Anserine (BioDeep_00000001659)

 

Secondary id: BioDeep_00000400344, BioDeep_00000405213

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Marine Natural Products BioNovoGene_Lab2019


代谢物信息卡片


(2S)-2-(3-aminopropanamido)-3-(1-methyl-1H-imidazol-5-yl)propanoic acid

化学式: C10H16N4O3 (240.12223459999998)
中文名称: L-鹅肌肽, 鹅肌肽
谱图信息: 最多检出来源 Homo sapiens(blood) 0.07%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

Anserine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/anserine (retrieved 2024-11-08) (BioDeep RN: BioDeep_00000001659). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CN1C=NC=C1CC(C(=O)O)NC(=O)CCN
InChI: InChI=1S/C10H16N4O3/c1-14-6-12-5-7(14)4-8(10(16)17)13-9(15)2-3-11/h5-6,8H,2-4,11H2,1H3,(H,13,15)(H,16,17)/t8-/m0/s1

描述信息

Anserine (beta-alanyl-N-3-methylhistidine) is a dipeptide containing beta-alanine and 3-methylhistidine. It is a derivative of carnosine, which had been methylated. The methyl group of anserine is added to carnosine by the enzyme S-adenosylmethionine: carnosine N-methyltransferase (PMID: 29484990). The enzyme is closely related to histamine N-methyltransferase and appears to be present in a majority of anserine-producing species (PMID: 23705015). Anserine is a generally a more metabolically stable derivative of carnosine. Anserine can be found in the skeletal muscle and brain of certain mammals (rabbits, cattle), migratory fish and birds. This dipeptide is normally absent from human tissues and body fluids, and its appearance there is usually an artifact of diet. Anserine can also arise from serum carnosinase deficiency. (OMIM 212200). Anserine was first discovered in goose muscle in 1929, and was named after this extraction (anser is Latin for goose). Anserine, which is water-soluble, is found at high levels in the muscles of different non-human vertebrates, with poultry, rabbit, tuna, plaice, and salmon having generally higher contents than other marine foods, beef, or pork (PMID: 31908682). An increase of urinary anserine excretion has been found in humans after the consumption of chicken, rabbit, and tuna and has been associated with intake of chicken, salmon, and, to a lesser extent, beef (PMID: 31908682). Anserine can undergo cleavage to give rise to 3-methylhistidine.(3-MH). The dipeptide balenine, common in some whales, cleaves to form 1-methylhistidine (1-MH) (PMID: 31908682). There is considerable confusion with regard to the nomenclature of the methylated nitrogen atoms on the imidazole ring of histidine and other histidine-containing peptides such as anserine. In particular, older literature (mostly prior to the year 2000) designated anserine (N-pi methylated) as beta-alanyl-N1-methyl-histidine, whereas according to standard IUPAC nomenclature, anserine is correctly named as beta-alanyl-N3-methyl-histidine. As a result, many papers published prior to the year 2000 incorrectly identified 1MH as a specific marker for dietary consumption of certain foods or various pathophysiological effects when they really were referring to 3MH or vice versa (PMID: 24137022). In particular balenine (a whale or snake-specific dipeptide with 1MH) was often confused with anserine (the poultry dipeptide with 3MH). An animal model study of Alzheimers disease using mice found that treatment with anserine reduced memory loss (PMID: 28974740). Anserine reduced glial inflammatory activity (particularly of astrocyte). The study also found that anserine-treated mice had greater pericyte surface area. The greater area of pericytes was commensurate with improved memory. The anserine-treated mice overall performed better on a spatial memory test (Morris Water Maze) (PMID: 28974740). A human study on 84 elderly subjects showed that subjects who took anserine and carnosine supplements for one year showed increased blood flow in the prefrontal cortex on MRI (PMID: 29896423).
Acquisition and generation of the data is financially supported in part by CREST/JST.
C26170 - Protective Agent > C275 - Antioxidant
KEIO_ID A140; [MS2] KO008819
KEIO_ID A140; [MS3] KO008820
KEIO_ID A140
Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2].
Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2].

同义名列表

19 个代谢物同义名

(2S)-2-(3-aminopropanamido)-3-(1-methyl-1H-imidazol-5-yl)propanoic acid; beta-Alanyl-N(pai)-methyl-L-histidine; Β-alanyl-N(pai)-methyl-L-histidine; N-beta-Alanyl-3-methyl-L-histidine; L-N-beta-Alanyl-3-methyl-histidine; b-Alanyl-N(pai)-methyl-L-histidine; beta-alanyl-3-methyl-L-histidine; L-N-b-Alanyl-3-methyl-histidine; N-b-Alanyl-3-methyl-L-histidine; Β-alanyl-3-methyl-L-histidine; Beta-Alanyl-3-methylhistidine; b-Alanyl-3-methyl-L-histidine; Beta Alanyl 3 methylhistidine; L-Anserine nitrate salt; L-Anserine; Balanine; Anserine; Ophidine; Anserine



数据库引用编号

45 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(1)

BioCyc(0)

PlantCyc(0)

代谢反应

48 个相关的代谢反应过程信息。

Reactome(27)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(21)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jing Luo, Ming Chen, Hongwu Ji, Weifeng Su, Wenkui Song, Di Zhang, Weiming Su, Shucheng Liu. Hypolipidemic and Anti-Obesity Effect of Anserine on Mice Orally Administered with High-Fat Diet via Regulating SREBP-1, NLRP3, and UCP-1. Molecular nutrition & food research. 2024 Mar; 68(6):e2300471. doi: 10.1002/mnfr.202300471. [PMID: 38400696]
  • Huan Hong, Jianping Sun, Wangwang Lv, Suren Zhang, Lu Xia, Yang Zhou, A Wang, Jingya Lv, Bowen Li, Jing Wu, Shizhang Liu, Caiyun Luo, Zhenhua Zhang, Lili Jiang, Tsechoe Dorji, Shiping Wang. Warming delays but grazing advances leaf senescence of five plant species in an alpine meadow. The Science of the total environment. 2023 Feb; 858(Pt 2):159858. doi: 10.1016/j.scitotenv.2022.159858. [PMID: 36374756]
  • Hirofumi Enomoto, Nobuhiro Zaima. Desorption electrospray ionization-mass spectrometry imaging of carnitine and imidazole dipeptides in pork chop tissues. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2023 Feb; 1216(?):123601. doi: 10.1016/j.jchromb.2023.123601. [PMID: 36680959]
  • Raju Nalvothula, Surekha Challa, Vidyullatha Peddireddy, Ramchander Merugu, M P Pratap Rudra, Abed Alataway, Ahmed Z Dewidar, Hosam O Elansary. Isolation, Molecular Identification and Amino Acid Profiling of Single-Cell-Protein-Producing Phototrophic Bacteria Isolated from Oil-Contaminated Soil Samples. Molecules (Basel, Switzerland). 2022 Sep; 27(19):. doi: 10.3390/molecules27196265. [PMID: 36234802]
  • Enrique Pavan, Arvind K Subbaraj, Graham T Eyres, Patrick Silcock, Carolina E Realini. Association of metabolomic and lipidomic data with Chinese and New Zealand consumer clusters showing preferential likings for lamb meat from three production systems. Food research international (Ottawa, Ont.). 2022 08; 158(?):111504. doi: 10.1016/j.foodres.2022.111504. [PMID: 35840213]
  • Chanadda Suwanvichanee, Panpradub Sinpru, Kasarat Promkhun, Satoshi Kubota, Cindy Riou, Wittawat Molee, Jirawat Yongsawatdigul, Kanjana Thumanu, Amonrat Molee. Effects of β-alanine and L-histidine supplementation on carnosine contents in and quality and secondary structure of proteins in slow-growing Korat chicken meat. Poultry science. 2022 May; 101(5):101776. doi: 10.1016/j.psj.2022.101776. [PMID: 35303689]
  • Luan He, Ning Liu, Kexin Wang, Ling Zhang, Dan Li, Zhixiang Wang, Guoqiang Xu, Yanli Liu, Qiongming Xu. Rosamultin from Potentilla anserine L. exhibits nephroprotection and antioxidant activity by regulating the reactive oxygen species/C/EBP homologous protein signaling pathway. Phytotherapy research : PTR. 2021 Nov; 35(11):6343-6358. doi: 10.1002/ptr.7285. [PMID: 34533242]
  • Jiaojiao Han, Ziyan Wang, Chenyang Lu, Jun Zhou, Ye Li, Tinghong Ming, Zhen Zhang, Zaijie Jim Wang, Xiurong Su. The gut microbiota mediates the protective effects of anserine supplementation on hyperuricaemia and associated renal inflammation. Food & function. 2021 Oct; 12(19):9030-9042. doi: 10.1039/d1fo01884a. [PMID: 34382991]
  • Inge Everaert, Thibaux Van der Stede, Jan Stautemas, Maxime Hanssens, Cleo van Aanhold, Hans Baelde, Lynn Vanhaecke, Wim Derave. Oral anserine supplementation does not attenuate type-2 diabetes or diabetic nephropathy in BTBR ob/ob mice. Amino acids. 2021 Aug; 53(8):1269-1277. doi: 10.1007/s00726-021-03033-4. [PMID: 34264387]
  • Stephan van Vliet, James R Bain, Michael J Muehlbauer, Frederick D Provenza, Scott L Kronberg, Carl F Pieper, Kim M Huffman. A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels. Scientific reports. 2021 07; 11(1):13828. doi: 10.1038/s41598-021-93100-3. [PMID: 34226581]
  • Ju Cheng, Di Liu, Lixia Zhao, Qianqian Zhao, Xiaoyun Zhang, Bei Wang, Decheng Bai. Potentilla anserine L. polysaccharide inhibits cadmium-induced neurotoxicity by attenuating autophagy. Neurochemistry international. 2021 07; 147(?):105045. doi: 10.1016/j.neuint.2021.105045. [PMID: 33887379]
  • L Blancquaert, I Everaert, A Baguet, T Bex, S Barbaresi, S de Jager, E Lievens, J Stautemas, S De Smet, G Baron, E Gilardoni, L Regazzoni, G Aldini, W Derave. Acute preexercise supplementation of combined carnosine and anserine enhances initial maximal power of Wingate tests in humans. Journal of applied physiology (Bethesda, Md. : 1985). 2021 06; 130(6):1868-1878. doi: 10.1152/japplphysiol.00602.2020. [PMID: 33914660]
  • Silvia Barbaresi, Laura Blancquaert, Zoran Nikolovski, Sarah de Jager, Mathew Wilson, Inge Everaert, Siegrid De Baere, Siska Croubels, Stefaan De Smet, N Tim Cable, Wim Derave. Ergogenic effect of pre-exercise chicken broth ingestion on a high-intensity cycling time-trial. Journal of the International Society of Sports Nutrition. 2021 Feb; 18(1):15. doi: 10.1186/s12970-021-00408-6. [PMID: 33588872]
  • Cătălina Cuparencu, Åsmund Rinnan, Marta P Silvestre, Sally D Poppitt, Anne Raben, Lars O Dragsted. The anserine to carnosine ratio: an excellent discriminator between white and red meats consumed by free-living overweight participants of the PREVIEW study. European journal of nutrition. 2021 Feb; 60(1):179-192. doi: 10.1007/s00394-020-02230-3. [PMID: 32246262]
  • Tim Weigand, Florian Colbatzky, Tilman Pfeffer, Sven F Garbade, Kristina Klingbeil, Florian Colbatzky, Michael Becker, Johanna Zemva, Ruben Bulkescher, Robin Schürfeld, Christian Thiel, Nadine Volk, David Reuss, Georg F Hoffmann, Marc Freichel, Markus Hecker, Tanja Poth, Thomas Fleming, Gernot Poschet, Claus P Schmitt, Verena Peters. A Global Cndp1-Knock-Out Selectively Increases Renal Carnosine and Anserine Concentrations in an Age- and Gender-Specific Manner in Mice. International journal of molecular sciences. 2020 Jul; 21(14):. doi: 10.3390/ijms21144887. [PMID: 32664451]
  • Peng Li, Guoyao Wu. Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino acids. 2020 Apr; 52(4):523-542. doi: 10.1007/s00726-020-02833-4. [PMID: 32162082]
  • Guoyao Wu. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino acids. 2020 Mar; 52(3):329-360. doi: 10.1007/s00726-020-02823-6. [PMID: 32072297]
  • Pieter Giesbertz, Beate Brandl, Yu-Mi Lee, Hans Hauner, Hannelore Daniel, Thomas Skurk. Specificity, Dose Dependency, and Kinetics of Markers of Chicken and Beef Intake Using Targeted Quantitative LC-MS/MS: A Human Intervention Trial. Molecular nutrition & food research. 2020 03; 64(5):e1900921. doi: 10.1002/mnfr.201900921. [PMID: 31916678]
  • Weinan Li, Yu Liu, Wei Jiang, Xiaojun Yan. Proximate Composition and Nutritional Profile of Rainbow Trout (Oncorhynchus mykiss) Heads and Skipjack tuna (Katsuwonus Pelamis) Heads. Molecules (Basel, Switzerland). 2019 Sep; 24(17):. doi: 10.3390/molecules24173189. [PMID: 31480782]
  • Cătălina Cuparencu, Åsmund Rinnan, Lars O Dragsted. Combined Markers to Assess Meat Intake-Human Metabolomic Studies of Discovery and Validation. Molecular nutrition & food research. 2019 09; 63(17):e1900106. doi: 10.1002/mnfr.201900106. [PMID: 31141834]
  • Patricia Mitry, Nina Wawro, Sabine Rohrmann, Pieter Giesbertz, Hannelore Daniel, Jakob Linseisen. Plasma concentrations of anserine, carnosine and pi-methylhistidine as biomarkers of habitual meat consumption. European journal of clinical nutrition. 2019 05; 73(5):692-702. doi: 10.1038/s41430-018-0248-1. [PMID: 30018457]
  • Florian Rohm, Thomas Skurk, Hannelore Daniel, Britta Spanier. Appearance of Di- and Tripeptides in Human Plasma after a Protein Meal Does Not Correlate with PEPT1 Substrate Selectivity. Molecular nutrition & food research. 2019 03; 63(5):e1801094. doi: 10.1002/mnfr.201801094. [PMID: 30521147]
  • Inge Everaert, Giovanna Baron, Silvia Barbaresi, Ettore Gilardoni, Crescenzo Coppa, Marina Carini, Giulio Vistoli, Tine Bex, Jan Stautemas, Laura Blancquaert, Wim Derave, Giancarlo Aldini, Luca Regazzoni. Development and validation of a sensitive LC-MS/MS assay for the quantification of anserine in human plasma and urine and its application to pharmacokinetic study. Amino acids. 2019 Jan; 51(1):103-114. doi: 10.1007/s00726-018-2663-y. [PMID: 30302566]
  • Yalin Zhang, Han Su, Juan Zhang, Juan Kong. The Effects of Ginsenosides and Anserine on the Up-Regulation of Renal Aquaporins 1-4 in Hyperuricemic Mice. The American journal of Chinese medicine. 2019; 47(5):1133-1147. doi: 10.1142/s0192415x19500587. [PMID: 31311296]
  • Verena Peters, Vittorio Calabrese, Elisabete Forsberg, Nadine Volk, Thomas Fleming, Hans Baelde, Tim Weigand, Christian Thiel, Angela Trovato, Maria Scuto, Sergio Modafferi, Claus Peter Schmitt. Protective Actions of Anserine Under Diabetic Conditions. International journal of molecular sciences. 2018 Sep; 19(9):. doi: 10.3390/ijms19092751. [PMID: 30217069]
  • Louise M A Jakobsen, Christian C Yde, Thomas Van Hecke, Randi Jessen, Jette F Young, Stefaan De Smet, Hanne Christine Bertram. Impact of red meat consumption on the metabolome of rats. Molecular nutrition & food research. 2017 03; 61(3):. doi: 10.1002/mnfr.201600387. [PMID: 27734579]
  • Laura Blancquaert, Shahid P Baba, Sebastian Kwiatkowski, Jan Stautemas, Sanne Stegen, Silvia Barbaresi, Weiliang Chung, Adjoa A Boakye, J David Hoetker, Aruni Bhatnagar, Joris Delanghe, Bert Vanheel, Maria Veiga-da-Cunha, Wim Derave, Inge Everaert. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β-alanine transamination. The Journal of physiology. 2016 09; 594(17):4849-63. doi: 10.1113/jp272050. [PMID: 27062388]
  • W Kopec, A Wiliczkiewicz, D Jamroz, E Biazik, A Pudlo, T Hikawczuk, T Skiba, M Korzeniowska. Antioxidant status of turkey breast meat and blood after feeding a diet enriched with histidine. Poultry science. 2016 Jan; 95(1):53-61. doi: 10.3382/ps/pev311. [PMID: 26574038]
  • Verena Peters, Celine Q F Klessens, Hans J Baelde, Benjamin Singler, Kimberley A M Veraar, Ana Zutinic, Jakub Drozak, Johannes Zschocke, Claus P Schmitt, Emile de Heer. Intrinsic carnosine metabolism in the human kidney. Amino acids. 2015 Dec; 47(12):2541-50. doi: 10.1007/s00726-015-2045-7. [PMID: 26206726]
  • Shoichiro Funatsu, Takashi Kondoh, Takahiro Kawase, Hiromi Ikeda, Mao Nagasawa, D Michael Denbow, Mitsuhiro Furuse. Long-term consumption of dried bonito dashi (a traditional Japanese fish stock) reduces anxiety and modifies central amino acid levels in rats. Nutritional neuroscience. 2015 Aug; 18(6):256-64. doi: 10.1179/1476830514y.0000000124. [PMID: 24701973]
  • Shinichi Kai, Genya Watanabe, Masatoshi Kubota, Motoni Kadowaki, Shinobu Fujimura. Effect of dietary histidine on contents of carnosine and anserine in muscles of broilers. Animal science journal = Nihon chikusan Gakkaiho. 2015 May; 86(5):541-6. doi: 10.1111/asj.12322. [PMID: 25521014]
  • Verena Peters, Claus P Schmitt, Johannes Zschocke, Marie-Luise Gross, Kerstin Brismar, Elisabete Forsberg. Carnosine treatment largely prevents alterations of renal carnosine metabolism in diabetic mice. Amino acids. 2012 Jun; 42(6):2411-6. doi: 10.1007/s00726-011-1046-4. [PMID: 21833769]
  • Andrea Staňová, Jozef Marák, Melinda Rezeli, Csilla Páger, Ferenc Kilár, Dušan Kaniansky. Analysis of therapeutic peptides in human urine by combination of capillary zone electrophoresis-electrospray mass spectrometry with preparative capillary isotachophoresis sample pretreatment. Journal of chromatography. A. 2011 Dec; 1218(48):8701-7. doi: 10.1016/j.chroma.2011.09.080. [PMID: 22047821]
  • Kazushige Goto, Hirohiko Maemura, Kaoru Takamatsu, Naokata Ishii. Hormonal responses to resistance exercise after ingestion of carnosine and anserine. Journal of strength and conditioning research. 2011 Feb; 25(2):398-405. doi: 10.1519/jsc.0b013e3181bac43c. [PMID: 20224451]
  • Verena Peters, Erwin E W Jansen, Cornelis Jakobs, Eva Riedl, Bart Janssen, Benito A Yard, Johannes Wedel, Georg F Hoffmann, Johannes Zschocke, Daniel Gotthardt, Christine Fischer, Hannes Köppel. Anserine inhibits carnosine degradation but in human serum carnosinase (CN1) is not correlated with histidine dipeptide concentration. Clinica chimica acta; international journal of clinical chemistry. 2011 Jan; 412(3-4):263-7. doi: 10.1016/j.cca.2010.10.016. [PMID: 20971102]
  • Daiki Kubomura, Yoshiharu Matahira, Katsuya Nagai, Akira Niijima. Effect of anserine ingestion on hyperglycemia and the autonomic nerves in rats and humans. Nutritional neuroscience. 2010 Aug; 13(4):183-8. doi: 10.1179/147683010x12611460764363. [PMID: 20670474]
  • Daiki Kubomura, Yoshiharu Matahira, Katsuya Nagai, Akira Niijima. Effect of anserine ingestion on the hyperglycemia and autonomic nerves in rats and humans. Nutritional neuroscience. 2010 Jun; 13(3):123-8. doi: 10.1179/147683010x12611460764048. [PMID: 20423561]
  • Kyung-Jin Yeum, Marica Orioli, Luca Regazzoni, Marina Carini, Helen Rasmussen, Robert M Russell, Giancarlo Aldini. Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino acids. 2010 Mar; 38(3):847-58. doi: 10.1007/s00726-009-0291-2. [PMID: 19381778]
  • Jung Hwan Yoon, Myeong Seon Lee, Jung Hoon Kang. Reaction of ferritin with hydrogen peroxide induces lipid peroxidation. BMB reports. 2010 Mar; 43(3):219-24. doi: 10.5483/bmbrep.2010.43.3.219. [PMID: 20356464]
  • Stefanie Geissler, Madlen Zwarg, Ilka Knütter, Fritz Markwardt, Matthias Brandsch. The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters. The FEBS journal. 2010 Feb; 277(3):790-5. doi: 10.1111/j.1742-4658.2009.07528.x. [PMID: 20067523]
  • M Tanida, J Shen, D Kubomura, K Nagai. Effects of anserine on the renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Physiological research. 2010; 59(2):177-185. doi: 10.33549/physiolres.931623. [PMID: 19537934]
  • Shozo Tomonaga, Toru Hayakawa, Haruka Yamane, Hirohiko Maemura, Mikako Sato, Yoshihisa Takahata, Fumiki Morimatsu, Mitsuhiro Furuse. Oral administration of chicken breast extract increases brain carnosine and anserine concentrations in rats. Nutritional neuroscience. 2007 Jun; 10(3-4):181-6. doi: 10.1080/10284150701587338. [PMID: 18019400]
  • Giulio Vistoli, Alessandro Pedretti, Matteo Cattaneo, Giancarlo Aldini, Bernard Testa. Homology modeling of human serum carnosinase, a potential medicinal target, and MD simulations of its allosteric activation by citrate. Journal of medicinal chemistry. 2006 Jun; 49(11):3269-77. doi: 10.1021/jm0602099. [PMID: 16722645]
  • Benjamin S Szwergold. Intrinsic toxicity of glucose, due to non-enzymatic glycation, is controlled in-vivo by deglycation systems including: FN3K-mediated deglycation of fructosamines and transglycation of aldosamines. Medical hypotheses. 2005; 65(2):337-48. doi: 10.1016/j.mehy.2005.02.017. [PMID: 15922110]
  • Andreimar M Soares, Fábio K Ticli, Silvana Marcussi, Miriam V Lourenço, Ana Helena Januário, Suely V Sampaio, José R Giglio, Bruno Lomonte, Paulo S Pereira. Medicinal plants with inhibitory properties against snake venoms. Current medicinal chemistry. 2005; 12(22):2625-41. doi: 10.2174/092986705774370655. [PMID: 16248818]
  • Shozo Tomonaga, Tetsuya Tachibana, Tomo Takagi, Ei-Suke Saito, Rong Zhang, D Michael Denbow, Mitsuhiro Furuse. Effect of central administration of carnosine and its constituents on behaviors in chicks. Brain research bulletin. 2004 Mar; 63(1):75-82. doi: 10.1016/j.brainresbull.2004.01.002. [PMID: 15121241]
  • Jung Hoon Kang, Kyung Sik Kim, Soo Young Choi, Hyeok Yil Kwon, Moo Ho Won, Tae-Cheon Kang. Carnosine and related dipeptides protect human ceruloplasmin against peroxyl radical-mediated modification. Molecules and cells. 2002 Jun; 13(3):498-502. doi: . [PMID: 12132593]
  • Jung Hoon Kang, Kyung Sik Kim, Soo Young Choi, Hyeok Yil Kwon, Moo Ho Won, Tae-Cheon Kang. Protection by carnosine-related dipeptides against hydrogen peroxide-mediated ceruloplasmin modification. Molecules and cells. 2002 Feb; 13(1):107-12. doi: . [PMID: 11911459]
  • G G Kramarenko, E D Markova, I A Ivanova-Smolenskaya, A A Boldyrev. Peculiarities of carnosine metabolism in a patient with pronounced homocarnosinemia. Bulletin of experimental biology and medicine. 2001 Oct; 132(4):996-9. doi: 10.1023/a:1013687832424. [PMID: 11782804]
  • A Schmidek, T Hare, L Milakofsky, B Nibbio, A Epple. Insulin-like growth factor-I affects amino compounds in the fluids of the chicken embryo. General and comparative endocrinology. 2001 Sep; 123(3):235-43. doi: 10.1006/gcen.2001.7650. [PMID: 11589625]
  • A Pegova, H Abe, A Boldyrev. Hydrolysis of carnosine and related compounds by mammalian carnosinases. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 2000 Dec; 127(4):443-6. doi: 10.1016/s0305-0491(00)00279-0. [PMID: 11281261]
  • S C Huang, J C Kuo. Concentrations and antioxidative activity of anserine and carnosine in poultry meat extracts treated with demineralization and papain. Proceedings of the National Science Council, Republic of China. Part B, Life sciences. 2000 Oct; 24(4):193-201. doi: ". [PMID: 11087072]
  • E A Decker, S A Livisay, S Zhou. A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry. Biokhimiia. 2000 Jul; 65(7):766-70. doi: ". [PMID: 10951093]
  • J F Marín, P Mendiola, M D Hernández, J De Costa, S Zamora. Influence of exercise on plasma and muscle free amino acids in trained rainbow trout. Journal of physiology and biochemistry. 1999 Dec; 55(4):293-9. doi: NULL. [PMID: 10731080]
  • A A Boldyrev. [Carnosine metabolism in excitable tissues: biological significance]. Vestnik Rossiiskoi akademii meditsinskikh nauk. 1995; ?(6):3-7. doi: . [PMID: 7626994]
  • W K Chan, E A Decker, C K Chow, G A Boissonneault. Effect of dietary carnosine on plasma and tissue antioxidant concentrations and on lipid oxidation in rat skeletal muscle. Lipids. 1994 Jul; 29(7):461-6. doi: 10.1007/bf02578242. [PMID: 7968266]
  • X Shi, N S Dalal, K S Kasprzak. Generation of free radicals from model lipid hydroperoxides and H2O2 by Co(II) in the presence of cysteinyl and histidyl chelators. Chemical research in toxicology. 1993 May; 6(3):277-83. doi: 10.1021/tx00033a005. [PMID: 8318649]
  • M Dunnett, R C Harris. Determination of carnosine and other biogenic imidazoles in equine plasma by isocratic reversed-phase ion-pair high-performance liquid chromatography. Journal of chromatography. 1992 Aug; 579(1):45-53. doi: 10.1016/0378-4347(92)80361-s. [PMID: 1447350]
  • K Teahon, J M Rideout. A sensitive and specific high performance liquid chromatographic assay for imidazole dipeptides and 3-methylhistidine in human muscle biopsies, serum and urine. Biomedical chromatography : BMC. 1992 Jan; 6(1):16-9. doi: 10.1002/bmc.1130060106. [PMID: 1600369]
  • P J Quinn, A A Boldyrev, V E Formazuyk. Carnosine: its properties, functions and potential therapeutic applications. Molecular aspects of medicine. 1992; 13(5):379-444. doi: 10.1016/0098-2997(92)90006-l. [PMID: 9765790]
  • M C Jackson, C M Kucera, J F Lenney. Purification and properties of human serum carnosinase. Clinica chimica acta; international journal of clinical chemistry. 1991 Feb; 196(2-3):193-205. doi: 10.1016/0009-8981(91)90073-l. [PMID: 1903095]
  • H Abe. Interorgan transport and catabolism of carnosine and anserine in rainbow trout. Comparative biochemistry and physiology. B, Comparative biochemistry. 1991; 100(4):717-20. doi: 10.1016/0305-0491(91)90279-m. [PMID: 1782756]
  • A A Boldyrev, S E Severin. The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Advances in enzyme regulation. 1990; 30(?):175-94. doi: 10.1016/0065-2571(90)90017-v. [PMID: 2206021]
  • O I Aruoma, M J Laughton, B Halliwell. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo?. The Biochemical journal. 1989 Dec; 264(3):863-9. doi: 10.1042/bj2640863. [PMID: 2559719]
  • R Kohen, Y Yamamoto, K C Cundy, B N Ames. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proceedings of the National Academy of Sciences of the United States of America. 1988 May; 85(9):3175-9. doi: 10.1073/pnas.85.9.3175. [PMID: 3362866]
  • A A Boldyrev, A M Dupin, E V Pindel, S E Severin. Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comparative biochemistry and physiology. B, Comparative biochemistry. 1988; 89(2):245-50. doi: 10.1016/0305-0491(88)90218-0. [PMID: 3356133]
  • A M Dupin, M Bemanandzara, S L Stvolinskiĭ, A A Boldyrev, S E Severin. [Muscle dipeptides--natural inhibitors of lipid peroxidation]. Biokhimiia (Moscow, Russia). 1987 May; 52(5):782-7. doi: ". [PMID: 3496121]
  • A A Boldyrev. [Biological role of histidine-containing dipeptides]. Biokhimiia (Moscow, Russia). 1986 Dec; 51(12):1930-43. doi: ". [PMID: 3542058]
  • R A Clemens, J D Kopple, M E Swendseid. Metabolic effects of histidine-deficient diets fed to growing rats by gastric tube. The Journal of nutrition. 1984 Nov; 114(11):2138-46. doi: 10.1093/jn/114.11.2138. [PMID: 6491766]
  • T Biegański, Z Osińska, C Masliński. Inhibition of plant and mammalian diamine oxidase by substrate analogues. Agents and actions. 1982 Apr; 12(1-2):41-6. doi: 10.1007/bf01965104. [PMID: 6805264]
  • T Undrum, H Lunde, L R Gjessing. Determination of ophidine in human urine. Journal of chromatography. 1982 Jan; 227(1):53-9. doi: 10.1016/s0378-4347(00)80355-2. [PMID: 7056822]
  • H Lunde, O Sjaastad, L Gjessing. Homocarnosinosis: hypercarnosinuria. Journal of neurochemistry. 1982 Jan; 38(1):242-5. doi: 10.1111/j.1471-4159.1982.tb10876.x. [PMID: 7108529]
  • L D Fleisher, D K Rassin, K Wisniewski, H R Salwen. Carnosinase deficiency: a new variant with high residual activity. Pediatric research. 1980 Apr; 14(4 Pt 1):269-71. doi: 10.1203/00006450-198004000-00001. [PMID: 7375183]
  • C E Brown, W E Antholine. Evidence that carnosine and anserine may participate in Wilson's disease. Biochemical and biophysical research communications. 1980 Jan; 92(2):470-7. doi: 10.1016/0006-291x(80)90357-5. [PMID: 6243942]
  • J F Lenney, M H Baslow, G H Sugiyama. Similarity of tuna N-acetylhistidine deacetylase and cod fish anserinase. Comparative biochemistry and physiology. B, Comparative biochemistry. 1978; 61(2):253-8. doi: 10.1016/0305-0491(78)90171-2. [PMID: 318374]
  • N Tamaki, M Harada, T Hama. Effect of dietary methionine level on anserine and carnosine contents in the gastrocnemius muscle of rat. Journal of nutritional science and vitaminology. 1978; 24(3):279-87. doi: 10.3177/jnsv.24.279. [PMID: 690729]
  • N Tamaki, F Tsunemori, M Wakabayashi, T Hama. Effect of histidine-free and -excess diets on anserine and carnosine contents in rat gastrocnemius muscle. Journal of nutritional science and vitaminology. 1977; 23(4):331-40. doi: 10.3177/jnsv.23.331. [PMID: 915562]
  • S Fiocca, A Basilico, G Vago. [Automatic method for determination of serum antistreptolysin]. Quaderni Sclavo di diagnostica clinica e di laboratorio. 1975 Sep; 11(3):696-702. doi: NULL. [PMID: 3821]
  • T Fukushima. [Monoamine oxidase (XXXVI). Characteristics of benzylamine oxidase in the dog serum]. Nihon yakurigaku zasshi. Folia pharmacologica Japonica. 1975 Jul; 71(5):457-62. doi: . [PMID: 280]
  • A G Datta, B Abrams, T Sasaki, J W van den Berg, S Pontremoli, B L Horecker. The activation of rabbit muscle, liver, and kidney fructose bisphosphatases by histidine and citrate. Archives of biochemistry and biophysics. 1974 Dec; 165(2):641-5. doi: 10.1016/0003-9861(74)90292-6. [PMID: 4216302]
  • J H BUTT, B FLESHLER. ANSERINE, A SOURCE OF 1-METHYLHISTIDINE IN URINE OF MAN. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.). 1965 Mar; 118(?):722-5. doi: 10.3181/00379727-118-29950. [PMID: 14264540]
  • R CROKAERT. [Beta-alanine and its compound in biological media]. Annales de la Societe royale des sciences medicales et naturelles de Bruxelles. 1953; 6(3-4):157-254. doi: NULL. [PMID: 13148948]