24,25-Dihydrolanosterol (BioDeep_00000001103)

 

Secondary id: BioDeep_00000867769

human metabolite PANOMIX_OTCML-2023 Endogenous Volatile Flavor Compounds natural product


代谢物信息卡片


(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

化学式: C30H52O (428.4017942)
中文名称: 二氢羊毛甾醇
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 1.86%

分子结构信息

SMILES: C1[C@@H](C([C@H]2[C@](C1)(C1=C(CC2)[C@]2([C@](CC1)([C@H](CC2)[C@H](C)CCCC(C)C)C)C)C)(C)C)O
InChI: InChI=1S/C30H52O/c1-20(2)10-9-11-21(3)22-14-18-30(8)24-12-13-25-27(4,5)26(31)16-17-28(25,6)23(24)15-19-29(22,30)7/h20-22,25-26,31H,9-19H2,1-8H3/t21-,22-,25+,26+,28-,29-,30+/m1/s1

描述信息

24,25-dihydrolanosterol is a 3beta-sterol formed from lanosterol by reduction across the C-24-C-25 double bond. It has a role as a human metabolite and a mouse metabolite. It is a 3beta-sterol and a tetracyclic triterpenoid. It is functionally related to a lanosterol.
24,25-Dihydrolanosterol is a natural product found in Euphorbia sapinii, Heterobasidion annosum, and other organisms with data available.
24,25-dihydrolanosterol is a metabolite found in or produced by Saccharomyces cerevisiae.
24,25-Dihydrolanosterol is involved in the biosynthesis of steriods. 24,25-Dihydrolanosterol is reversibly converted to lanosterol by delta24-sterol reductase [EC:1.3.1.72].
A 3beta-sterol formed from lanosterol by reduction across the C-24-C-25 double bond.
24,25-Dihydrolanosterol (Lanostenol) is a component of the seeds of red pepper (Capsicum annuum)[1].

同义名列表

35 个代谢物同义名

(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol; (3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol; (3S,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol; (2S,5S,7R,11R,14R,15R)-2,6,6,11,15-pentamethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol; 4,4,14.ALPHA.-TRIMETHYL-5.ALPHA.-CHOLEST-8-EN-3.BETA.-OL; 4,4,14alpha-trimethyl-5alpha-cholesta-8-en-3beta-ol; 4,4,14a-trimethyl-5a-cholesta-8-en-3b-ol; (3beta,5xi,14xi)-isomer of lanostenol; (3beta,20S)-isomer of lanostenol; 5.ALPHA.-LANOST-8-EN-3.BETA.-OL; 5 alpha-lanost-8-en-3 beta-ol; Lanost-8-en-3-ol, (3.beta.)-; 5alpha-Lanost-8-en-3 beta-ol; Lanostenol;Dihydrolanosterin; 5alpha-Lanost-8-en-3beta-ol; MBZYKEVPFYHDOH-BQNIITSRSA-N; 3beta-Hydroxylanost-8-ene; (3beta)-Lanost-8-en-3-ol; DIHYDROLANOSTEROL [INCI]; 24,25-Dihydrolanosterol; Lanost-8-en-3.beta.-ol; Lanosterol, dihydro-; Lanost-8-en-3beta-ol; 24-dihydrolanosterol; Lanost-8-en-3-ol #; Dihydrolanosterol; Dihydrolanosterin; Lanost-8-en-3-ol; UNII-9H273A8B2X; lanostenol; 9H273A8B2X; ST 30:1;O; 5α-lanost-8-en-3β-ol; SCHEMBL13499192; 24,25-Dihydrolanosterol



数据库引用编号

28 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(4)

BioCyc(2)

PlantCyc(0)

代谢反应

99 个相关的代谢反应过程信息。

Reactome(40)

BioCyc(4)

WikiPathways(3)

Plant Reactome(3)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(49)

PharmGKB(0)

64 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Dieter Lütjohann, Frans Stellaard, Anja Kerksiek, Jörn Lötsch, Bruno G Oertel. Serum 4β-hydroxycholesterol increases during fluconazole treatment. European journal of clinical pharmacology. 2021 May; 77(5):659-669. doi: 10.1007/s00228-020-03041-5. [PMID: 33201347]
  • Maria Bailen, Mourad Daoubi Khamlichi, Ahmed Benharref, Rafael A Martinez-Diaz, Azucena Gonzalez-Coloma. New Bioactive Semisynthetic Derivatives of 31-Norlanostenol and Obtusifoliol from Euphorbia officinarum. Natural product communications. 2016 Jun; 11(6):733-8. doi: . [PMID: 27534104]
  • Rok Keber, Jure Ačimovič, Gregor Majdič, Helena Motaln, Damjana Rozman, Simon Horvat. Male germ cell-specific knockout of cholesterogenic cytochrome P450 lanosterol 14α-demethylase (Cyp51). Journal of lipid research. 2013 Jun; 54(6):1653-1661. doi: 10.1194/jlr.m035717. [PMID: 23509403]
  • Jun Zhu, Khalid Mounzih, Eric F Chehab, Nico Mitro, Enrique Saez, Farid F Chehab. Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake. Journal of lipid research. 2010 Jun; 51(6):1312-24. doi: 10.1194/jlr.m001586. [PMID: 20037138]
  • Rohit Sood, Paavo K J Kinnunen. Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37(W27F) and temporin L. Biochimica et biophysica acta. 2008 Jun; 1778(6):1460-6. doi: 10.1016/j.bbamem.2008.02.014. [PMID: 18358828]
  • Yvonne Lange, Daniel S Ory, Jin Ye, Michael H Lanier, Fong-Fu Hsu, Theodore L Steck. Effectors of rapid homeostatic responses of endoplasmic reticulum cholesterol and 3-hydroxy-3-methylglutaryl-CoA reductase. The Journal of biological chemistry. 2008 Jan; 283(3):1445-1455. doi: 10.1074/jbc.m706967200. [PMID: 18024962]
  • A Berger, D Rein, E Kratky, I Monnard, H Hajjaj, I Meirim, C Piguet-Welsch, J Hauser, K Mace, P Niederberger. Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs. Lipids in health and disease. 2004 Feb; 3(?):2. doi: 10.1186/1476-511x-3-2. [PMID: 14969592]
  • S Satchithanandam, L L Gallo, G V Vahouny, D Kritchevsky. The lymphatic absorption of dihydrolanosterol and cholesterol in the rat. Research communications in molecular pathology and pharmacology. 1999 Jan; 103(1):91-100. doi: . [PMID: 10440574]
  • D C Swinney, O Y So, D M Watson, P W Berry, A S Webb, D J Kertesz, E J Shelton, P M Burton, K A Walker. Selective inhibition of mammalian lanosterol 14 alpha-demethylase by RS-21607 in vitro and in vivo. Biochemistry. 1994 Apr; 33(15):4702-13. doi: 10.1021/bi00181a030. [PMID: 8161528]
  • N Nicolaides, E C Santos, R E Smith, J V Jester. Meibomian gland dysfunction. III. Meibomian gland lipids. Investigative ophthalmology & visual science. 1989 May; 30(5):946-51. doi: ". [PMID: 2498228]
  • W D Nes, R A Norton, E J Parish, A Meenan, G Popják. Concerning the role of 24,25-dihydrolanosterol and lanostanol in sterol biosynthesis by cultured cells. Steroids. 1989 Mar; 53(3-5):461-75. doi: 10.1016/0039-128x(89)90025-1. [PMID: 2799854]
  • J K Chen, T Okamoto, J D Sato, G H Sato, D B McClure. Biochemical characterization of the cholesterol-dependent growth of the NS-1 mouse myeloma cell line. Experimental cell research. 1986 Mar; 163(1):117-26. doi: 10.1016/0014-4827(86)90563-x. [PMID: 3943557]
  • J Dillon, B Mehlman, L Ponticorvo, A Spector. The state of neutral lipids in normal and cataractous human lenses. Experimental eye research. 1983 Jul; 37(1):91-8. doi: 10.1016/0014-4835(83)90153-7. [PMID: 6873207]
  • J Algueperse, C Lutton, F Chevallier. Identification and origins of neutral fecal sterols in adult Large White sows: occurrence of externally-secreted intestinal cholesterol. Reproduction, nutrition, developpement. 1981; 21(4):545-54. doi: 10.1051/rnd:19810406. [PMID: 6818638]
  • A A KANDUTSCH, A E RUSSELL. Preputial gland tumor sterols. I. The occurrence of 24,25-dihydrolanosterol and a comparison with liver and the normal gland. The Journal of biological chemistry. 1959 Aug; 234(8):2037-42. doi: . [PMID: 13673010]
  • . . . . doi: . [PMID: 7626636]