Neoxanthin (BioDeep_00000003668)

Main id: BioDeep_00000287708

 

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(1R,3S)-6-[(1M,3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

化学式: C40H56O4 (600.4178)
中文名称: 新黄质
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C/C(C=C=C1C(C)(C)C[C@H](O)C[C@@]1(C)O)=C\C=C\C(C)=C\C=C\C=C(C)\C=C\C=C(C)\C=C\[C@@]12O[C@]1(C)C[C@@H](O)CC2(C)C
InChI: InChI=1S/C40H56O4/c1-29(17-13-19-31(3)21-22-35-36(5,6)25-33(41)27-38(35,9)43)15-11-12-16-30(2)18-14-20-32(4)23-24-40-37(7,8)26-34(42)28-39(40,10)44-40/h11-21,23-24,33-34,41-43H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,24-23+,29-15+,30-16+,31-19+,32-20+/t22?,33-,34-,38+,39+,40-/m0/s1

描述信息

Neoxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Neoxanthin is an intermediate in the synthesis of abscisic acid from violaxanthin. Neoxanthin has been detected, but not quantified in, several different foods, such as apples, paprikas, Valencia oranges, kiwis, globe artichokes, sparkleberries, hard wheat, and cinnamon. This could make neoxanthin a potential biomarker for the consumption of these foods. Neoxanthin has been shown to exhibit apoptotic and anti-proliferative functions (PMID: 15333710, 15333710).
Neoxanthin is a carotenoid and xanthophyll. In plants, it is an intermediate in the biosynthesis of the plant hormone abscisic acid. It is produced from violaxanthin by the action of neoxanthin synthase. It is a major xanthophyll found in green leafy vegetables such as spinach. [Wikipedia]
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

同义名列表

23 个代谢物同义名

(1R,3S)-6-[(1M,3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol; (1R,3R)-6-{(3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4R,6R)-4-HYDROXY-2,2,6-TRIMETHYL-7-OXABICYCLO[4.1.0]HEPT-1-YL]-3,7,12,16-TETRAMETHYLOCTADECA-1,3,5,7,9,11,13,15,17-NONAENYLIDENE}-1,5,5-TRIMETHYLCYCLOHEXANE-1,3-DIOL; (3S,5R,6R,3S,5R,6S)-9-cis-6,7-didehydro-5,6,5,6-tetrahydro-5,6-epoxy-beta,beta-carotene-3,5,3-triol; (3S,3’S,5R,5’R,6R,6’S,9’-cis)-6,7-Didehydro-5’,6’-epoxy-5’,6’-dihydro-β,β-carotene-3,3’,5(6H)-triol; (3S,3S,5R,5R,6R,6S,9-cis)-6,7-Didehydro-5,6-epoxy-5,6-dihydro-beta,beta-carotene-3,3,5(6H)-triol; (3S,5R,6R,3s,5r,6s)-9-cis-6,7-Didehydro-5,6,5,6-tetrahydro-5,6-epoxy-β,β-carotene-3,5,3-triol; (3S,5R,6R,3S,5R,6S)-6,7-didehydro-5,6-epoxy-5,6,5,6-tetrahydro-beta,beta-carotene-3,5,3-triol; (3S,5R,6R,3s,5r,6s)-9-cis-6,7-Didehydro-5,6,5,6-tetrahydro-5,6-epoxy-b,b-carotene-3,5,3-triol; (3S,3S,5R,5R,6R,6S,9-cis)-6,7-Didehydro-5,6-epoxy-5,6-dihydro-β,β-carotene-3,3,5(6H)-triol; all-trans-neoxanthin; 9’Z-(6R)-neoxanthin; 9Z-(6R)-NEOXANTHIN; 9’-cis-Neoxanthin; 9-cis-neoxanthin; (9’Z)-Neoxanthin; 9-cis-Neoxanthin; (9Z)-NEOXANTHIN; cis-Neoxanthin; Foliaxanthin; Neoxanthine; Neoxanthin; Neoxanthin; 9'-cis-Neoxanthin



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(4)

PlantCyc(0)

代谢反应

35 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(4)

WikiPathways(0)

Plant Reactome(7)

INOH(0)

PlantCyc(20)

COVID-19 Disease Map(0)

PathBank(4)

PharmGKB(0)

572 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 BCL2, BFSP2, CASP3, CASP8, CAT, CDK1, CDK2, GGPS1, MSMP, SPX
Peripheral membrane protein 2 BFSP2, CYP1B1
Endoplasmic reticulum membrane 4 BCL2, CDK1, CYP1B1, CYP26A1
Nucleus 6 BCL2, CASP3, CASP8, CDK1, CDK2, CEBPA
cytosol 9 BCL2, CASP3, CASP8, CAT, CDK1, CDK2, GGPS1, GSR, TRDN
centrosome 2 CDK1, CDK2
nucleoplasm 7 CASP3, CASP8, CDK1, CDK2, CEBPA, GGPS1, TRDN
RNA polymerase II transcription regulator complex 1 CEBPA
Cell membrane 2 BFSP2, TRDN
Cytoplasmic side 1 BFSP2
lamellipodium 1 CASP8
cell cortex 1 BFSP2
glutamatergic synapse 1 CASP3
lysosomal membrane 1 GAA
neuronal cell body 1 CASP3
Cytoplasmic vesicle, secretory vesicle 1 SPX
Lysosome 1 GAA
endosome 1 CDK2
plasma membrane 5 BCHE, BFSP2, GAA, PRSS27, TRDN
Membrane 6 BCL2, CAT, CDK1, CYP1B1, GAA, TRDN
extracellular exosome 4 CAT, CDK1, GAA, GSR
Lysosome membrane 1 GAA
endoplasmic reticulum 2 BCL2, TRDN
extracellular space 4 BCHE, MSMP, PNLIP, SPX
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 1 GGPS1
mitochondrion 6 BCL2, CASP8, CAT, CDK1, CYP1B1, GSR
protein-containing complex 3 BCL2, CASP8, CAT
intracellular membrane-bounded organelle 4 CAT, CEBPA, CYP1B1, GAA
Microsome membrane 2 CYP1B1, CYP26A1
postsynaptic density 1 CASP3
Secreted 4 BCHE, GAA, MSMP, PNLIP
extracellular region 6 BCHE, CAT, GAA, PNLIP, PRSS27, SPX
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, CASP8
mitochondrial matrix 3 CAT, CDK1, GSR
transcription regulator complex 2 CDK2, CEBPA
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 CDK1, CDK2
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 GSR
Z disc 1 GGPS1
nucleolus 1 CEBPA
midbody 1 CDK1
Single-pass type II membrane protein 1 TRDN
Cell projection, lamellipodium 1 CASP8
Cytoplasm, perinuclear region 1 GGPS1
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 BFSP2
focal adhesion 1 CAT
Peroxisome 1 CAT
sarcoplasmic reticulum 1 TRDN
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
intermediate filament 1 BFSP2
chromatin 1 CEBPA
mitotic spindle 1 CDK1
cytoskeleton 2 BFSP2, CASP8
Secreted, extracellular space 1 SPX
chromosome, telomeric region 2 CDK1, CDK2
Cytoplasm, cell cortex 1 BFSP2
blood microparticle 1 BCHE
nuclear envelope 1 CDK2
tertiary granule membrane 1 GAA
cell body 1 CASP8
myelin sheath 1 BCL2
Cytoplasm, myofibril, sarcomere, Z line 1 GGPS1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 1 BCHE
male germ cell nucleus 1 CDK2
dense core granule 1 SPX
transport vesicle 1 SPX
azurophil granule membrane 1 GAA
Sarcoplasmic reticulum membrane 1 TRDN
nuclear envelope lumen 1 BCHE
Sarcoplasmic reticulum lumen 1 TRDN
junctional sarcoplasmic reticulum membrane 1 TRDN
Cajal body 1 CDK2
ficolin-1-rich granule membrane 1 GAA
spindle microtubule 1 CDK1
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
condensed chromosome 1 CDK2
Nucleus, Cajal body 1 CDK2
X chromosome 1 CDK2
Y chromosome 1 CDK2
cyclin-dependent protein kinase holoenzyme complex 2 CDK1, CDK2
cyclin E1-CDK2 complex 1 CDK2
cyclin E2-CDK2 complex 1 CDK2
catalase complex 1 CAT
cyclin A1-CDK1 complex 1 CDK1
cyclin A2-CDK1 complex 1 CDK1
cyclin B1-CDK1 complex 1 CDK1
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
C/EBP complex 1 CEBPA
CHOP-C/EBP complex 1 CEBPA
cyclin A2-CDK2 complex 1 CDK2
cyclin A1-CDK2 complex 1 CDK2
[Isoform 4]: Nucleus, nucleolus 1 CEBPA
junctional membrane complex 1 TRDN


文献列表

  • Sushil S Changan, Vaibhav Kumar, Aruna Tyagi. Expression pattern of candidate genes and their correlation with various metabolites of abscisic acid biosynthetic pathway under drought stress in rice. Physiologia plantarum. 2023 Nov; 175(6):e14102. doi: 10.1111/ppl.14102. [PMID: 38148246]
  • Maria Dolores Garcia Molina, Ermelinda Botticella, Romina Beleggia, Samuela Palombieri, Pasquale De Vita, Stefania Masci, Domenico Lafiandra, Francesco Sestili. Enrichment of provitamin A content in durum wheat grain by suppressing β-carotene hydroxylase 1 genes with a TILLING approach. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2021 Dec; 134(12):4013-4024. doi: 10.1007/s00122-021-03944-6. [PMID: 34477900]
  • Ocsana Opriş, Florina Copaciu, Maria Loredana Soran, Ülo Niinemets, Lucian Copolovici. Content of Carotenoids, Violaxanthin and Neoxanthin in Leaves of Triticum aestivum Exposed to Persistent Environmental Pollutants. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154448. [PMID: 34361600]
  • Wenfeng Tu, Lishuan Wu, Chunyan Zhang, Ruixue Sun, Liangsheng Wang, Wenqiang Yang, Chunhong Yang, Cheng Liu. Neoxanthin affects the stability of the C2 S2 M2 -type photosystem II supercomplexes and the kinetics of state transition in Arabidopsis. The Plant journal : for cell and molecular biology. 2020 12; 104(6):1724-1735. doi: 10.1111/tpj.15033. [PMID: 33085804]
  • Huali Zhang, Shiya Zhang, Hua Zhang, Xi Chen, Fang Liang, Helan Qin, Yue Zhang, Richen Cong, Haibo Xin, Zhao Zhang. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.). Scientific reports. 2020 10; 10(1):16835. doi: 10.1038/s41598-020-73859-7. [PMID: 33033300]
  • F Goecke, J Noda, M Paliocha, H R Gislerød. Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World journal of microbiology & biotechnology. 2020 Sep; 36(10):149. doi: 10.1007/s11274-020-02897-0. [PMID: 32914262]
  • Yanting Zhong, Xiaoying Pan, Ruifeng Wang, Jiuliang Xu, Jingyu Guo, Tingxue Yang, Jianyu Zhao, Faisal Nadeem, Xiaoting Liu, Hongyan Shan, Yanjun Xu, Xuexian Li. ZmCCD10a Encodes a Distinct Type of Carotenoid Cleavage Dioxygenase and Enhances Plant Tolerance to Low Phosphate. Plant physiology. 2020 09; 184(1):374-392. doi: 10.1104/pp.20.00378. [PMID: 32586893]
  • Yuri Tanno, Shota Kato, Senji Takahashi, Shun Tamaki, Shinichi Takaichi, Yutaka Kodama, Kintake Sonoike, Tomoko Shinomura. Light dependent accumulation of β-carotene enhances photo-acclimation of Euglena gracilis. Journal of photochemistry and photobiology. B, Biology. 2020 Aug; 209(?):111950. doi: 10.1016/j.jphotobiol.2020.111950. [PMID: 32682285]
  • Tommaso Frioni, Sergio Tombesi, Paolo Sabbatini, Cecilia Squeri, Nieves Lavado Rodas, Alberto Palliotti, Stefano Poni. Kaolin Reduces ABA Biosynthesis Through the Inhibition of Neoxanthin Synthesis in Grapevines Under Water Deficit. International journal of molecular sciences. 2020 Jul; 21(14):. doi: 10.3390/ijms21144950. [PMID: 32668754]
  • O Dautermann, D Lyska, J Andersen-Ranberg, M Becker, J Fröhlich-Nowoisky, H Gartmann, L C Krämer, K Mayr, D Pieper, L M Rij, H M-L Wipf, K K Niyogi, M Lohr. An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Science advances. 2020 03; 6(10):eaaw9183. doi: 10.1126/sciadv.aaw9183. [PMID: 32181334]
  • Grzegorz Fiutak, Magdalena Michalczyk, Magda Filipczak-Fiutak, Leszek Fiedor, Krzysztof Surówka. The impact of LED lighting on the yield, morphological structure and some bioactive components in alfalfa (Medicago sativa L.) sprouts. Food chemistry. 2019 Jul; 285(?):53-58. doi: 10.1016/j.foodchem.2019.01.086. [PMID: 30797375]
  • Ke Wang, Wenfeng Tu, Cheng Liu, Yan Rao, Zhimin Gao, Chunhong Yang. 9-cis-Neoxanthin in Light Harvesting Complexes of Photosystem II Regulates the Binding of Violaxanthin and Xanthophyll Cycle. Plant physiology. 2017 May; 174(1):86-96. doi: 10.1104/pp.17.00029. [PMID: 28320865]
  • Jun Zhou, Lizhang Zeng, Jian Liu, Da Xing. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum. PLoS pathogens. 2015 May; 11(5):e1004878. doi: 10.1371/journal.ppat.1004878. [PMID: 25993128]
  • Aušra Brazaitytė, Sandra Sakalauskienė, Giedrė Samuolienė, Julė Jankauskienė, Akvilė Viršilė, Algirdas Novičkovas, Ramūnas Sirtautas, Jurga Miliauskienė, Viktorija Vaštakaitė, Laurynas Dabašinskas, Pavelas Duchovskis. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food chemistry. 2015 Apr; 173(?):600-6. doi: 10.1016/j.foodchem.2014.10.077. [PMID: 25466065]
  • Parveen Akhtar, Márta Dorogi, Krzysztof Pawlak, László Kovács, Attila Bóta, Teréz Kiss, Győző Garab, Petar H Lambrev. Pigment interactions in light-harvesting complex II in different molecular environments. The Journal of biological chemistry. 2015 Feb; 290(8):4877-4886. doi: 10.1074/jbc.m114.607770. [PMID: 25525277]
  • Angela Rubio-Moraga, José Luis Rambla, Asun Fernández-de-Carmen, Almudena Trapero-Mozos, Oussama Ahrazem, Diego Orzáez, Antonio Granell, Lourdes Gómez-Gómez. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant molecular biology. 2014 Nov; 86(4-5):555-69. doi: 10.1007/s11103-014-0250-5. [PMID: 25204497]
  • Hadar Neuman, Navot Galpaz, Francis X Cunningham, Dani Zamir, Joseph Hirschberg. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. The Plant journal : for cell and molecular biology. 2014 Apr; 78(1):80-93. doi: 10.1111/tpj.12451. [PMID: 24506237]
  • Rebeca Cruz, Teresa Gomes, Anabela Ferreira, Eulália Mendes, Paula Baptista, Sara Cunha, José Alberto Pereira, Elsa Ramalhosa, Susana Casal. Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues. Food chemistry. 2014 Feb; 145(?):95-101. doi: 10.1016/j.foodchem.2013.08.038. [PMID: 24128454]
  • Erica Belgio, Christopher D P Duffy, Alexander V Ruban. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Physical chemistry chemical physics : PCCP. 2013 Aug; 15(29):12253-61. doi: 10.1039/c3cp51925b. [PMID: 23771239]
  • Patricia García-Herrera, María Cortes Sánchez-Mata, Montaña Cámara, Javier Tardío, Begoña Olmedilla-Alonso. Carotenoid content of wild edible young shoots traditionally consumed in Spain (Asparagus acutifolius L., Humulus lupulus L., Bryonia dioica Jacq. and Tamus communis L.). Journal of the science of food and agriculture. 2013 May; 93(7):1692-8. doi: 10.1002/jsfa.5952. [PMID: 23152306]
  • Bo Lei, Xue-Hua Zhao, Kai Zhang, Jie Zhang, Wei Ren, Zhu Ren, Yi Chen, Hui-Na Zhao, Wen-Jie Pan, Wei Chen, Hong-Xun Li, Wen-Ya Deng, Fu-Zhang Ding, Kun Lu. Comparative transcriptome analysis of tobacco (Nicotiana tabacum) leaves to identify aroma compound-related genes expressed in different cultivated regions. Molecular biology reports. 2013 Jan; 40(1):345-57. doi: 10.1007/s11033-012-2067-0. [PMID: 23079704]
  • F Ranalli, A Ranalli, S Contento, M Casanovas, M Antonucci, G Di Simone. Bioactives and nutraceutical phytochemicals naturally occurring in virgin olive oil. The case study of the Nocellara del Belice Italian olive cultivar. Natural product research. 2013; 27(18):1686-90. doi: 10.1080/14786419.2012.762918. [PMID: 23356880]
  • Ramón Aparicio-Ruiz, Beatriz Gandul-Rojas. Thermal degradation kinetics of neoxanthin, violaxanthin, and antheraxanthin in virgin olive oils. Journal of agricultural and food chemistry. 2012 May; 60(20):5180-91. doi: 10.1021/jf300332m. [PMID: 22509927]
  • Monika Zubik, Rafał Luchowski, Wojciech Grudzinski, Małgorzata Gospodarek, Ignacy Gryczynski, Zygmunt Gryczynski, Jerzy W Dobrucki, Wiesław I Gruszecki. Light-induced isomerization of the LHCII-bound xanthophyll neoxanthin: possible implications for photoprotection in plants. Biochimica et biophysica acta. 2011 Sep; 1807(9):1237-43. doi: 10.1016/j.bbabio.2011.06.011. [PMID: 21718685]
  • C N Kobori, L S Huber, C I G L Sarantópoulos, D B Rodriguez-Amaya. Behavior of flavonols and carotenoids of minimally processed kale leaves during storage in passive modified atmosphere packaging. Journal of food science. 2011 Mar; 76(2):H31-7. doi: 10.1111/j.1750-3841.2010.01988.x. [PMID: 21535764]
  • Giulia Bonente, Matteo Ballottari, Thuy B Truong, Tomas Morosinotto, Tae K Ahn, Graham R Fleming, Krishna K Niyogi, Roberto Bassi. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS biology. 2011 Jan; 9(1):e1000577. doi: 10.1371/journal.pbio.1000577. [PMID: 21267060]
  • Silvia Haferkamp, Winfried Haase, Andrew A Pascal, Herbert van Amerongen, Helmut Kirchhoff. Efficient light harvesting by photosystem II requires an optimized protein packing density in Grana thylakoids. The Journal of biological chemistry. 2010 May; 285(22):17020-8. doi: 10.1074/jbc.m109.077750. [PMID: 20360011]
  • Beatrycze Nowicka, Wojciech Strzalka, Kazimierz Strzalka. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics. Journal of plant physiology. 2009 Jul; 166(10):1045-56. doi: 10.1016/j.jplph.2008.12.010. [PMID: 19278749]
  • A F de Faria, V V de Rosso, A Z Mercadante. Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS. Plant foods for human nutrition (Dordrecht, Netherlands). 2009 Jun; 64(2):108-15. doi: 10.1007/s11130-009-0111-6. [PMID: 19437120]
  • Akira Asai, Lina Yonekura, Akihiko Nagao. Low bioavailability of dietary epoxyxanthophylls in humans. The British journal of nutrition. 2008 Aug; 100(2):273-7. doi: 10.1017/s0007114507895468. [PMID: 18186952]
  • Xiaoqiong Qin, Seung Hwan Yang, Andrea C Kepsel, Steven H Schwartz, Jan A D Zeevaart. Evidence for abscisic acid biosynthesis in Cuscuta reflexa, a parasitic plant lacking neoxanthin. Plant physiology. 2008 Jun; 147(2):816-22. doi: 10.1104/pp.108.116749. [PMID: 18441226]
  • Michal Stroch, Kristina Kuldová, Jirí Kalina, Vladimír Spunda. Dynamics of the xanthophyll cycle and non-radiative dissipation of absorbed light energy during exposure of Norway spruce to high irradiance. Journal of plant physiology. 2008 Apr; 165(6):612-22. doi: 10.1016/j.jplph.2007.03.013. [PMID: 17761355]
  • Jerzy Kruk, Renata Szymańska. Occurrence of neoxanthin and lutein epoxide cycle in parasitic Cuscuta species. Acta biochimica Polonica. 2008; 55(1):183-90. doi: . [PMID: 18217105]
  • Tomoko Okada, Miho Nakai, Hayato Maeda, Masashi Hosokawa, Tokutake Sashima, Kazuo Miyashita. Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. Journal of oleo science. 2008; 57(6):345-51. doi: 10.5650/jos.57.345. [PMID: 18469497]
  • Alexander V Ruban, Rudi Berera, Cristian Ilioaia, Ivo H M van Stokkum, John T M Kennis, Andrew A Pascal, Herbert van Amerongen, Bruno Robert, Peter Horton, Rienk van Grondelle. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature. 2007 Nov; 450(7169):575-8. doi: 10.1038/nature06262. [PMID: 18033302]
  • Luca Dall'Osto, Stefano Cazzaniga, Helen North, Annie Marion-Poll, Roberto Bassi. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. The Plant cell. 2007 Mar; 19(3):1048-64. doi: 10.1105/tpc.106.049114. [PMID: 17351115]
  • Dariusz M Niedzwiedzki, James O Sullivan, Tomás Polívka, Robert R Birge, Harry A Frank. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls. The journal of physical chemistry. B. 2006 Nov; 110(45):22872-85. doi: 10.1021/jp0622738. [PMID: 17092039]
  • Guoshun Liu, Fengjie Wei, Fang Wang, Yajuan Li, Qiaoyan Guo, Xiaoshu Huang. [Determination of carotenoids in flue-cured tobacco leaves during its growth by reversed-phase high performance liquid chromatography]. Se pu = Chinese journal of chromatography. 2006 Mar; 24(2):161-3. doi: ". [PMID: 16830465]
  • Denise M Phillip, Andrew J Young. Preferential inhibition of the lycopene epsilon-cyclase by the substituted triethylamine compound MPTA in higher plants. Journal of plant physiology. 2006 Mar; 163(4):383-91. doi: 10.1016/j.jplph.2005.06.003. [PMID: 16455351]
  • Franco Cardini, Susanna Pucci, Roberto Calamassi. Quantitative variations of individual carotenoids in relationship with the leaflet development of six species of the genus Ceratozamia (Cycads). Journal of plant physiology. 2006 Feb; 163(2):128-40. doi: 10.1016/j.jplph.2005.05.012. [PMID: 16399003]
  • V S Saakov. Redox transformation of 14C-neoxanthin in animal and plant tissues. Doklady. Biochemistry and biophysics. 2005 May; 402(?):184-9. doi: 10.1007/s10628-005-0066-y. [PMID: 16116744]
  • Akira Asai, Masaru Terasaki, Akihiko Nagao. An epoxide-furanoid rearrangement of spinach neoxanthin occurs in the gastrointestinal tract of mice and in vitro: formation and cytostatic activity of neochrome stereoisomers. The Journal of nutrition. 2004 Sep; 134(9):2237-43. doi: 10.1093/jn/134.9.2237. [PMID: 15333710]
  • Miguel A Palacios, Stefano Caffarri, Roberto Bassi, Rienk van Grondelle, Herbert van Amerongen Hv. Stark effect measurements on monomers and trimers of reconstituted light-harvesting complex II of plants. Biochimica et biophysica acta. 2004 Jun; 1656(2-3):177-88. doi: 10.1016/j.bbabio.2004.04.002. [PMID: 15178479]
  • Alison M Snyder, Bruce M Clark, Bruno Robert, Alexander V Ruban, Ralph A Bungard. Carotenoid specificity of light-harvesting complex II binding sites. Occurrence of 9-cis-violaxanthin in the neoxanthin-binding site in the parasitic angiosperm Cuscuta reflexa. The Journal of biological chemistry. 2004 Feb; 279(7):5162-8. doi: 10.1074/jbc.m309676200. [PMID: 14610095]
  • Mark Wentworth, Alexander V Ruban, Peter Horton. The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes. Biochemistry. 2004 Jan; 43(2):501-9. doi: 10.1021/bi034975i. [PMID: 14717605]
  • Li Tian, Maria Magallanes-Lundback, Valeria Musetti, Dean DellaPenna. Functional analysis of beta- and epsilon-ring carotenoid hydroxylases in Arabidopsis. The Plant cell. 2003 Jun; 15(6):1320-32. doi: 10.1105/tpc.011403. [PMID: 12782726]
  • Mirko Gastaldelli, Giusy Canino, Roberta Croce, Roberto Bassi. Xanthophyll binding sites of the CP29 (Lhcb4) subunit of higher plant photosystem II investigated by domain swapping and mutation analysis. The Journal of biological chemistry. 2003 May; 278(21):19190-8. doi: 10.1074/jbc.m212125200. [PMID: 12601013]
  • Masaharu C Kato, Kouki Hikosaka, Naoki Hirotsu, Amane Makino, Tadaki Hirose. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant & cell physiology. 2003 Mar; 44(3):318-25. doi: 10.1093/pcp/pcg045. [PMID: 12668778]
  • Rong-hu Wu, Jia Su. [Study on plant pigments by photoacoustic spectroscopy]. Guang pu xue yu guang pu fen xi = Guang pu. 2002 Jun; 22(3):378-80. doi: ". [PMID: 12938308]
  • Claudio Varotto, Paolo Pesaresi, Peter Jahns, Angela Lessnick, Marco Tizzano, Fabio Schiavon, Francesco Salamini, Dario Leister. Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions. Plant physiology. 2002 Jun; 129(2):616-24. doi: 10.1104/pp.002089. [PMID: 12068106]
  • K Tegischer, M Tausz, G Wieser, D Grill. Tree- and needle-age-dependent variations in antioxidants and photoprotective pigments in Norway spruce needles at the alpine timberline. Tree physiology. 2002 Jun; 22(8):591-6. doi: 10.1093/treephys/22.8.591. [PMID: 12045031]
  • J E Polle, K K Niyogi, A Melis. Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant & cell physiology. 2001 May; 42(5):482-91. doi: 10.1093/pcp/pce058. [PMID: 11382814]
  • S Hobe, H Niemeier, A Bender, H Paulsen. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants. European journal of biochemistry. 2000 Jan; 267(2):616-24. doi: 10.1046/j.1432-1327.2000.01060.x. [PMID: 10632733]
  • S H Schwartz, B C Tan, D A Gage, J A Zeevaart, D R McCarty. Specific oxidative cleavage of carotenoids by VP14 of maize. Science (New York, N.Y.). 1997 Jun; 276(5320):1872-4. doi: 10.1126/science.276.5320.1872. [PMID: 9188535]
  • . . . . doi: . [PMID: 11094161]
  • . . . . doi: . [PMID: 11029576]