in snapdragon.
The Journal of biological chemistry.
2017 09; 292(35):14659-14667. doi:
10.1074/jbc.m117.800979
. [PMID: 28701463] - Yoshinori Asakawa, Kenichi Tomiyama, Kazutoshi Sakurai, Yukihiro Kawakami, Yoshihiro Yaguchi. Volatile Compounds from the Different Organs of Houttuynia cordata and Litsea cubeba (L. citriodora).
Journal of oleo science.
2017 Aug; 66(8):889-895. doi:
10.5650/jos.ess17049
. [PMID: 28701654] - María J Jordán, María Quílez, María C Luna, Farzaneh Bekhradi, José A Sotomayor, Pedro Sánchez-Gómez, María I Gil. Influence of water stress and storage time on preservation of the fresh volatile profile of three basil genotypes.
Food chemistry.
2017 Apr; 221(?):169-177. doi:
10.1016/j.foodchem.2016.10.059
. [PMID: 27979148] - Sarunya Phunpee, Uracha Rangsadthong Ruktanonchai, Hidefumi Yoshii, Suttichai Assabumrungrat, Apinan Soottitantawat. Encapsulation of lemongrass oil with cyclodextrins by spray drying and its controlled release characteristics.
Bioscience, biotechnology, and biochemistry.
2017 Apr; 81(4):718-723. doi:
10.1080/09168451.2016.1277942
. [PMID: 28093037]