D-Glucurono-6,3-lactone (BioDeep_00000002936)

 

Secondary id: BioDeep_00000005193, BioDeep_00000413250, BioDeep_00001868322

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(2R,3R,3aR,6R,6aR)-2,3,6-trihydroxy-3,3a,6,6a-tetrahydro-2H-furo[3,2-b]furan-5-one

化学式: C6H8O6 (176.0321)
中文名称: D-葡萄糖醛酸内酯, 葡醛内酯
谱图信息: 最多检出来源 Homo sapiens(plant) 20.53%

分子结构信息

SMILES: C(=O)C(C1C(C(C(=O)O1)O)O)O
InChI: InChI=1S/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h1-5,8-10H

描述信息

D-Glucurono-6,3-lactone belongs to the class of organic compounds known as isosorbides. These are organic polycyclic compounds containing an isosorbide(1,4-Dianhydrosorbitol) moiety, which consists of two -oxolan-3-ol rings. D-Glucurono-6,3-lactone is a very mild and mentholic tasting compound. Glucuronolactone is a naturally occurring substance that is an important structural component of nearly all connective tissues. It is frequently used in energy drinks to increase energy levels and improve alertness, and can also be used to reduce "brain fog" caused by various medical conditions. Glucuronolactone is also found in many plant gums. Glucuronolactone is a white solid odorless compound, soluble in hot and cold water. Its melting point ranges from 176 to 178 °C. The compound can exist in a monocyclic aldehyde form or in a bicyclic hemiacetal (lactol) form. Glucuronolactone is a popular ingredient in energy drinks because it has been shown to be effective at increasing energy levels and improving alertness. Glucuronolactone supplementation also significantly reduces "brain fog" cause by various medical conditions. Although levels of glucuronolactone in energy drinks can far exceed those found in the rest of the diet, glucuronolactone is extremely safe and well tolerated. The European Food Safety Authority (EFSA) has concluded that exposure to glucuronolactone from regular consumption of energy drinks is not a safety concern.[2] The no-observed-adverse-effect level of glucuronolactone is 1000 mg/kg/day. Additionally, according to The Merck Index, glucuronolactone is used as a detoxicant. The liver uses glucose to create glucuronolactone, which inhibits the enzyme B-glucuronidase (metabolizes glucuronides), which should cause blood-glucuronide levels to rise. Glucuronides combines with toxic substances, such as morphine and depot medroxyprogesterone acetate, by converting them to water-soluble glucuronide-conjugates which are excreted in the urine. Higher blood-glucuronides help remove toxins from the body, leading to the claim that energy drinks are detoxifying. Free glucuronic acid (or its self-ester glucuronolactone) has less effect on detoxification than glucose, because the body synthesizes UDP-glucuronic acid from glucose. Therefore, sufficient carbohydrate intake provides enough UDP-glucuronic acid for detoxication, and foods rich in glucose are usually abundant in developed nations. Glucuronolactone is also metabolized to glucaric acid, xylitol, and L-xylulose, and humans may also be able to use glucuronolactone as a precursor for ascorbic acid synthesis.
D-glucurono-6,3-lactone participates in ascorbate and aldarate metabolism. D-glucurono-6,3-lactone is produced by the reaction between D-glucaric acid and the enzyme, aldehyde dehydrogenase (NAD+) [EC: 1.2.1.3]. [HMDB]
D-Glucuronic acid lactone is an endogenous metabolite.

同义名列表

29 个代谢物同义名

(2R,3R,3aR,6R,6aR)-2,3,6-trihydroxy-3,3a,6,6a-tetrahydro-2H-furo[3,2-b]furan-5-one; (3R,3aR,5R,6R,6aR)-3,5,6-trihydroxy-tetrahydro-3H-furo[3,2-b]furan-2-one; (3R,3aR,5R,6R,6aR)-3,5,6-trihydroxy-hexahydrofuro[3,2-b]furan-2-one; glucofuranurono-6,3-Lactone; D(+)-Glucurono-3,6-lactone; D-Glucuronic acid lactone; Glucuronic acid lactone; D-glucurono-3,6-Lactone; D-Glucurono-6,3-lactone; D-Glucuronolactone; D-Glucuronic acid; Glucuronolactone; Glucurolactone; Reulatt s.s.; Glucuronosan; D-Glucurone; Gluronsan; Glycurone; Glucurone; Guronsan; Glucuron; Dicurone; Glucoxy; Mannuronolactone; D-Glucurone, D-Glucurono-6,3-lactone; D-(+)-Glucurono-6,3-lactone; Glucuronolactone; D-Glucurono-γ-lactone; D-Glucuronolactone



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ALB, BCL2, CASP3, HMGB1, NLRP3, SYK, TGFB1
Peripheral membrane protein 4 GBA1, GORASP1, HMGB1, HSD17B6
Endoplasmic reticulum membrane 3 BCL2, CD4, STAR
Nucleus 8 ALB, BCL2, CASP3, HMGB1, NLRP3, PARP1, SYK, TGFB1
cytosol 9 AKR1A1, ALB, BCL2, CASP3, GPT, NLRP3, PARP1, SST, SYK
nuclear body 1 PARP1
trans-Golgi network 1 GBA1
centrosome 1 ALB
nucleoplasm 3 CASP3, HMGB1, PARP1
Cell membrane 4 CD4, HMGB1, STAR, SYK
Cytoplasmic side 1 GORASP1
Early endosome membrane 1 HSD17B6
Golgi apparatus membrane 2 GORASP1, NLRP3
Synapse 1 AKR1A1
cell surface 3 ALPP, HMGB1, TGFB1
glutamatergic synapse 1 CASP3
Golgi apparatus 3 ALB, GBA1, GORASP1
Golgi membrane 2 GORASP1, NLRP3
lysosomal membrane 1 GBA1
neuronal cell body 3 CASP3, SST, TGFB1
Cytoplasm, cytosol 4 AKR1A1, NLRP3, PARP1, SYK
Lysosome 1 GBA1
endosome 1 HMGB1
plasma membrane 7 ALPP, CD4, HMGB1, IFNLR1, STAR, SYK, TGFB1
Membrane 4 BCL2, IFNLR1, NLRP3, PARP1
apical plasma membrane 1 AKR1A1
axon 1 TGFB1
extracellular exosome 5 AKR1A1, ALB, GBA1, GPT, SAA2
Lysosome membrane 1 GBA1
Lumenal side 2 GBA1, HSD17B6
endoplasmic reticulum 6 ALB, BCL2, GBA1, HMGB1, HSD17B6, NLRP3
extracellular space 6 AKR1A1, ALB, CCL20, HMGB1, SST, TGFB1
lysosomal lumen 1 GBA1
mitochondrion 4 BCL2, NLRP3, PARP1, STAR
protein-containing complex 4 ALB, BCL2, PARP1, SYK
intracellular membrane-bounded organelle 1 HSD17B6
Microsome membrane 1 HSD17B6
postsynaptic density 1 CASP3
Single-pass type I membrane protein 3 CD4, IFNLR1, STAR
Secreted 7 ALB, CCL20, HMGB1, NLRP3, SAA2, SST, TGFB1
extracellular region 6 ALB, CCL20, HMGB1, NLRP3, SST, TGFB1
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 1 STAR
Extracellular side 1 HMGB1
anchoring junction 1 ALB
transcription regulator complex 1 PARP1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 CD4
Secreted, extracellular space, extracellular matrix 1 TGFB1
high-density lipoprotein particle 1 SAA2
nucleolus 1 PARP1
Early endosome 1 CD4
Apical cell membrane 1 AKR1A1
Membrane raft 1 CD4
pore complex 1 BCL2
GABA-ergic synapse 1 SST
cis-Golgi network 1 GORASP1
extracellular matrix 1 TGFB1
mitochondrial intermembrane space 1 STAR
collagen-containing extracellular matrix 1 TGFB1
secretory granule 1 TGFB1
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
ciliary basal body 1 ALB
chromatin 1 PARP1
Chromosome 2 HMGB1, PARP1
centriole 1 ALB
Nucleus, nucleolus 1 PARP1
spindle pole 1 ALB
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
blood microparticle 2 ALB, TGFB1
Lipid-anchor, GPI-anchor 1 ALPP
site of double-strand break 1 PARP1
nuclear envelope 1 PARP1
Endomembrane system 1 NLRP3
microtubule organizing center 1 NLRP3
side of membrane 1 ALPP
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 HMGB1
secretory granule lumen 1 HMGB1
Golgi lumen 1 TGFB1
endoplasmic reticulum lumen 2 ALB, CD4
transcription repressor complex 1 HMGB1
platelet alpha granule lumen 2 ALB, TGFB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
neuronal dense core vesicle 1 SST
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
clathrin-coated endocytic vesicle membrane 1 CD4
endoplasmic reticulum-Golgi intermediate compartment 1 HMGB1
protein-DNA complex 1 PARP1
death-inducing signaling complex 1 CASP3
early phagosome 1 SYK
condensed chromosome 1 HMGB1
site of DNA damage 1 PARP1
[Latency-associated peptide]: Secreted, extracellular space, extracellular matrix 1 TGFB1
[Transforming growth factor beta-1]: Secreted 1 TGFB1
T cell receptor complex 2 CD4, SYK
alphav-beta3 integrin-HMGB1 complex 1 HMGB1
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
B cell receptor complex 1 SYK
ciliary transition fiber 1 ALB
interleukin-28 receptor complex 1 IFNLR1


文献列表

  • Camelia Munteanu, Betty Schwartz. B Vitamins, Glucoronolactone and the Immune System: Bioavailability, Doses and Efficiency. Nutrients. 2023 Dec; 16(1):. doi: 10.3390/nu16010024. [PMID: 38201854]
  • Zugong Yu, Feng Wu, Jing Tian, Xuewen Guo, Ran An. Protective effects of compound ammonium glycyrrhizin, L‑arginine, silymarin and glucurolactone against liver damage induced by ochratoxin A in primary chicken hepatocytes. Molecular medicine reports. 2018 Sep; 18(3):2551-2560. doi: 10.3892/mmr.2018.9285. [PMID: 30015927]
  • Jennifer L Miles-Chan, Nathalie Charrière, Erik K Grasser, Jean-Pierre Montani, Abdul G Dulloo. The thermic effect of sugar-free Red Bull: do the non-caffeine bioactive ingredients in energy drinks play a role?. Obesity (Silver Spring, Md.). 2015 Jan; 23(1):16-9. doi: 10.1002/oby.20905. [PMID: 25294090]
  • Quan Zhang, Fang-Ying Zhong, Meng Wu, Xin-Ping Zhang. Efficacy of Jian'ganle () versus Hugan Pian (), glucuronolactone and reduced glutathione in prevention of antituberculosis drug-induced liver injury. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban. 2014 Jun; 34(3):450-455. doi: 10.1007/s11596-014-1299-8. [PMID: 24939315]
  • Motoko Takahashi, Satoshi Miyata, Junichi Fujii, Yoko Inai, Shigemitsu Ueyama, Motoko Araki, Tomoyoshi Soga, Reiko Fujinawa, Chiaki Nishitani, Shigeru Ariki, Takeyuki Shimizu, Tomomi Abe, Yoshito Ihara, Morimitsu Nishikimi, Yasunori Kozutsumi, Naoyuki Taniguchi, Yoshio Kuroki. In vivo role of aldehyde reductase. Biochimica et biophysica acta. 2012 Nov; 1820(11):1787-96. doi: 10.1016/j.bbagen.2012.07.003. [PMID: 22820017]
  • A L Cavalcanti, M Costa Oliveira, V G Florentino, J A dos Santos, F F Vieira, C L Cavalcanti. Short communication: In vitro assessment of erosive potential of energy drinks. European archives of paediatric dentistry : official journal of the European Academy of Paediatric Dentistry. 2010 Oct; 11(5):253-5. doi: 10.1007/bf03262757. [PMID: 20932401]
  • Matthew I Worthley, Anisha Prabhu, Paolo De Sciscio, Carlee Schultz, Prashanthan Sanders, Scott R Willoughby. Detrimental effects of energy drink consumption on platelet and endothelial function. The American journal of medicine. 2010 Feb; 123(2):184-7. doi: 10.1016/j.amjmed.2009.09.013. [PMID: 20103032]
  • Mikael Lehtihet, Ulla Beckman Sundh, Dan E H Andersson. [Energy drinks--dangerous or not? Cases with severe symptoms with possible connection to energy drinks--more case reports wanted]. Lakartidningen. 2006 Sep; 103(38):2738-41. doi: NULL. [PMID: 17058767]
  • Yin-sheng Xian, Zuo-ren Wang, Xian-feng Gong, Bao-zhong Huang. Clinical study on Ganbi decoction in treating antituberculotic agent-caused liver injury. Chinese journal of integrative medicine. 2006 Jun; 12(2):107-11. doi: 10.1007/bf02857355. [PMID: 16800988]
  • S Suzuki. [Essential pentosuria]. Ryoikibetsu shokogun shirizu. 1998; ?(18 Pt 1):104-6. doi: NULL. [PMID: 9590001]
  • F H Kratzer, H J Almquist, P Vohra. Effect of diet on growth and plasma ascorbic acid in chicks. Poultry science. 1996 Jan; 75(1):82-9. doi: 10.3382/ps.0750082. [PMID: 8650116]
  • W C Koller, S D Rope, S J Huber, D C Blumenthal, H J Blumenthal. Metabolism of glucurolactone to glucarate in Parkinson's disease. Neurology. 1992 Sep; 42(9):1807-8. doi: 10.1212/wnl.42.9.1807. [PMID: 1513472]
  • S Yuasa. Formation of alpha-amino-gamma, delta-dihydroxyadipic acid by boiling D-glucuronolactone and urea in 6 mol/1 hydrochloric acid. Clinica chimica acta; international journal of clinical chemistry. 1986 Nov; 160(3):331-2. doi: 10.1016/0009-8981(86)90202-0. [PMID: 3791639]
  • J M Hsu, H S Hsieh. Effects of ethionine feeding on urinary and tissue ascorbic acid concentrations in rats. The Journal of nutrition. 1981 Jan; 111(1):141-5. doi: 10.1093/jn/111.1.141. [PMID: 7452367]
  • C W Wu, L R Yarbrough. N-(1-pyrene)maleimide: a fluorescent cross-linking reagent. Biochemistry. 1976 Jun; 15(13):2863-8. doi: 10.1021/bi00658a025. [PMID: 7290]
  • T MOMOSE, Y OHKURA, J TOMITA. DETERMINATION OF UREA IN BLOOD AND URINE WITH DIACETYL MONOXIME-GLUCURONOLACTONE REAGENT. Clinical chemistry. 1965 Feb; 11(?):113-21. doi: 10.1093/clinchem/11.2.113. [PMID: 14262211]
  • E M Baker, E L Bierman, I C Plough. Effect of D-glucuronic acid and D-glucuronolactone on ascorbic acid levels in blood and urine of man and dog. The American journal of clinical nutrition. 1960 May; 8(?):369-73. doi: 10.1093/ajcn/8.3.369. [PMID: 13795987]
  • F C HAMM, S R WEINBERG, D KARANSKY, L KESNER, P LEWIS. Urinary calculi; excretion studies after oral administration of acetylsalicylic acid and glucuronolactone. Journal of the American Medical Association. 1958 Jun; 167(6):720-3. doi: 10.1001/jama.1958.02990230046009. [PMID: 13538756]
  • H H HIATT. Studies of ribose metabolism. IV. The metabolism of D-glucuronolactone in normal and pentosuric human subjects. Biochimica et biophysica acta. 1958 Jun; 28(3):645-7. doi: 10.1016/0006-3002(58)90536-5. [PMID: 13560424]
  • J L RABINOWITZ, T SALL. Studies on a glucuronolactone decarboxylase. Biochimica et biophysica acta. 1957 Feb; 23(2):289-94. doi: 10.1016/0006-3002(57)90330-x. [PMID: 13412723]
  • S FREEMAN, E L KANABROCKI, C W INMAN. The influence of diet and of exogenous glucuronolactone or glucuronate upon the urinary and serum glucuronic acid of adult human subjects. The Journal of laboratory and clinical medicine. 1956 Apr; 47(4):583-91. doi: NULL. [PMID: 13307093]
  • O TOUSTER, R M HUTCHESON, L RICE. The influence of D-glucuronolactone on the excretion of L-xylulose by humans and guinea pigs. The Journal of biological chemistry. 1955 Aug; 215(2):677-84. doi: 10.1016/s0021-9258(18)65991-5. [PMID: 13242566]