Kdo2-lipid A (BioDeep_00000006034)

Main id: BioDeep_00000596870

 


代谢物信息卡片


Kdo2-lipid A

化学式: C110H202N2O39P2 (2237.3359)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCCCCCCCC(=O)OC(CCCCCCCCCCC)CC(=O)OC1C(C(OC(C1OP(=O)(O)O)COC2(CC(C(C(O2)C(CO)O)O)OC3(CC(C(C(O3)C(CO)O)O)O)C(=O)O)C(=O)O)OCC4C(C(C(C(O4)OP(=O)(O)O)NC(=O)CC(CCCCCCCCCCC)O)OC(=O)CC(CCCCCCCCCCC)O)O)NC(=O)CC(CCCCCCCCCCC)OC(=O)CCCCCCCCCCC
InChI: InChI=1S/C110H202N2O39P2/c1-7-13-19-25-31-37-38-44-50-56-62-68-92(123)142-82(66-60-54-48-42-35-29-23-17-11-5)72-94(125)146-104-96(112-90(121)71-81(65-59-53-47-41-34-28-22-16-10-4)141-91(122)67-61-55-49-43-36-30-24-18-12-6)105(144-88(102(104)150-152(133,134)135)78-140-109(107(129)130)74-86(98(127)101(148-109)85(119)76-114)147-110(108(131)132)73-83(117)97(126)100(149-110)84(118)75-113)139-77-87-99(128)103(145-93(124)70-80(116)64-58-52-46-40-33-27-21-15-9-3)95(106(143-87)151-153(136,137)138)111-89(120)69-79(115)63-57-51-45-39-32-26-20-14-8-2/h79-88,95-106,113-119,126-128H,7-78H2,1-6H3,(H,111,120)(H,112,121)(H,129,130)(H,131,132)(H2,133,134,135)(H2,136,137,138)/t79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,109-,110-/m1/s1

描述信息

同义名列表

2 个代谢物同义名

Kdo2-lipid A; AC1NRLG2



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 CASP1, IL18, NR1D1, NR1D2, P2RX7, PTGS1, PTGS2, STAT1, TLR4
Peripheral membrane protein 3 GORASP1, PTGS1, PTGS2
Endosome membrane 2 LY96, TLR4
Endoplasmic reticulum membrane 4 FADS2, PTGDS, PTGS1, PTGS2
Mitochondrion membrane 1 PLSCR3
Nucleus 6 ATF3, NR1D1, NR1D2, PLSCR3, SPI1, STAT1
autophagosome 1 MAP1LC3A
cytosol 5 CASP1, IL18, MAP1LC3A, PLSCR3, STAT1
dendrite 2 NR1D1, STAT1
nuclear body 1 NR1D1
nucleoplasm 5 ATF3, NR1D1, NR1D2, SPI1, STAT1
RNA polymerase II transcription regulator complex 2 ATF3, STAT1
Cell membrane 5 CASP1, ITGAM, P2RX7, TLR4, TNF
Lipid-anchor 1 MAP1LC3A
Cytoplasmic side 1 GORASP1
Early endosome membrane 1 NMB
Multi-pass membrane protein 2 FADS2, P2RX7
Golgi apparatus membrane 1 GORASP1
cell surface 3 ITGAM, TLR4, TNF
glutamatergic synapse 1 MAP1LC3A
Golgi apparatus 3 GORASP1, PTGDS, PTGS1
Golgi membrane 1 GORASP1
mitochondrial inner membrane 1 PLSCR3
neuromuscular junction 1 P2RX7
neuronal cell body 2 P2RX7, TNF
postsynapse 1 P2RX7
Cytoplasm, cytosol 1 IL18
Presynapse 1 P2RX7
plasma membrane 9 CASP1, FADS2, ITGAM, LY96, NMB, P2RX7, PLSCR3, TLR4, TNF
Membrane 6 FADS2, ITGAM, NMB, P2RX7, SPI1, TLR4
axon 1 STAT1
caveola 1 PTGS2
extracellular exosome 3 ITGAM, PTGDS, PTGS1
endoplasmic reticulum 1 PTGS2
extracellular space 5 IL18, ITGAM, NMB, PTGDS, TNF
perinuclear region of cytoplasm 3 PTGDS, STAT1, TLR4
mitochondrion 2 P2RX7, PLSCR3
protein-containing complex 3 CASP1, PTGS2, STAT1
intracellular membrane-bounded organelle 2 MAP1LC3A, PTGS1
Microsome membrane 2 PTGS1, PTGS2
Single-pass type I membrane protein 3 ITGAM, NMB, TLR4
Secreted 4 IL18, LY96, NMB, PTGDS
extracellular region 5 IL18, LY96, NMB, PTGDS, TNF
transcription regulator complex 1 SPI1
photoreceptor outer segment 1 PTGS1
Nucleus membrane 1 PTGDS
nuclear membrane 1 PTGDS
external side of plasma membrane 4 ITGAM, P2RX7, TLR4, TNF
dendritic spine 1 NR1D1
nucleolus 3 ATF3, CASP1, STAT1
Melanosome membrane 1 NMB
Early endosome 1 TLR4
cell-cell junction 1 P2RX7
recycling endosome 1 TNF
Single-pass type II membrane protein 2 PLSCR3, TNF
Cytoplasm, perinuclear region 1 PTGDS
Mitochondrion inner membrane 1 PLSCR3
Membrane raft 2 ITGAM, TNF
Cytoplasm, cytoskeleton 1 MAP1LC3A
microtubule 2 CASP1, MAP1LC3A
cis-Golgi network 1 GORASP1
Cell projection, dendritic spine 1 NR1D1
NLRP3 inflammasome complex 1 CASP1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
Late endosome 1 MAP1LC3A
ruffle 1 TLR4
receptor complex 2 LY96, TLR4
Cell projection, neuron projection 1 NMB
neuron projection 3 NMB, PTGS1, PTGS2
chromatin 5 ATF3, NR1D1, NR1D2, SPI1, STAT1
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
phagocytic cup 2 TLR4, TNF
Secreted, extracellular space 1 LY96
organelle membrane 1 MAP1LC3A
Endomembrane system 2 MAP1LC3A, PTGS1
Cell projection, dendrite 1 NR1D1
specific granule membrane 1 ITGAM
tertiary granule membrane 1 ITGAM
lipopolysaccharide receptor complex 2 LY96, TLR4
plasma membrane raft 1 ITGAM
endoplasmic reticulum lumen 1 PTGS2
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
AIM2 inflammasome complex 1 CASP1
canonical inflammasome complex 1 CASP1
Rough endoplasmic reticulum 1 PTGDS
integrin complex 1 ITGAM
bleb 1 P2RX7
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 MAP1LC3A
integrin alphaM-beta2 complex 1 ITGAM
CHOP-ATF3 complex 1 ATF3
IPAF inflammasome complex 1 CASP1
NLRP1 inflammasome complex 1 CASP1
protease inhibitor complex 1 CASP1
ISGF3 complex 1 STAT1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Xiaomeng Wu, Yiping Zhao, Susu M Zughaier. Highly Sensitive Detection and Differentiation of Endotoxins Derived from Bacterial Pathogens by Surface-Enhanced Raman Scattering. Biosensors. 2021 Jul; 11(7):. doi: 10.3390/bios11070234. [PMID: 34356705]
  • Wan-Hsin Chang, Hsiu-Chi Ting, Wei-Wei Chen, Jui-Fen Chan, Yuan-Hao Howard Hsu. Omega-3 and omega-6 fatty acid differentially impact cardiolipin remodeling in activated macrophage. Lipids in health and disease. 2018 Aug; 17(1):201. doi: 10.1186/s12944-018-0845-y. [PMID: 30153842]
  • Christopher M Crittenden, Lindsay J Morrison, Mignon D Fitzpatrick, Allison P Myers, Elisa T Novelli, Jake Rosenberg, Lucas D Akin, Vishnu Srinivasa, Jason B Shear, Jennifer S Brodbelt. Towards mapping electrostatic interactions between Kdo2-lipid A and cationic antimicrobial peptides via ultraviolet photodissociation mass spectrometry. The Analyst. 2018 Jul; 143(15):3607-3618. doi: 10.1039/c8an00652k. [PMID: 29968868]
  • Wei-Wei Chen, Yu-Jen Chao, Wan-Hsin Chang, Jui-Fen Chan, Yuan-Hao Howard Hsu. Phosphatidylglycerol Incorporates into Cardiolipin to Improve Mitochondrial Activity and Inhibits Inflammation. Scientific reports. 2018 03; 8(1):4919. doi: 10.1038/s41598-018-23190-z. [PMID: 29559686]
  • Guogai Zhang, Lifang Zhao, Jiancheng Zhu, Yifan Feng, Xia Wu. Anti-inflammatory activities and glycerophospholipids metabolism in KLA-stimulated RAW 264.7 macrophage cells by diarylheptanoids from the rhizomes of Alpinia officinarum. Biomedical chromatography : BMC. 2018 Feb; 32(2):. doi: 10.1002/bmc.4094. [PMID: 28906002]
  • Danti Mai, Chan Yang, Yun Xue, Yan Wang, Chao Yan. [Investigation on silymarin impact on lipopolysaccharide induced inflammation model based on arachidonic acid metabolism pathway]. Se pu = Chinese journal of chromatography. 2017 Jun; 35(6):578-586. doi: 10.3724/sp.j.1123.2017.01026. [PMID: 29048783]
  • Yumiko Oishi, Nathanael J Spann, Verena M Link, Evan D Muse, Tobias Strid, Chantle Edillor, Matthew J Kolar, Takashi Matsuzaka, Sumio Hayakawa, Jenhan Tao, Minna U Kaikkonen, Aaron F Carlin, Michael T Lam, Ichiro Manabe, Hitoshi Shimano, Alan Saghatelian, Christopher K Glass. SREBP1 Contributes to Resolution of Pro-inflammatory TLR4 Signaling by Reprogramming Fatty Acid Metabolism. Cell metabolism. 2017 02; 25(2):412-427. doi: 10.1016/j.cmet.2016.11.009. [PMID: 28041958]
  • Jagadesh Mudapaka, Erika Anne Taylor. Cloning and characterization of the Escherichia coli Heptosyltransferase III: Exploring substrate specificity in lipopolysaccharide core biosynthesis. FEBS letters. 2015 Jun; 589(13):1423-9. doi: 10.1016/j.febslet.2015.04.051. [PMID: 25957775]
  • Gracjana Klein, Satish Raina. Regulated Control of the Assembly and Diversity of LPS by Noncoding sRNAs. BioMed research international. 2015; 2015(?):153561. doi: 10.1155/2015/153561. [PMID: 26618164]
  • Biwen Wang, Yaning Han, Ye Li, Yanyan Li, Xiaoyuan Wang. Immuno-Stimulatory Activity of Escherichia coli Mutants Producing Kdo2-Monophosphoryl-Lipid A or Kdo2-Pentaacyl-Monophosphoryl-Lipid A. PloS one. 2015; 10(12):e0144714. doi: 10.1371/journal.pone.0144714. [PMID: 26710252]
  • Konstantin Andreev, Christopher Bianchi, Jonas S Laursen, Linda Citterio, Line Hein-Kristensen, Lone Gram, Ivan Kuzmenko, Christian A Olsen, David Gidalevitz. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes. Biochimica et biophysica acta. 2014 Oct; 1838(10):2492-2502. doi: 10.1016/j.bbamem.2014.05.022. [PMID: 24878450]
  • Hak Suk Chung, Eun Gyeong Yang, Dohyeon Hwang, Ji Eun Lee, Ziqiang Guan, Christian R H Raetz. Kdo hydroxylase is an inner core assembly enzyme in the Ko-containing lipopolysaccharide biosynthesis. Biochemical and biophysical research communications. 2014 Sep; 452(3):789-94. doi: 10.1016/j.bbrc.2014.08.153. [PMID: 25204504]
  • Jianli Wang, Wenjian Ma, Zhou Wang, Ye Li, Xiaoyuan Wang. Construction and characterization of an Escherichia coli mutant producing Kdo₂-lipid A. Marine drugs. 2014 Mar; 12(3):1495-511. doi: 10.3390/md12031495. [PMID: 24633251]
  • Yasuyuki Kihara, Shakti Gupta, Mano R Maurya, Aaron Armando, Ishita Shah, Oswald Quehenberger, Christopher K Glass, Edward A Dennis, Shankar Subramaniam. Modeling of eicosanoid fluxes reveals functional coupling between cyclooxygenases and terminal synthases. Biophysical journal. 2014 Feb; 106(4):966-75. doi: 10.1016/j.bpj.2014.01.015. [PMID: 24559999]
  • Ashok Reddy Dinasarapu, Shakti Gupta, Mano Ram Maurya, Eoin Fahy, Jun Min, Manish Sud, Merril J Gersten, Christopher K Glass, Shankar Subramaniam. A combined omics study on activated macrophages--enhanced role of STATs in apoptosis, immunity and lipid metabolism. Bioinformatics (Oxford, England). 2013 Nov; 29(21):2735-43. doi: 10.1093/bioinformatics/btt469. [PMID: 23981351]
  • Mano R Maurya, Shakti Gupta, Xiang Li, Eoin Fahy, Ashok R Dinasarapu, Manish Sud, H Alex Brown, Christopher K Glass, Robert C Murphy, David W Russell, Edward A Dennis, Shankar Subramaniam. Analysis of inflammatory and lipid metabolic networks across RAW264.7 and thioglycolate-elicited macrophages. Journal of lipid research. 2013 Sep; 54(9):2525-42. doi: 10.1194/jlr.m040212. [PMID: 23776196]
  • Xiaoyuan Wang. [Kdo2-lipid A modification in gram-negative bacteria--a review]. Wei sheng wu xue bao = Acta microbiologica Sinica. 2013 Feb; 53(2):111-7. doi: . [PMID: 23627103]
  • Eduard Sabidó, Oswald Quehenberger, Qin Shen, Ching-Yun Chang, Ishita Shah, Aaron M Armando, Alexander Andreyev, Olga Vitek, Edward A Dennis, Ruedi Aebersold. Targeted proteomics of the eicosanoid biosynthetic pathway completes an integrated genomics-proteomics-metabolomics picture of cellular metabolism. Molecular & cellular proteomics : MCP. 2012 Jul; 11(7):M111.014746. doi: 10.1074/mcp.m111.014746. [PMID: 22361236]
  • Kacee Sims, Christopher A Haynes, Samuel Kelly, Jeremy C Allegood, Elaine Wang, Amin Momin, Martina Leipelt, Donna Reichart, Christopher K Glass, M Cameron Sullards, Alfred H Merrill. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. The Journal of biological chemistry. 2010 Dec; 285(49):38568-79. doi: 10.1074/jbc.m110.170621. [PMID: 20876532]
  • Eun-Young Kim, Hye Young Shin, Joo-Young Kim, Dong-Gun Kim, Yong-Min Choi, Hyuk-Kwon Kwon, Dong-Kwon Rhee, You-Sun Kim, Sangdun Choi. ATF3 plays a key role in Kdo2-lipid A-induced TLR4-dependent gene expression via NF-κB activation. PloS one. 2010 Dec; 5(12):e14181. doi: 10.1371/journal.pone.0014181. [PMID: 21152039]
  • Stephen O Opiyo, Rosevelt L Pardy, Hideaki Moriyama, Etsuko N Moriyama. Evolution of the Kdo2-lipid A biosynthesis in bacteria. BMC evolutionary biology. 2010 Nov; 10(?):362. doi: 10.1186/1471-2148-10-362. [PMID: 21106097]
  • O Saito, C I Svensson, M W Buczynski, K Wegner, X-Y Hua, S Codeluppi, R H Schaloske, R A Deems, E A Dennis, T L Yaksh. Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF. British journal of pharmacology. 2010 Aug; 160(7):1754-64. doi: 10.1111/j.1476-5381.2010.00811.x. [PMID: 20649577]
  • Xiaoyuan Wang, Peter J Quinn. Lipopolysaccharide: Biosynthetic pathway and structure modification. Progress in lipid research. 2010 Apr; 49(2):97-107. doi: 10.1016/j.plipres.2009.06.002. [PMID: 19815028]
  • Andrej Grkovich, Aaron Armando, Oswald Quehenberger, Edward A Dennis. TLR-4 mediated group IVA phospholipase A(2) activation is phosphatidic acid phosphohydrolase 1 and protein kinase C dependent. Biochimica et biophysica acta. 2009 Oct; 1791(10):975-82. doi: 10.1016/j.bbalip.2009.02.002. [PMID: 19230851]
  • Anne H Delcour. Outer membrane permeability and antibiotic resistance. Biochimica et biophysica acta. 2009 May; 1794(5):808-16. doi: 10.1016/j.bbapap.2008.11.005. [PMID: 19100346]
  • Seth Albright, Prashansa Agrawal, Nitin U Jain. NMR spectral mapping of Lipid A molecular patterns affected by interaction with the innate immune receptor CD14. Biochemical and biophysical research communications. 2009 Jan; 378(4):721-6. doi: 10.1016/j.bbrc.2008.11.113. [PMID: 19059378]
  • Robert C Murphy, Patrick F James, Andrew M McAnoy, Jessica Krank, Eva Duchoslav, Robert M Barkley. Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. Analytical biochemistry. 2007 Jul; 366(1):59-70. doi: 10.1016/j.ab.2007.03.012. [PMID: 17442253]
  • Christian R H Raetz, C Michael Reynolds, M Stephen Trent, Russell E Bishop. Lipid A modification systems in gram-negative bacteria. Annual review of biochemistry. 2007; 76(?):295-329. doi: 10.1146/annurev.biochem.76.010307.145803. [PMID: 17362200]
  • Christian R H Raetz, Teresa A Garrett, C Michael Reynolds, Walter A Shaw, Jeff D Moore, Dale C Smith, Anthony A Ribeiro, Robert C Murphy, Richard J Ulevitch, Colleen Fearns, Donna Reichart, Christopher K Glass, Chris Benner, Shankar Subramaniam, Richard Harkewicz, Rebecca C Bowers-Gentry, Matthew W Buczynski, Jennifer A Cooper, Raymond A Deems, Edward A Dennis. Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. Journal of lipid research. 2006 May; 47(5):1097-111. doi: 10.1194/jlr.m600027-jlr200. [PMID: 16479018]
  • Susu Zughaier, Sudhanshu Agrawal, David S Stephens, Bali Pulendran. Hexa-acylation and KDO(2)-glycosylation determine the specific immunostimulatory activity of Neisseria meningitidis lipid A for human monocyte derived dendritic cells. Vaccine. 2006 Feb; 24(9):1291-7. doi: 10.1016/j.vaccine.2005.09.039. [PMID: 16246469]
  • Robert C Murphy, Chris R H Raetz, Clarence M Reynolds, Robert M Barkley. Mass spectrometry advances in lipidomica: collision-induced decomposition of Kdo2-lipid A. Prostaglandins & other lipid mediators. 2005 Sep; 77(1-4):131-40. doi: 10.1016/j.prostaglandins.2004.09.004. [PMID: 16099398]
  • . . . . doi: . [PMID: 20923771]