Subcellular Location: Cell projection, growth cone

Found 500 associated metabolites.

62 associated genes. ABI1, ABITRAM, ADGRL1, APBB1, APP, ATCAY, AUTS2, C9orf72, CBARP, CCDC120, CDK5, CFL1, CIB1, CPEB4, CRMP1, CYTH2, DBN1, DPYSL3, DSCAM, ELAVL4, EPS8, EXOC3, EXOC6, EXOC8, FGF13, FLNA, FMR1, FRMD7, GDPD5, GPM6A, GPRIN1, HAP1, KIF20B, KIF21A, KIF21B, KLC1, L1CAM, MAPK8IP3, MYO9A, NDRG2, NGEF, NGFR, PALLD, PSEN1, PTPRS, RUFY3, SETX, SHANK2, SHTN1, SIRT2, STMN3, STMN4, SYAP1, TENM2, TIAM2, TOR1A, TSHZ3, TUBB3, UNC5C, USP9X, WHRN, ZPR1

(-)-Arctiin

(3R,4R)-4-[(3,4-dimethoxyphenyl)methyl]-3-[[3-methoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-phenyl]methyl]tetrahydrofuran-2-one

C27H34O11 (534.2101)


Natural compounds from herbs are recognized as an important source of therapeutic agents. Seeking for natural products with high selectivity and less side effects merits considerable efforts. Arctium lappa, also known as burdock, is widely consumed in East Asia, Europe and America to promote well-being for hundreds of years. In Chinese traditional medicine, Arctium lappa (mainly roots, and, to a less extend, seeds and leaves) is an important herbal medicinal preparation. It is commonly used for alleviating symptoms of inflammatory disorders, such as anemopyretic cold, cough, measles, urticaria and furuncle (Shin et al., 2015; Zhao et al., 2009). In addition, Arctium lappa is applied to treat various skin disorders including eczema and acne (Chan et al., 2011; Miglani and Manchanda, 2014). Lignans are the most characteristic phytoconstituents of Arctium lappa. Among them, ATG (Formula:C21H24O6; PubChem CID:64,981) and its glycoside, arctiin are the major bioactive compounds (Fig. 1). ATG, rich in roots and seeds of Arctium lappa, has attracted a great deal of attention due to its prominent therapeutic potential. It possesses many biological activities such as anti-oxidative stress (Lü et al., 2016), anti-cancer (He et al., 2018; Shabgah et al., 2021), anti-virus (Gao et al., 2018a) and anti-inflammation (Hyam et al., 2013; Zhao et al., 2009). Significant curative effects of ATG have been demonstrated on a wide range of human diseases including cancers, autoimmune disorders, chronic diseases, viral infections and other health concerns. The bioactivity of ATG largely depend on its chemical structure. For instance, the chiral carbon atom in the lactone ring is essential for the anti-tumor effect of ATG as (–)-arctigenin exhibits greater tumor suppression effect than (+)-arctigenin (Awale et al., 2014). Furthermore, the dibenzyl butyrolactone is key for the interactions between ATG and proteins. (-)-arctiin is a member of the class of compounds known as lignan glycosides. Lignan glycosides are aromatic polycyclic compounds containing a carbohydrate component glycosidically linked to a lignan moiety. They include 1-aryltetralin lactones (-)-arctiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-arctiin can be found in burdock, which makes (-)-arctiin a potential biomarker for the consumption of this food product. Arctiin is a glycoside and a lignan. Arctiin is a natural product found in Abeliophyllum distichum, Forsythia suspensa, and other organisms with data available. Arctiin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=20362-31-6 (retrieved 2024-06-28) (CAS RN: 20362-31-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity. Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity.

   

Naringenin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0685)


Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Hesperetin 7-neohesperidoside

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1898)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. Constituent of Seville orange peel (Citrus aurantium) and other Citrus subspecies Very bitter flavouring agent. Hesperetin 7-neohesperidoside is found in many foods, some of which are grapefruit/pummelo hybrid, pummelo, citrus, and grapefruit. Hesperetin 7-neohesperidoside is found in citrus. Hesperetin 7-neohesperidoside is a constituent of Seville orange peel (Citrus aurantium) and other Citrus species Very bitter flavouring agent Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

griffonin

(Z)-2-((4R,5S,6S)-4,5-Dihydroxy-6-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-2-en-1-ylidene)acetonitrile

C14H19NO8 (329.1111)


Lithospermoside is a glycoside. Lithospermoside is a natural product found in Tylosema fassoglense, Semiaquilegia adoxoides, and other organisms with data available. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1]. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1].

   

Mesaconitine

[(1S,2R,3R,4R,5R,6S,7S,8R,9R,10S,13R,14R,16S,17S,18R)-8-acetyloxy-5,7,14-trihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-methyl-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecan-4-yl] benzoate

C33H45NO11 (631.2992)


Mesaconitine is a diterpenoid. Mesaconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3]. Mesaconitine is the main active component of genus aconitum plants. IC50 value: Target: in vitro: In HUVECs, 30 microM mesaconitine increased the [Ca(2+)](i) level in the presence of extracellular CaCl(2) and NaCl, and the response was inhibited by KBR7943. Mesaconitine increased intracellular Na(+) concentration level in HUVECs. The [Ca(2+)](i) response by mesaconitine was inhibited by 100 microM D-tubocurarine [1]. Mesaconitine at 30 microM inhibited 3 microM phenylephrine-induced contraction in the endothelium-intact, but not endothelium-denuded, aortic rings [2]. MA promoted the alpha-MT-induced decrease in NE levels in hippocampus, medulla oblongata plus pons and spinal cord [3].

   

Icariin

5-hydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C33H40O15 (676.2367)


Icariin is a member of the class of flavonols that is kaempferol which is substituted at position 8 by a 3-methylbut-2-en-1-yl group and in which the hydroxy groups at positions 3, 4, and 7 have been converted to the corresponding 6-deoxy-alpha-L-mannopyranoside, methyl ether, and beta-D-glucopyranoside, respectively. A phoshphodiesterase-5 inhibitor, it is obtained from several species of plants in the genus Epimedium and is thought to be the main active ingredient of the Chinese herbal medicine Herba Epimedii (yinyanghuo). It has a role as a bone density conservation agent, a phytoestrogen, an EC 3.1.4.35 (3,5-cyclic-GMP phosphodiesterase) inhibitor and an antioxidant. It is a glycosyloxyflavone and a member of flavonols. Icariin has been investigated for the basic science of the Pharmacokinetic Profile of Icariin in Humans. Icariin is a natural product found in Epimedium pubescens, Epimedium grandiflorum, and other organisms with data available. Origin: Plant, Pyrans Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.077 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.073 Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator.

   

Capsaicin

(E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide

C18H27NO3 (305.1991)


Capsaicin is a capsaicinoid. It has a role as a non-narcotic analgesic, a voltage-gated sodium channel blocker and a TRPV1 agonist. Capsaicin is most often used as a topical analgesic and exists in many formulations of cream, liquid, and patch preparations of various strengths; however, it may also be found in some dietary supplements. Capsaicin is a naturally-occurring botanical irritant in chili peppers, synthetically derived for pharmaceutical formulations. The most recent capsaicin FDA approval was Qutenza, an 8\\\\\\% capsaicin patch dermal-delivery system, indicated for neuropathic pain associated with post-herpetic neuralgia. Capsaicin is a natural product found in Capsicum pubescens, Capsicum, and Capsicum annuum with data available. Capsaicin is a chili pepper extract with analgesic properties. Capsaicin is a neuropeptide releasing agent selective for primary sensory peripheral neurons. Used topically, capsaicin aids in controlling peripheral nerve pain. This agent has been used experimentally to manipulate substance P and other tachykinins. In addition, capsaicin may be useful in controlling chemotherapy- and radiotherapy-induced mucositis. Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (A7835). An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. See also: Capsicum (part of); Capsicum Oleoresin (active moiety of); Paprika (part of) ... View More ... Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (PMID: 8621114). M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AB - Capsaicin and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic Flavouring ingredient. Pungent principle of various Capsicum subspecies (Solanaceae) D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D003879 - Dermatologic Agents > D000982 - Antipruritics Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.208 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.207 Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2].

   

Glycocholic acid

((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine;Glycocholic acid

C26H43NO6 (465.309)


Glycocholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. Bacteroides, Bifidobacterium, Clostridium and Lactobacillus are involved in bile acid metabolism and produce glycocholic acid (PMID: 6265737; 10629797). In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). More specifically, glycocholic acid or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. Its anion is called glycocholate. As the glycine conjugate of cholic acid, this compound acts as a detergent to solubilize fats for absorption and is itself absorbed (PubChem). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Glycocholic acid is found to be associated with alpha-1-antitrypsin deficiency, which is an inborn error of metabolism. Glycocholic acid is a bile acid glycine conjugate having cholic acid as the bile acid component. It has a role as a human metabolite. It is functionally related to a cholic acid and a glycochenodeoxycholic acid. It is a conjugate acid of a glycocholate. Glycocholic acid is a natural product found in Caenorhabditis elegans and Homo sapiens with data available. The glycine conjugate of CHOLIC ACID. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycocholic acid, or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. It is a conjugate of cholic acid with glycine. Its anion is called glycocholate. [Wikipedia] A bile acid glycine conjugate having cholic acid as the bile acid component. Glycocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=475-31-0 (retrieved 2024-07-01) (CAS RN: 475-31-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

Isoalantolactone

Naphtho(2,3-b)furan-2(3H)-one, decahydro-8a-methyl-3,5-bis(methylene)-, (3aR-(3a alpha,4a alpha,8a beta,9a alpha))-

C15H20O2 (232.1463)


Isoalantolactone is a sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. It has a role as an apoptosis inducer, an antifungal agent and a plant metabolite. It is a sesquiterpene lactone and a eudesmane sesquiterpenoid. Isoalantolactone is a natural product found in Eupatorium cannabinum, Critonia quadrangularis, and other organisms with data available. Isoalantolactone is found in herbs and spices. Isoalantolactone is a constituent of the essential oil of Inula helenium (elecampane) Constituent of the essential oil of Inula helenium (elecampane). Isoalantolactone is found in herbs and spices. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

Aconitine

(1S,2R,3R,4R,5R,6S,7S,8R,9R,13R,14R,16S,17S,18R)-8-(acetyloxy)-11-ethyl-5,7,14-trihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1^{2,5}.0^{1,10}.0^{3,8}.0^{13,17}]nonadecan-4-yl benzoate

C34H47NO11 (645.3149)


D049990 - Membrane Transport Modulators > D062687 - Sodium Channel Agonists > D061585 - Voltage-Gated Sodium Channel Agonists D007155 - Immunologic Factors Aconitine is a diterpenoid that is 20-ethyl-3alpha,13,15alpha-trihydroxy-1alpha,6alpha,16beta-trimethoxy-4-(methoxymethyl)aconitane-8,14alpha-diol having acetate and benzoate groups at the 8- and 14-positions respectively. It is functionally related to an aconitane. Aconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Aconitine is a plant toxin found in species of wolfsbane (Aconitum genus). It is a neurotoxin previously used as an antipyretic and analgesic, and still has some limited application in herbal medicine. (L1235). The toxic effects of Aconitine have been tested in a variety of different test animals, including mammals (dog, cat, guinea pig, mouse, rat and rabbit), frogs and pigeons. Depending on the route of exposure, the observed toxic effects were: local anesthetic effect, diarrhea, convulsions, arrhythmias or death. According to a review of different reports of aconite poisoning in humans the following clinical features were observed: Neurological, Cardiovascular, Ventricular arrhythmias, Gastrointestinal. A C19 norditerpenoid alkaloid (DITERPENES) from the root of ACONITUM; DELPHINIUM and larkspurs. It activates VOLTAGE-GATED SODIUM CHANNELS. It has been used to induce ARRHYTHMIAS in experimental animals and it has anti-inflammatory and anti-neuralgic properties. See also: Aconitum coreanum root (part of). Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2309

   

Tetrahydropalmatine

(13aS)-2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline

C21H25NO4 (355.1783)


Tetrahydropalmatine is a berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. It has a role as an adrenergic agent, a non-narcotic analgesic and a dopaminergic antagonist. It is a berberine alkaloid, an organic heterotetracyclic compound and an an (S)-7,8,13,14-tetrahydroprotoberberine. It is functionally related to a palmatine. Tetrahydropalmatine is under investigation in clinical trial NCT02118610 (Treatment of Schizophrenia With L-tetrahydropalmatine (l-THP): a Novel Dopamine Antagonist With Anti-inflammatory and Antiprotozoal Activity). Tetrahydropalmatine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. Tetrahydropalmatine (THP) is an isoquinoline alkaloid found in several different plant species, mainly in the genus Corydalis (Yan Hu Suo),[1][2] but also in other plants such as Stephania rotunda.[3] These plants have traditional uses in Chinese herbal medicine. The pharmaceutical industry has synthetically produced the more potent enantiomer Levo-tetrahydropalmatine (Levo-THP), which has been marketed worldwide under different brand names as an alternative to anxiolytic and sedative drugs of the benzodiazepine group and analgesics such as opiates. It is also sold as a dietary supplement. In 1940, a Vietnamese scientist Sang Dinh Bui extracted an alkaloid from the root of Stephania rotunda with the yield of 1.2–1.5\\\\\\\% and he named this compound rotundine. From 1950 to 1952, two Indian scientists studied and extracted from Stephania glabra another alkaloid named hyndanrine. In 1965, the structure of rotundine and hyndarin was proved to be the same as tetrahydropalmatine. Tetrahydropalmatine has been demonstrated to possess analgesic effects and may be beneficial in the treatment of heart disease and liver damage.[5][6] It is a blocker of voltage-activated L-type calcium channel active potassium channels.[citation needed] It is a potent muscle relaxant.[citation needed] It has also shown potential in the treatment of drug addiction to both cocaine and opiates, and preliminary human studies have shown promising results.[7][8][9] The pharmacological profile of l-THP includes antagonism of dopamine D1, and D2 receptors as well as actions at dopamine D3, alpha adrenergic and serotonin receptors. The Ki values for l-THP at D1 and D2 dopamine receptors are approximately 124 nM (D1) and 388 nM (D2). In addition to the antagonism of post-synaptic dopamine receptors, the blockade of pre-synaptic autoreceptors by l-THP results in increased dopamine release, and it has been suggested that lower affinity of l-THP for D2 receptors may confer some degree of autoreceptor selectivity. Along with dopamine receptors, l-THP has been reported to interact with a number of other receptor types, including alpha-1 adrenergic receptors, at which it functions as an antagonist, and GABA-A receptors, through positive allosteric modulation. Additionally, l-THP displays significant binding to 5-HT1A and alpha-2 adrenergic receptors. In the case of 5-HT1A receptors, l-THP binds with a Ki of approximately 340 nM.[10] Animal experiments have shown that the sedative effect of THP results from blocking dopaminergic neurons in the brain. Dopamine is an important neurotransmitter in the central nervous system where it occurs in several important signaling systems that regulate muscular activity and attention, as well as feelings of joy, enthusiasm, and creativity. Therefore, THP causes no feelings of euphoria, and has been seen as an alternative to addictive drugs for people suffering from anxiety and pain, and as a possibility for relief for people not helped by existing drugs.[citation needed] Several cases of poisoning related to THP have been reported.[11] These cases involved negative effects on respiration, cardiac activity, and the nervous system. In addition, chronic hepatitis has been reported, caused by THP production in East Asia under conditions that were insufficiently sterile. Fatalities started to be reported in 1999 in cases where THP had been used in combination with other drugs having analgesic and anti-anxiety effects. All 1999 deaths could be tied to a single THP-based supplement, sold under the name "Jin Bu Huan Anodyne Tablets". Toxicity with even Jin Bu Huan has been reported.[12] This product was therefore blacklisted by US and European health authorities. In some other countries, such as Singapore, THP is treated as a controlled substance, and license is required to sell it.[citation needed] Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].

   

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O11 (450.1162)


Astilbin is a flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as a radical scavenger, an anti-inflammatory agent and a plant metabolite. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a flavanone glycoside, a monosaccharide derivative and a member of 4-hydroxyflavanones. It is functionally related to a (+)-taxifolin. It is an enantiomer of a neoastilbin. Astilbin is a natural product found in Smilax corbularia, Rhododendron simsii, and other organisms with data available. Astilbin is a metabolite found in or produced by Saccharomyces cerevisiae. Astilbin is found in alcoholic beverages. Astilbin is a constituent of Vitis vinifera (wine grape).Astilbin is a flavanonol, a type of flavonoid. It can be found in St Johns wort (Hypericum perforatum, Clusiaceae, subfamily Hypericoideae, formerly often considered a full family Hypericaceae), in Dimorphandra mollis (Fava danta, Fabaceae), in the the leaves of Harungana madagascariensis (Hypericaceae), in the rhizome of Astilbe thunbergii, in the root of Astilbe odontophylla(Saxifragaceae) and in the rhizone of Smilax glabra (Chinaroot, Smilacaceae). A flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Constituent of Vitis vinifera (wine grape) Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3].

   

Schizandrin

3,4,5,14,15,16-hexamethoxy-9,10-dimethyltricyclo[10.4.0.0²,⁷]hexadeca-1(16),2,4,6,12,14-hexaen-9-ol

C24H32O7 (432.2148)


A polyphenol metabolite detected in biological fluids [PhenolExplorer] Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3]. Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3].

   

L-Tyrosine

(2S)-2-amino-3-(4-hydroxyphenyl)propanoic acid

C9H11NO3 (181.0739)


Tyrosine (Tyr) or L-tyrosine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tyrosine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tyrosine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tyrosine is a non-essential amino acid, meaning the body can synthesize it – usually from phenylalanine. The conversion of phenylalanine to tyrosine is catalyzed by the enzyme phenylalanine hydroxylase, a monooxygenase. This enzyme catalyzes the reaction causing the addition of a hydroxyl group to the end of the 6-carbon aromatic ring of phenylalanine, such that it becomes tyrosine. Tyrosine is found in many high-protein food products such as chicken, turkey, fish, milk, yogurt, cottage cheese, cheese, peanuts, almonds, pumpkin seeds, sesame seeds, soy products, lima beans, avocados and bananas. Tyrosine is one of the few amino acids that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, including thyroid hormones (diiodotyrosine), catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism have been identified, such as hawkinsinuria and tyrosinemia I. The most common feature of these diseases is the increased amount of tyrosine in the blood, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements can help reverse these disease symptoms. Some adults also develop elevated tyrosine in their blood. This typically indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can help aleviate biochemical depression. However, tyrosine may not be good for treating psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-Dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-Dopa (http://www.dcnutrition.com). In addition to its role as a precursor for neurotransmitters, tyrosine plays an important role for the function of many proteins. Within many proteins or enzymes, certain tyrosine residues can be tagged (at the hydroxyl group) with a phosphate group (phosphorylated) by specialized protein kinases. In its phosphorylated form, tyrosine is called phosphotyrosine. Tyrosine phosphorylation is considered to be one of the key steps in signal transduction and regulation of enzymatic activity. Tyrosine (or its precursor phenylalanine) is also needed to synthesize the benzoquinone structure which forms part of coenzyme Q10. L-tyrosine is an optically active form of tyrosine having L-configuration. It has a role as an EC 1.3.1.43 (arogenate dehydrogenase) inhibitor, a nutraceutical, a micronutrient and a fundamental metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tyrosine and a L-alpha-amino acid. It is functionally related to a L-tyrosinal. It is a conjugate base of a L-tyrosinium. It is a conjugate acid of a L-tyrosinate(1-). It is an enantiomer of a D-tyrosine. It is a tautomer of a L-tyrosine zwitterion. Tyrosine is a non-essential amino acid. In animals it is synthesized from [phenylalanine]. It is also the precursor of [epinephrine], thyroid hormones, and melanin. L-Tyrosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). L-Tyrosine is the levorotatory isomer of the aromatic amino acid tyrosine. L-tyrosine is a naturally occurring tyrosine and is synthesized in vivo from L-phenylalanine. It is considered a non-essential amino acid; however, in patients with phenylketonuria who lack phenylalanine hydroxylase and cannot convert phenylalanine into tyrosine, it is considered an essential nutrient. In vivo, tyrosine plays a role in protein synthesis and serves as a precursor for the synthesis of catecholamines, thyroxine, and melanin. Tyrosine is an essential amino acid that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, thyroid, catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism occur. Most common is the increased amount of tyrosine in the blood of premature infants, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements reverse the disease. Some adults also develop elevated tyrosine in their blood. This indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can cure biochemical depression. However, tyrosine may not be good for psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-dopa. A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. Dietary supplement, nutrient. Flavouring ingredient. L-Tyrosine is found in many foods, some of which are blue crab, sweet rowanberry, lemon sole, and alpine sweetvetch. An optically active form of tyrosine having L-configuration. L-Tyrosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-18-4 (retrieved 2024-07-01) (CAS RN: 60-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.

   

Ginsenoside F1

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[(2S)-6-methyl-2-[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,6,12-trihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]hept-5-en-2-yl]oxyoxane-3,4,5-triol

C36H62O9 (638.4394)


Ginsenoside F1 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite and an apoptosis inhibitor. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a 6alpha-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside F1 is a natural product found in Panax ginseng, Panax notoginseng, and Gynostemma yixingense with data available. Ginsenoside F1 is found in tea. Ginsenoside F1 is isolated from Panax species. Isolated from Panax subspecies Ginsenoside F1 is found in tea. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity.

   

Hirsutine

INDOLO(2,3-A)QUINOLIZINE-2-ACETIC ACID, 3-ETHYL-1,2,3,4,6,7,12,12B-OCTAHYDRO-.ALPHA.-(METHOXYMETHYLENE)-, METHYL ESTER, (.ALPHA.E,2S,3R,12BR)-

C22H28N2O3 (368.21)


Annotation level-1 Hirsutine is a natural product found in Uncaria tomentosa, Mitragyna hirsuta, and other organisms with data available. See also: Cats Claw (part of).

   

Genkwanin

5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C16H12O5 (284.0685)


Genkwanin, also known as 5,4-dihydroxy-7-methoxyflavone or 7-methylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, genkwanin is considered to be a flavonoid lipid molecule. Genkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Genkwanin is a bitter tasting compound and can be found in a number of food items such as winter savory, sweet basil, rosemary, and common sage, which makes genkwanin a potential biomarker for the consumption of these food products. Genkwanin is an O-methylated flavone, a type of flavonoid. It can be found in the seeds of Alnus glutinosa, and the leaves of the ferns Notholaena bryopoda and Asplenium normale . Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Nicotine

(S)-(-)-NICOTINE; 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE

C10H14N2 (162.1157)


Nicotine is an alkaloid found in the nightshade family of plants (Solanaceae), predominantly in tobacco and in lower quantities in tomato, potato, eggplant (aubergine), and green pepper. Nicotine alkaloids are also found in the leaves of the coca plant. Nicotine constitutes 0.3 to 5\\\% of the tobacco plant by dry weight, with biosynthesis taking place in the root and accumulation in the leaves. It is a potent neurotoxin with particular specificity to insects; therefore nicotine was widely used as an insecticide in the past and nicotine derivatives such as imidacloprid continue to be widely used. It has been noted that the majority of people diagnosed with schizophrenia smoke tobacco. Estimates for the number of schizophrenics that smoke range from 75\\\% to 90\\\%. It was recently argued that the increased level of smoking in schizophrenia may be due to a desire to self-medicate with nicotine. More recent research has found the reverse: it is a risk factor without long-term benefit, used only for its short-term effects. However, research on nicotine as administered through a patch or gum is ongoing. As nicotine enters the body, it is distributed quickly through the bloodstream and can cross the blood-brain barrier. On average, it takes about seven seconds for the substance to reach the brain. The half-life of nicotine in the body is around 2 hours. The amount of nicotine inhaled with tobacco smoke is a fraction of the amount contained in the tobacco leaves (most of the substance is destroyed by the heat). The amount of nicotine absorbed by the body from smoking depends on many factors, including the type of tobacco, whether the smoke is inhaled, and whether a filter is used. For chewing tobacco, often called dip, snuff, or sinus, which is held in the mouth between the lip and gum, the amount released into the body tends to be much greater than smoked tobacco. The currently available literature indicates that nicotine, on its own, does not promote the development of cancer in healthy tissue and has no mutagenic properties. Its teratogenic properties have not yet been adequately researched, and while the likelihood of birth defects caused by nicotine is believed to be very small or nonexistent, nicotine replacement product manufacturers recommend consultation with a physician before using a nicotine patch or nicotine gum while pregnant or nursing. However, nicotine and the increased acetylcholinic activity it causes have been shown to impede apoptosis, which is one of the methods by which the body destroys unwanted cells (programmed cell death). Since apoptosis helps to remove mutated or damaged cells that may eventually become cancerous, the inhibitory actions of nicotine create a more favourable environment for cancer to develop. Thus, nicotine plays an indirect role in carcinogenesis. It is also important to note that its addictive properties are often the primary motivating factor for tobacco smoking, contributing to the proliferation of cancer. Nicotine is a highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a hygroscopic, oily liquid that is miscible with water in its base form. As a nitrogenous base, nicotine forms salts with acids that are usually solid and water soluble. Nicotine easily penetrates the skin. As shown by the physical data, free base nicotine will burn at a temperature below its boiling point, and its vapours will combust at 95 °C in the air despite a low vapour pressure. Because of this, most nicotine is burned when a cigarette is smoked; however, enough is inhaled to provide the desired effects. Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nic... Nicotine appears as a colorless to light yellow or brown liquid. Combustible. Toxic by inhalation and by skin absorption. Produces toxic oxides of nitrogen during combustion. (S)-nicotine is a 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum. It has a role as a phytogenic insecticide, a teratogenic agent, a neurotoxin, an anxiolytic drug, a nicotinic acetylcholine receptor agonist, a biomarker, an immunomodulator, a mitogen, a peripheral nervous system drug, a psychotropic drug, a plant metabolite and a xenobiotic. It is a conjugate base of a (S)-nicotinium(1+). It is an enantiomer of a (R)-nicotine. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a Cholinergic Nicotinic Agonist. Nicotine is a natural alkyloid that is a major component of cigarettes and is used therapeutically to help with smoking cessation. Nicotine has not been associated with liver test abnormalities or with clinically apparent hepatotoxicity. Nicotine is a natural product found in Cyphanthera tasmanica, Nicotiana cavicola, and other organisms with data available. Nicotine is a plant alkaloid, found in the tobacco plant, and addictive central nervous system (CNS) stimulant that causes either ganglionic stimulation in low doses or ganglionic blockage in high doses. Nicotine acts as an agonist at the nicotinic cholinergic receptors in the autonomic ganglia, at neuromuscular junctions, and in the adrenal medulla and the brain. Nicotines CNS-stimulating activities may be mediated through the release of several neurotransmitters, including acetylcholine, beta-endorphin, dopamine, norepinephrine, serotonin, and ACTH. As a result, peripheral vasoconstriction, tachycardia, and elevated blood pressure may be observed with nicotine intake. This agent may also stimulate the chemoreceptor trigger zone, thereby inducing nausea and vomiting. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. See also: Tobacco Leaf (part of); Nicotine Polacrilex (related); Menthol; nicotine (component of) ... View More ... Alkaloid from Nicotiana tabacum and other Nicotiana subspecies, Asclepias syriaca, Lycopodium subspecies, and other subspecies (Solanaceae, Asclepiadaceae, Crassulaceae). Rare spread of occurrence between angiosperms and cryptogametes (CCD) A 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum.

   

Aconine

(1S,2R,3R,4R,5R,6S,7S,8R,9R,13R,14R,16S,17S,18R)-11-ethyl-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecane-4,5,7,8,14-pentol

C25H41NO9 (499.2781)


A diterpene alkaloid with formula C25H41NO9 that is isolated from several Aconitum species. Aconine is a diterpene alkaloid with formula C25H41NO9 that is isolated from several Aconitum species. It has a role as a plant metabolite, a human urinary metabolite, a NF-kappaB inhibitor and a xenobiotic. It is a bridged compound, a diterpene alkaloid, an organic heteropolycyclic compound, a polyether, a tertiary amino compound, a pentol, a secondary alcohol and a tertiary alcohol. It derives from a hydride of an aconitane. Jesaconine is a natural product found in Euglena gracilis, Aconitum, and Aconitum pendulum with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation. Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation.

   

Talatizamine

(3S,6S,6aS,8S,9S,10S,11aS,12S)-1-ethyl-6,10-dimethoxy-3-(methoxymethyl)tetradecahydro-1H-3,6a,12-(epiethane[1,1,2]triyl)-7,9-methanonaphtho[2,3-b]azocine-8,11a-diol

C24H39NO5 (421.2828)


Talatizamine is a diterpenoid. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Talatisamine, a aconitum alkaloid, is specific K+ channel blocker. Talatisamine attenuates beta-amyloid oligomers induced neurotoxicity in cultured cortical neurons[1]. Talatisamine, a aconitum alkaloid, is specific K+ channel blocker. Talatisamine attenuates beta-amyloid oligomers induced neurotoxicity in cultured cortical neurons[1].

   

Protodioscin

2-[(4-hydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C51H84O22 (1048.5454)


Protodioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. It has a role as a metabolite. It is a steroid saponin, a trisaccharide derivative, a beta-D-glucoside, a pentacyclic triterpenoid and a cyclic hemiketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Protodioscin is a natural product found in Dracaena draco, Borassus flabellifer, and other organisms with data available. See also: Fenugreek seed (part of). Asparasaponin I is found in fenugreek. Asparasaponin I is a bitter principle from white asparagus shoots (Asparagus officinalis) and fenugreek (Trigonella foenum-graecum From Asparagus officinalis (asparagus) Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.

   

L-2-Amino-3-(oxalylamino)propanoic acid

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


L-2-Amino-3-(oxalylamino)propanoic acid is found in grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is isolated from Panax notoginseng (sanchi Isolated from Panax notoginseng (sanchi). L-2-Amino-3-(oxalylamino)propanoic acid is found in tea and grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is an alpha-amino acid. N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

10-HCPT

(19S)-19-ethyl-7,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0^{2,11}.0^{4,9}.0^{15,20}]henicosa-1(21),2(11),3,5,7,9,15(20)-heptaene-14,18-dione

C20H16N2O5 (364.1059)


10-Hydroxycamptothecin is a pyranoindolizinoquinoline. 10-hydroxycamptothecin is under investigation in clinical trial NCT00956787 (Study of AR-67 (DB-67) in Myelodysplastic Syndrome (MDS)). 10-Hydroxycamptothecin is a natural product found in Nothapodytes nimmoniana, Camptotheca acuminata, and Fusarium solani with data available. D000970 - Antineoplastic Agents (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4]. (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4].

   

Melamine

2,4,6-triamino-1,3,5-triazine;melamine;1,3,5-triazine-2,4,6-triamine;[1,3,5]triazine-2,4,6-triamine;s-triazine, 4,6-diamino-1,2-dihydro-2-imino-;2,4,6-triamino-1,3,5-triazine melamine 1,3,5-triazine-2,4,6-triamine [1,3,5]triazine-2,4,6-triamine s-triazine, 4,6-diamino-1,2-dihydro-2-imino-

C3H6N6 (126.0654)


Melamine is an organic base and a trimer of cyanamide, with a 1,3,5-triazine skeleton. Like cyanamide, it contains 66\\\% nitrogen by mass and, if mixed with resins, has fire retardant properties due to its release of nitrogen gas when burned or charred, and has several other industrial uses. Melamine is also a metabolite of cyromazine, a pesticide. It is formed in the body of mammals who have ingested cyromazine. It has been reported that cyromazine can also be converted to melamine in plants. Melamine is combined with formaldehyde to produce melamine resin, a very durable thermosetting plastic used in Formica, and melamine foam, a polymeric cleaning product. The end products include countertops, dry erase boards, fabrics, glues, housewares, dinnerware, cooking spoons, guitar saddles, guitar nuts, acoustic foam paneling, and flame retardants. Melamine is one of the major components in Pigment Yellow 150, a colorant in inks and plastics. Melamine is sometimes illegally added to food products in order to increase the apparent protein content. Standard tests, such as the Kjeldahl and Dumas tests, estimate protein levels by measuring the nitrogen content, so they can be misled by adding nitrogen-rich compounds such as melamine.There is an instrument (SPRINT) developed by the company CEM Corp that allows the determination of protein content directly in some applications; this cannot be fooled by adding melamine in the sample. Ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS) has been developed at ETH Zurich (Switzerland) by Zhu et al., (2008) for a rapid detection of melamine in untreated food samples. Ultrasounds are used to nebulize the melamine-containing liquids into a fine spray. The spray is then ionised by extractive electrospray ionisation (EESI) and analysed using tandem mass spectrometry (MS/MS). An analysis requires 30 seconds per sample. The limit of detection of melamine is a few nanograms of melamine per gram of milk. Crystallization and washing of melamine generates a considerable amount of waste water, which is a pollutant if discharged directly into the environment. The waste water may be concentrated into a solid (1.5-5\\\% of the weight) for easier disposal. The solid may contain approximately 70\\\% melamine, 23\\\% oxytriazines (ammeline, ammelide, and cyanuric acid), 0.7\\\% polycondensates (melem, melam, and melon). In the Eurotecnica process, however, there is no solid waste and the contaminants are decomposed to ammonia and carbon dioxide and sent as off gas to the upstream urea plant; accordingly, the waste water can be recycled to the melamine plant itself or used as clean cooling water make-up. Melamine also enters the fabrication of melamine poly-sulfonate used as superplasticizer for making high-resistance concrete. Sulfonated melamine formaldehyde (SMF) is a polymer used as cement admixture to reduce the water content in concrete while increasing the fluidity and the workability of the mix during its handling and pouring. It results in concrete with a lower porosity and a higher mechanical strength, exhibiting an improved resistance to aggressive environments and a longer life-time. Melamine appears as colorless to white monoclinic crystals or prisms or white powder. Sublimes when gently heated. (NTP, 1992) Melamine is a trimer of cyanamide, with a 1,3,5-triazine skeleton. It has a role as a xenobiotic metabolite. It is functionally related to a cyanamide. It is a conjugate base of a melamine(1+). Melamine is a natural product found in Euglena gracilis, Aeromonas veronii, and Apis cerana with data available. Melamine is an organic base and a trimer of cyanamide, with a 1,3,5-triazine skeleton. Like cyanamide, it contains 66\\\% nitrogen by mass and, if mixed with resins, has fire retardant properties due to its release of nitrogen gas when burned or charred, and has several other industrial uses. Melamine is also a metabolite of cyromazine, a pesticide. It is formed in the body of mammals who have ingested cyromazine. It has been reported that cyromazine can also be converted to melamine in plants. Melamine is described as Harmful if swallowed, inhaled or absorbed through the skin. Chronic exposure may cause cancer or reproductive damage. Eye, skin and respiratory irritant. However, the short-term lethal dose is on a par with common table salt with an LD50 of more than 3 grams per kilogram of bodyweight.[15] U.S. Food and Drug Administration (FDA) scientists explained that when melamine and cyanuric acid are absorbed into the bloodstream, they concentrate and interact in the urine-filled renal tubules, then crystallize and form large numbers of round, yellow crystals, which in turn block and damage the renal cells that line the tubes, causing the kidneys to malfunction. A trimer of cyanamide, with a 1,3,5-triazine skeleton. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3151 CONFIDENCE standard compound; INTERNAL_ID 8699 CONFIDENCE standard compound; INTERNAL_ID 3870 Melamine is a metabolite?of?cyromazine. Melamine is a intermediate for the synthesis of melamine resin and plastic materials[1].

   

Ginsenoside Rg3

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O13 (784.4973)


(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. (20R)-Ginsenoside Rg3 is found in tea. (20R)-Ginsenoside Rg3 is isolated from Panax ginseng (ginseng). D000970 - Antineoplastic Agents 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression.

   

Scopolin

6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one

C16H18O9 (354.0951)


Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].

   

Astragaloside

[(2S,3R,4S,5R)-4,5-dihydroxy-2-[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]oxan-3-yl] acetate

C43H70O15 (826.4714)


Astragaloside II is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of oxolanes, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a cycloastragenol. Astragaloside II is a natural product found in Euphorbia glareosa, Astragalus hoantchy, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside II is a natural compound isolated from Astragalus membranaceus. Astragaloside II is a natural compound isolated from Astragalus membranaceus.

   

Hypaconitine

(3S,6S,6aS,7R,7aR,8R,9R,10S,11S,11aR,12R,13R,14R)-11a-acetoxy-9,11-dihydroxy-6,10,13-trimethoxy-3-(methoxymethyl)-1-methyltetradecahydro-1H-3,6a,12-(epiethane[1,1,2]triyl)-7,9-methanonaphtho[2,3-b]azocin-8-yl benzoate

C33H45NO10 (615.3043)


Hypaconitine is a diterpenoid. Hypaconitine is a natural product found in Aconitum japonicum, Aconitum firmum, and other organisms with data available. Annotation level-1 Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo: Hypaconitine, an active and highly toxic constituent derived from Aconitum species, is widely used to treat rheumatism. IC50 value: Target: In vitro: The present study investigated the metabolism of hypaconitine in vitro using male human liver microsomes. The primary contributors toward HA metabolism were CYP3A4 and 3A5, with secondary contributions by CYP2C19, 2D6 and CYP2E1 [1]. In vivo:

   

Bruceine

(1R,2S,3R,3aR,3a1R,4R,6aR,7aS,11S,11aS,11bR)-1,2,3a,4,11-pentahydroxy-3,8,11a-trimethyl-1,2,3,3a,4,7,7a,11,11a,11b-decahydro-5H-3,3a1-(epoxymethano)dibenzo[de,g]chromene-5,10(6aH)-dione

C20H26O9 (410.1577)


Bruceine D is a quassinoid that is 13,20-epoxypicras-3-ene substituted by hydroxy groups at positions 1, 11, 12, 14 and 15 and oxo groups at positions 2 and 16. Isolated from the ethanol extract of the stem of Brucea mollis, it exhibits cytotoxic activity. It has a role as a metabolite, an antineoplastic agent and a plant metabolite. It is a delta-lactone, a pentol, a quassinoid, an organic heteropentacyclic compound and a secondary alpha-hydroxy ketone. It derives from a hydride of a picrasane. Brucein D is a natural product found in Brucea javanica, Brucea mollis, and Samadera indica with data available. A quassinoid that is 13,20-epoxypicras-3-ene substituted by hydroxy groups at positions 1, 11, 12, 14 and 15 and oxo groups at positions 2 and 16. Isolated from the ethanol extract of the stem of Brucea mollis, it exhibits cytotoxic activity. Bruceine D is a Notch inhibitor with anti-cancer activity and induces apoptosis in several human cancer cells. Bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity[1][2]. Bruceine D has strong anthelmintic activity against D. intermedius with an EC50 value of 0.57 mg/L[3]. Bruceine D is a Notch inhibitor with anti-cancer activity and induces apoptosis in several human cancer cells. Bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity[1][2]. Bruceine D has strong anthelmintic activity against D. intermedius with an EC50 value of 0.57 mg/L[3].

   

Araloside A

(2S,3S,4R,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3-[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxyoxane-2-carboxylic acid

C47H74O18 (926.4875)


Chikusetsusaponin-IV is a triterpenoid saponin. It has a role as a metabolite. Araloside A is a natural product found in Kalopanax septemlobus, Bassia muricata, and other organisms with data available. Araloside A is found in green vegetables. Araloside A is from Aralia elata (Japanese angelica tree From Aralia elata (Japanese angelica tree). Araloside A is found in green vegetables. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].

   

3,4-Dihydro-2H-1-benzopyran-2-one

InChI=1/C9H8O2/c10-9-6-5-7-3-1-2-4-8(7)11-9/h1-4H,5-6H

C9H8O2 (148.0524)


3,4-Dihydro-2H-1-benzopyran-2-one, also known as 3,4-dihydrocoumarin or 1,2-benzodihydropyrone, belongs to the class of organic compounds known as 3,4-dihydrocoumarins. These are 3,4-dihydrogenated coumarins. Coumarin is a bicyclic compound that are 1-benzopyran carrying an oxo group at the 2-position. 3,4-Dihydro-2H-1-benzopyran-2-one exists in all living organisms, ranging from bacteria to humans. 3,4-Dihydro-2H-1-benzopyran-2-one is a sweet, almond, and cinnamon tasting compound. 3,4-Dihydro-2H-1-benzopyran-2-one has been detected, but not quantified, in several different foods, such as green vegetables, pulses, sour cherries, and tarragons. A chromanone that is the 3,4-dihydro derivative of coumarin. 3,4-dihydrocoumarin is a white to pale yellow clear oily liquid with a sweet odor. Solidifies around room temperature. (NTP, 1992) 3,4-dihydrocoumarin is a chromanone that is the 3,4-dihydro derivative of coumarin. It has a role as a plant metabolite. It is functionally related to a coumarin. 3,4-Dihydrocoumarin is a natural product found in Glebionis segetum, Prunus mahaleb, and other organisms with data available. Isolated from Melilotus officinalis (sweet clover). Flavouring ingredient. 3,4-Dihydro-2H-1-benzopyran-2-one is found in many foods, some of which are sour cherry, tarragon, green vegetables, and pulses. A chromanone that is the 3,4-dihydro derivative of coumarin. [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_20eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_30eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_10eV_CB000080.txt Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].

   

Beta-eudesmol

2-Naphthalenemethanol, 1,2.alpha.,3,4,4a,5,6,7,8,8a.alpha.-decahydro-.alpha.,.alpha.,4a.beta.-trimethyl-8-methylene-

C15H26O (222.1984)


Beta-eudesmol is a carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). It has a role as a volatile oil component. It is a carbobicyclic compound, a tertiary alcohol and a eudesmane sesquiterpenoid. beta-Eudesmol is a natural product found in Rhododendron calostrotum, Rhododendron lepidotum, and other organisms with data available. See also: Arctium lappa Root (part of); Cannabis sativa subsp. indica top (part of); Pterocarpus marsupium wood (part of). A carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].

   

1-Octacosanol

OCTACOSANOL (CONSTITUENT OF SAW PALMETTO) [DSC]

C28H58O (410.4487)


1-octacosanol is a white crystalline powder. (NTP, 1992) Octacosan-1-ol is an ultra-long-chain primary fatty alcohol that is octacosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group. It has a role as a plant metabolite. It is a fatty alcohol 28:0 and an ultra-long-chain primary fatty alcohol. It derives from a hydride of an octacosane. 1-octacosanol is a straight-chain aliphatic 28-carbon primary fatty alcohol that is used as a nutritional supplement. This high–molecular-weight organic compound is the main component of a natural product wax extracted from plants. 1-octacosanol is reported to possess cholesterol-lowering effects, antiaggregatory properties, cytoprotective use, and ergogenic properties. It has been studied as a potential therapeutic agent for the treatment of Parkinsons disease. 1-Octacosanol is a natural product found in Ophiopogon intermedius, Prosopis glandulosa, and other organisms with data available. See also: Saw Palmetto (part of). 1-Octacosanol (also known as n-octacosanol, octacosyl alcohol, cluytyl alcohol, montanyl alcohol) is a straight-chain aliphatic 28-carbon primary fatty alcohol that is common in the epicuticular waxes of plants, including the leaves of many species of Eucalyptus, of most forage and cereal grasses, of Acacia, Trifolium, Pisum and many other legume genera among many others, sometimes as the major wax constituent. Octacosanol also occurs in wheat germ. Octacosanol is insoluble in water but freely soluble in low molecular-weight alkanes and in chloroform (CHCl3). 1-Octacosanol is found in many foods, some of which are common beet, black elderberry, red beetroot, and opium poppy. 1-Octacosanol (also known as n-octacosanol, octacosyl alcohol, cluytyl alcohol, montanyl alcohol) is a straight-chain aliphatic 28-carbon primary fatty alcohol that is common in the epicuticular waxes of plants, including the leaves of many species of Eucalyptus, of most forage and cereal grasses, of Acacia, Trifolium, Pisum and many other legume genera among many others, sometimes as the major wax constituent. Octacosanol also occurs in wheat germ. Octacosanol is insoluble in water but freely soluble in low molecular-weight alkanes and in chloroform (CHCl3). 1-Octacosanol is found in apple. An ultra-long-chain primary fatty alcohol that is octacosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group.

   

Cucurbitacin

(1S,2S,4R,6S,9S,10R,11R,14R,15R)-17-hydroxy-6-(2-hydroxypropan-2-yl)-2,9,11,14,19,19-hexamethyl-5-oxapentacyclo[12.8.0.02,11.04,10.015,20]docosa-16,20-diene-8,13,18-trione

C30H42O6 (498.2981)


Cucurbitacin S is an 11-oxo steroid. Cucurbitacin S is a natural product found in Cucurbita foetidissima with data available. Triterpenes that derive from LANOSTEROL by a shift of the C19 methyl to the C9 position. They are found in seeds and roots of CUCURBITACEAE and other plants and are noted for intense bitterness.

   

Astragaloside I

[(2S,3R,4S,5R)-3-acetyloxy-5-hydroxy-2-[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]oxan-4-yl] acetate

C45H72O16 (868.482)


Astragaloside I is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2,3-di-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a triterpenoid saponin, a monosaccharide derivative, a beta-D-glucoside, a member of oxolanes and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astrasieversianin IV is a natural product found in Astragalus hoantchy, Astragalus lehmannianus, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2,3-di-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside I, one of the main active ingredients in Astragalus membranaceus, has osteogenic properties. Astragaloside I stimulates osteoblast differentiation through the Wnt/β-catenin signaling pathway[1]. Astragaloside I, one of the main active ingredients in Astragalus membranaceus, has osteogenic properties. Astragaloside I stimulates osteoblast differentiation through the Wnt/β-catenin signaling pathway[1].

   

Punicic_acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


(9Z,11E,13Z)-octadecatrienoic acid is a 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum). It has a role as an antineoplastic agent and a plant metabolite. Punicic acid is a natural product found in Trichosanthes nervifolia, Punica granatum, and other organisms with data available. Punicic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 5th, 7th and 9th positions from the methyl end, with these three bonds in the cis-, trans- and cis- configurations, respectively. See also: Pomegranate Seed Oil (has part). A 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum).

   

L-Ascorbic acid

(5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one

C6H8O6 (176.0321)


L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-81-7 (retrieved 2024-10-29) (CAS RN: 50-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

(-)-beta-Pinene

Bicyclo(3.1.1)heptane, 6,6-dimethyl-2-methylene-, (1S,5S)-

C10H16 (136.1252)


(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Panaxynol

(CIS)-(-)-3-HYDROXY-1,9-HEPTADECADIEN-4,6-DIYNE

C17H24O (244.1827)


Panaxynol is a long-chain fatty alcohol. It has a role as a metabolite. Falcarinol is a natural product found in Chaerophyllum aureum, Cussonia arborea, and other organisms with data available.

   

dammarenediol

(3S,5R,8R,9R,10R,13R,14R,17S)-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H52O2 (444.3967)


Dammarenediol-II is a tetracyclic triterpenoid that is dammarane which has a double bond between positions 24 and 25, and is substituted by hydroxy groups at the 3beta- and 20- positions. It has a role as a metabolite. It is a tetracyclic triterpenoid, a secondary alcohol and a tertiary alcohol. It derives from a hydride of a dammarane. Dammarenediol II is a natural product found in Olea capensis, Aglaia abbreviata, and other organisms with data available. A tetracyclic triterpenoid that is dammarane which has a double bond between positions 24 and 25, and is substituted by hydroxy groups at the 3beta- and 20- positions.

   

Toralactone

9,10-Dihydroxy-7-methoxy-3-methyl-1H-naphtho[2,3-c]pyran-1-one, 9CI

C15H12O5 (272.0685)


Toralactone is an organic heterotricyclic compound that is 9,10-dihydroxy-1H-benzo[g]isochromen-1-one substituted at positions 3 and 7 by methyl and methoxy groups respectively. It has a role as a plant metabolite. It is an organic heterotricyclic compound, a lactone, a member of phenols, an aromatic ether, a polyketide and a naphtho-alpha-pyrone. It is functionally related to a nor-toralactone. Toralactone is a natural product found in Senna obtusifolia and Senna tora with data available. An organic heterotricyclic compound that is 9,10-dihydroxy-1H-benzo[g]isochromen-1-one substituted at positions 3 and 7 by methyl and methoxy groups respectively. Isolated from seeds of Cassia tora (charota). Toralactone is found in coffee and coffee products, herbs and spices, and pulses. Toralactone is found in coffee and coffee products. Toralactone is isolated from seeds of Cassia tora (charota). Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1]. Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1].

   

Gypenoside LXXV

(beta,12beta)-3,12-dihydroxydammar-24-en-20-yl 6-O-beta-D-glucopyranosyl-beta-D-glucopyranoside

C42H72O13 (784.4973)


Gypenoside LXXV is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid, a 3beta-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Gypenoside LXXV is a natural product found in Gynostemma pentaphyllum with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position.

   

Cernuine

(2E)-2-[(3,4-dihydroxyphenyl)methylidene]-4,6-dihydroxy-2,3-dihydro-1-benzofuran-3-one

C15H10O6 (286.0477)


Aureusidin is a hydroxyaurone that is aurone substituted by hydroxy groups at positions 4, 6, 3 and 4 respectively. It has a role as a plant metabolite. It is functionally related to an aurone. It is a conjugate acid of an aureusidin-6-olate. Aureusidin is a natural product found in Eleocharis dulcis, Eleocharis pallens, and other organisms with data available. Cernuine is found in citrus. Cernuine is isolated from Citrus medica (citron). Isolated from Citrus medica (citron). Cernuine is found in lemon and citrus. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1].

   

2',4',6'-Trihydroxyacetophenone

2 inverted exclamation mark ,4 inverted exclamation mark ,6 inverted exclamation mark -Trihydroxyacetophenone

C8H8O4 (168.0423)


2,4,6-trihydroxyacetophenone is a benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. It has a role as a MALDI matrix material and a plant metabolite. It is a methyl ketone, a benzenetriol and an aromatic ketone. 2,4,6-Trihydroxyacetophenone is a natural product found in Artemisia gypsacea, Daldinia eschscholtzii, and other organisms with data available. A benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. 2,4,6-Trihydroxyacetophenone is found in fruits. 2,4,6-Trihydroxyacetophenone is isolated from bark of Prunus domestica (plum Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].

   

Tropate

Tropicamide impurity C, European Pharmacopoeia (EP) Reference Standard

C9H10O3 (166.063)


Tropic acid is a 3-hydroxy monocarboxylic acid that is propionic acid in which one of the hydrogens at position 2 is substituted by a phenyl group, and one of the methyl hydrogens is substituted by a hydroxy group. It has a role as a human xenobiotic metabolite. It is functionally related to a propionic acid and a hydratropic acid. It is a conjugate acid of a tropate. Tropic acid is a natural product found in Hyoscyamus muticus, Datura stramonium, and other organisms with data available. Tropic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Tropate, also known as Tropic acid or alpha-(Hydroxymethyl)phenylacetic acid, is classified as a beta hydroxy acid or a Beta hydroxy acid derivative. Beta hydroxy acids are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. Tropate is considered to be soluble in water and acidic. Tropate can be synthesized from hydratropic acid and propionic acid. Tropate can be synthesized into tropan-3alpha-yl 3-hydroxy-2-phenylpropanoate A 3-hydroxy monocarboxylic acid that is propionic acid in which one of the hydrogens at position 2 is substituted by a phenyl group, and one of the methyl hydrogens is substituted by a hydroxy group. KEIO_ID T059 Tropic acid (DL-Tropic acid) is a laboratory reagent used in the chemical synthesis of Atropine and Hyoscyamine[1]. Tropic acid (DL-Tropic acid) is a laboratory reagent used in the chemical synthesis of Atropine and Hyoscyamine[1].

   

(-)-Limonene

(S)-(-)-Limonene, purum, >=95.0\\% (sum of enantiomers, GC)

C10H16 (136.1252)


Limonene is a monoterpene with a clear colourless liquid at room temperature, a naturally occurring chemical which is the major component in oil of oranges. Limonene is widely used as a flavour and fragrance and is listed to be generally recognized as safe in food by the Food and Drug Administration (21 CFR 182.60 in the Code of Federal Regulations, U.S.A.). Limonene is a botanical (plant-derived) solvent of low toxicity. Mild skin irritation may occur from exposure to limonene and oxidation products of limonene may produce dermal sensitization, and may have irritative and bronchoconstrictive airway effects; however, data are scant and more studies are required. Limonene has been shown to cause a male rat-specific kidney toxicity referred to as hyaline droplet nephropathy. Furthermore, chronic exposure to limonene causes a significant incidence of renal tubular tumours exclusively in male rats. Limonene is one of the active components of dietary phytochemicals that appears to be protective against cancer (PMID:16563357, 15499193, 15325315, 2024047). (4S)-limonene is an optically active form of limonene having (4S)-configuration. It is an enantiomer of a (4R)-limonene. (-)-Limonene is a natural product found in Poiretia latifolia, Kippistia suaedifolia, and other organisms with data available. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Spearmint Oil (part of). An optically active form of limonene having (4S)-configuration. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1].

   

Dimethyl phthalate

1,2-dimethyl benzene-1,2-dicarboxylate

C10H10O4 (194.0579)


CONFIDENCE standard compound; INTERNAL_ID 978; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10088; ORIGINAL_PRECURSOR_SCAN_NO 10085 ORIGINAL_ACQUISITION_NO 10088; CONFIDENCE standard compound; INTERNAL_ID 978; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 10085 CONFIDENCE standard compound; INTERNAL_ID 978; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10066; ORIGINAL_PRECURSOR_SCAN_NO 10061 CONFIDENCE standard compound; INTERNAL_ID 978; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10132; ORIGINAL_PRECURSOR_SCAN_NO 10128 CONFIDENCE standard compound; INTERNAL_ID 978; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10163; ORIGINAL_PRECURSOR_SCAN_NO 10160 P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3673 CONFIDENCE standard compound; INTERNAL_ID 195 D020011 - Protective Agents D016573 - Agrochemicals D005404 - Fixatives ATC code: P03BX02

   

Alachlor

2-Chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide, 9ci

C14H20ClNO2 (269.1182)


CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9585; ORIGINAL_PRECURSOR_SCAN_NO 9582 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9550; ORIGINAL_PRECURSOR_SCAN_NO 9545 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9512; ORIGINAL_PRECURSOR_SCAN_NO 9510 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9542; ORIGINAL_PRECURSOR_SCAN_NO 9539 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9490; ORIGINAL_PRECURSOR_SCAN_NO 9488 CONFIDENCE standard compound; INTERNAL_ID 803; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9540; ORIGINAL_PRECURSOR_SCAN_NO 9537 Selective preemergent herbicide used on food crop CONFIDENCE standard compound; EAWAG_UCHEM_ID 274 CONFIDENCE standard compound; INTERNAL_ID 3225 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

DIMETHACHLOR

DIMETHACHLOR

C13H18ClNO2 (255.1026)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 707 CONFIDENCE standard compound; INTERNAL_ID 8395 CONFIDENCE standard compound; INTERNAL_ID 3390

   

Fenpropimorph

(2R,6S)-4-[(2S)-3-[4-(1,1-Dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethylmorpholine

C20H33NO (303.2562)


Fenpropimorph (CAS: 67564-91-4) belongs to the class of organic compounds known as phenylpropanes. These are organic compounds containing a phenylpropane moiety. Fenpropimorph is possibly neutral. Fenpropimorph is an agricultural fungicide used against powdery mildews on sugar beets, beans, and leek. Agricultural fungicide used against powdery mildews on sugar beet, beans and leeks CONFIDENCE standard compound; INTERNAL_ID 8406 CONFIDENCE standard compound; INTERNAL_ID 2573 D016573 - Agrochemicals D010575 - Pesticides

   

tolkan

N-(4-(1-methylethyl)phenyl)-N,N-dimethylurea

C12H18N2O (206.1419)


CONFIDENCE standard compound; INTERNAL_ID 33; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8628; ORIGINAL_PRECURSOR_SCAN_NO 8626 CONFIDENCE standard compound; INTERNAL_ID 33; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8663; ORIGINAL_PRECURSOR_SCAN_NO 8661 CONFIDENCE standard compound; INTERNAL_ID 33; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8683; ORIGINAL_PRECURSOR_SCAN_NO 8681 CONFIDENCE standard compound; INTERNAL_ID 33; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8581; ORIGINAL_PRECURSOR_SCAN_NO 8579 CONFIDENCE standard compound; INTERNAL_ID 33; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8616; ORIGINAL_PRECURSOR_SCAN_NO 8615 CONFIDENCE standard compound; INTERNAL_ID 33; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8680; ORIGINAL_PRECURSOR_SCAN_NO 8678 EAWAG_UCHEM_ID 286; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 286 CONFIDENCE standard compound; INTERNAL_ID 3518 CONFIDENCE standard compound; INTERNAL_ID 4005 CONFIDENCE standard compound; INTERNAL_ID 8381 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Linuron

N-(3,4-dichlorophenyl)-N-methoxy-N-methyl urea

C9H10Cl2N2O2 (248.0119)


CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4724; ORIGINAL_PRECURSOR_SCAN_NO 4722 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4711; ORIGINAL_PRECURSOR_SCAN_NO 4707 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4718; ORIGINAL_PRECURSOR_SCAN_NO 4717 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4709; ORIGINAL_PRECURSOR_SCAN_NO 4707 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4732; ORIGINAL_PRECURSOR_SCAN_NO 4729 CONFIDENCE standard compound; INTERNAL_ID 48; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4811; ORIGINAL_PRECURSOR_SCAN_NO 4807 CONFIDENCE standard compound; EAWAG_UCHEM_ID 160 CONFIDENCE standard compound; INTERNAL_ID 8412 CONFIDENCE standard compound; INTERNAL_ID 4031 CONFIDENCE standard compound; INTERNAL_ID 2323 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Goltix

4-amino-3-methyl-6-phenyl-4,5-dihydro-1,2,4-triazin-5-one

C10H10N4O (202.0855)


CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6698; ORIGINAL_PRECURSOR_SCAN_NO 6696 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6758; ORIGINAL_PRECURSOR_SCAN_NO 6757 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3205; ORIGINAL_PRECURSOR_SCAN_NO 3203 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3208; ORIGINAL_PRECURSOR_SCAN_NO 3206 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6726; ORIGINAL_PRECURSOR_SCAN_NO 6725 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6740; ORIGINAL_PRECURSOR_SCAN_NO 6738 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6706; ORIGINAL_PRECURSOR_SCAN_NO 6705 CONFIDENCE standard compound; INTERNAL_ID 919; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6743; ORIGINAL_PRECURSOR_SCAN_NO 6739 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 83 CONFIDENCE standard compound; EAWAG_UCHEM_ID 58 CONFIDENCE standard compound; INTERNAL_ID 4017 CONFIDENCE standard compound; INTERNAL_ID 8401 CONFIDENCE standard compound; INTERNAL_ID 2316 CONFIDENCE standard compound; INTERNAL_ID 3538

   

Metolachlor

2-chloro-N-(2-ethyl-6-methylphenyl)-N-(1-methoxypropan-2-yl)acetamide

C15H22ClNO2 (283.1339)


CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9405; ORIGINAL_PRECURSOR_SCAN_NO 9403 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9416; ORIGINAL_PRECURSOR_SCAN_NO 9412 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9435; ORIGINAL_PRECURSOR_SCAN_NO 9432 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9411; ORIGINAL_PRECURSOR_SCAN_NO 9409 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9432; ORIGINAL_PRECURSOR_SCAN_NO 9430 CONFIDENCE standard compound; INTERNAL_ID 988; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9555; ORIGINAL_PRECURSOR_SCAN_NO 9554 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1082 CONFIDENCE standard compound; EAWAG_UCHEM_ID 268 CONFIDENCE standard compound; INTERNAL_ID 4040 CONFIDENCE standard compound; INTERNAL_ID 8418 CONFIDENCE standard compound; INTERNAL_ID 3556 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Monuron

3-(p-Chlorophenyl)-1,1-dimethylurea

C9H11ClN2O (198.056)


CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7858; ORIGINAL_PRECURSOR_SCAN_NO 7856 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7928; ORIGINAL_PRECURSOR_SCAN_NO 7925 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7944; ORIGINAL_PRECURSOR_SCAN_NO 7942 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3857; ORIGINAL_PRECURSOR_SCAN_NO 3854 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7900; ORIGINAL_PRECURSOR_SCAN_NO 7898 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3846; ORIGINAL_PRECURSOR_SCAN_NO 3844 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7885; ORIGINAL_PRECURSOR_SCAN_NO 7882 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3870; ORIGINAL_PRECURSOR_SCAN_NO 3866 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7933; ORIGINAL_PRECURSOR_SCAN_NO 7931 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3859; ORIGINAL_PRECURSOR_SCAN_NO 3857 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3877; ORIGINAL_PRECURSOR_SCAN_NO 3875 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3866; ORIGINAL_PRECURSOR_SCAN_NO 3861

   

Spiroxamine

8-(1,1-Dimethylethyl)-N-ethyl-N-propyl-1,4-dioxaspiro(4.5)decane-2-methanamine

C18H35NO2 (297.2668)


CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1800 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2789 CONFIDENCE standard compound; INTERNAL_ID 8403 CONFIDENCE standard compound; INTERNAL_ID 2571 CONFIDENCE standard compound; INTERNAL_ID 4019 D016573 - Agrochemicals D010575 - Pesticides

   

2-Phenylglycine

DL-alpha-Aminophenylacetic acid

C8H9NO2 (151.0633)


2-Phenylglycine, also known as a-amino-a-toluate or L-PHG amino acid, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Outside of the human body, 2-Phenylglycine has been detected, but not quantified in cow milk. This could make 2-phenylglycine a potential biomarker for the consumption of these foods. 2-Phenylglycine is a metabolite described in normal human urine (PMID 14473597) and plasma (PMID 5888801). 2-Phenylglycine is a metabolite described in normal human urine (PMID 14473597) and plasma (PMID 5888801) [HMDB]

   

2-Isopropylmalic acid

(2S)-2-Hydroxy-2-(1-methylethyl)butanedioic acid

C7H12O5 (176.0685)


2-Isopropylmalic acid (CAS: 3237-44-3), also known as 3-carboxy-3-hydroxyisocaproic acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. 2-Isopropylmalic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 2-Isopropylmalic acid is an alpha-hydroxy organic acid regularly occurring in the urine of healthy individuals (PMID: 2338430, 544608), and in hemofiltrates (PMID: 7251751). 2-Isopropylmalic acid is elevated during fasting and diabetic ketoacidosis (PMID: 1591279). It is also a metabolite found in Acetobacter (PMID: 6035258). α-Isopropylmalate (α-IPM) is the leucine biosynthetic precursor in Yeast[1]. α-Isopropylmalate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3237-44-3 (retrieved 2024-08-26) (CAS RN: 3237-44-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

2,4-Quinolinediol

4-hydroxy-1,2-dihydroquinolin-2-one

C9H7NO2 (161.0477)


   

Adenosine monophosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O7P (347.0631)


Adenosine monophosphate, also known as adenylic acid or amp, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Adenosine monophosphate can be found in a number of food items such as kiwi, taro, alaska wild rhubarb, and skunk currant, which makes adenosine monophosphate a potential biomarker for the consumption of these food products. Adenosine monophosphate can be found primarily in most biofluids, including blood, feces, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Adenosine monophosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine monophosphate is involved in several metabolic pathways, some of which include josamycin action pathway, methacycline action pathway, nevirapine action pathway, and aspartate metabolism. Adenosine monophosphate is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], molybdenum cofactor deficiency, xanthinuria type I, and mitochondrial DNA depletion syndrome. Adenosine monophosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine monophosphate, also known as 5-adenylic acid and abbreviated AMP, is a nucleotide that is found in RNA. It is an ester of phosphoric acid with the nucleoside adenosine. AMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase adenine. AMP can be produced during ATP synthesis by the enzyme adenylate kinase. AMP has recently been approved as a Bitter Blocker additive to foodstuffs. When AMP is added to bitter foods or foods with a bitter aftertaste it makes them seem sweeter. This potentially makes lower calorie food products more palatable. [Spectral] AMP (exact mass = 347.06308) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Adenosine monophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67583-85-1 (retrieved 2024-07-01) (CAS RN: 61-19-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.

   

Levorphanol

(1R,9R,10R)-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5-trien-4-ol

C17H23NO (257.178)


Levorphanol is only found in individuals that have used or taken this drug. It is a narcotic analgesic that may be habit-forming. It is nearly as effective orally as by injection. [PubChem]Like other mu-agonist opioids it is believed to act at receptors in the periventricular and periaqueductal gray matter in both the brain and spinal cord to alter the transmission and perception of pain. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

2'-Deoxyguanosine 5'-monophosphate

{[(2R,3S,5R)-5-(2-amino-6-oxo-6,9-dihydro-3H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O7P (347.0631)


2-Deoxyguanosine 5-monophosphate, also known as deoxyguanylic acid or 2-deoxy-GMP, belongs to the class of organic compounds known as purine 2-deoxyribonucleoside monophosphates. These are purine nucleotides with monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. 2-Deoxyguanosine 5-monophosphate is a purine 2-deoxyribonucleoside 5-monophosphate having guanine as the nucleobase. It exists in all living species, ranging from bacteria to humans. Within humans, 2-deoxyguanosine 5-monophosphate participates in a number of enzymatic reactions. In particular, 2-deoxyguanosine 5-monophosphate can be converted into dGDP which is mediated by the enzyme guanylate kinase. In addition, 2-deoxyguanosine 5-monophosphate can be converted into deoxyguanosine through its interaction with the enzyme cytosolic purine 5-nucleotidase. In humans, 2-deoxyguanosine 5-monophosphate is involved in the metabolic disorder called the gout or kelley-seegmiller syndrome pathway. 2-Deoxyguanosine 5-monophosphate is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that two of the phosphoryl groups of GTP have been removed, most likely by hydrolysis . [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5,6-Dihydrothymine

Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione

C5H8N2O2 (128.0586)


Dihydrothymine (CAS: 696-04-8) is an intermediate breakdown product of thymine. Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine into 5,6-dihydrothymine; then dihydropyrimidinase hydrolyzes 5,6-dihydrothymine into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. When present at abnormally high levels, dihydrothymine can be toxic, although the mechanism of toxicity is not clear. In particular, patients with dihydropyrimidinase deficiency exhibit highly increased concentrations of 5,6-dihydrouracil and 5,6-dihydrothymine; and moderately increased concentrations of uracil and thymine can be detected in urine. Dihydropyrimidinase deficiency is a disorder that can cause neurological and gastrointestinal problems in some affected individuals. The most common neurological abnormalities that occur are intellectual disability, seizures, weak muscle tone (hypotonia), abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include the backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

Metanephrine

4-[1-hydroxy-2-(methylamino)ethyl]-2-methoxyphenol

C10H15NO3 (197.1052)


Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm. In adrenal chromaffin cells, leakage of norepinephrine and epinephrine from storage granules leads to substantial intracellular production of the O-methylated metabolite metanephrine. In fact, the adrenals constitute the single largest source out of any organ system including the liver for circulating metanephrine. In humans, about 93 percent of circulating metanephrine is derived from catecholamines metabolized within adrenal chromaffin cells. (PMID 15317907). Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm.

   

Guanidinosuccinic acid

(2S)-2-(diaminomethylideneamino)butanedioic acid

C5H9N3O4 (175.0593)


Guanidinosuccinic acid (GSA) has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806). Guanidinosuccinic acid (GSA) is one of the earliest uremic toxins isolated and its toxicity identified. Its metabolic origins show that it arose from the oxidation of argininosuccinic acid (ASA) by free radicals. The stimulus for this oxidation, occurring optimally in the presence of the failed kidney, is the rising level of urea which, through enzyme inhibition, results in a decline in hepatic levels of the semi-essential amino acid, arginine. It is further noted that concentrations of GSA in both serum and urine decline sharply in animals and humans exposed to the essential amino acid, methionine. Uremic patients suffer from a defective ability to generate methyl groups due to anorexia, dietary restrictions and renal protein leakage. This leads to the accumulation of homocysteine, a substance known to produce vascular damage. Even in healthy subjects intake of choline together with methionine is insufficient to satisfy total metabolic requirements for methyl groups. In end-stage renal disease, therefore, protein restriction contributes to the build-up of toxins in uremia. Replacement using specific amino acid mixtures should be directed toward identified deficiencies and adequacy monitored by following serum levels of the related toxins, in this case GSA and homocysteine. (PMID 12701806) [HMDB] Guanidinosuccinic acid is a nitrogenous metabolite.

   

N,N-Dimethylaniline

N,N-DIMETHYLANILINE HYDROCHLORIDE

C8H11N (121.0891)


N,N-Dimethylaniline, also known as dimethylaminobenzene or dimethylphenylamine, belongs to the class of organic compounds known as dialkylarylamines. These are aliphatic aromatic amines in which the amino group is linked to two aliphatic chains and one aromatic group. N,N-dimethylaniline is a tertiary amine that is aniline in which the amino hydrogens are replaced by two methyl groups. It is a tertiary amine and a dimethylaniline. N,N-dimethylaniline appears as a yellow to brown colored oily liquid with a fishlike odor. It is less dense than water and insoluble in water. Its flash point is 150 °F, and is toxic by ingestion, inhalation, and skin absorption. N,N-Dimethylaniline was used to make dyes and as a solvent. Outside of the human body, N,N-Dimethylaniline has been detected, but not quantified in several different foods, such as common mushrooms, strawberries, feijoa, limes, and black-eyed pea. the structural formula shown is also known as N,N-dimethylaniline -- Wikipedia; Dimethylaniline (C8H11N) is an organic chemical compound which is a substituted derivative of aniline. It consists of a benzene ring and a substituted amino group, making it a tertiary aromatic amine. -- Wikipedia; N,N-Dimethylaniline (DMA) is an organic chemical compound, a substituted derivative of aniline. It consists of a tertiary amine, featuring dimethylamino group attached to a phenyl group. This oily liquid is colourless when pure, but commercial samples are often yellow. N,N-Dimethylaniline is found in many foods, some of which are fennel, rose hip, black elderberry, and maitake. KEIO_ID D032

   

N-Acetylleucine

(2S)-2-acetamido-4-methylpentanoic acid

C8H15NO3 (173.1052)


N-Acetyl-L-leucine or N-Acetylleucine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylleucine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylleucine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lecuine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylleucine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free leucine can also occur. In particular, N-Acetylleucine can be biosynthesized from L-leucine and acetyl-CoA by the enzyme leucine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylleucine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylmethionine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylleucine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyl-L-leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1188-21-2 (retrieved 2024-07-02) (CAS RN: 1188-21-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). N-Acetyl-L-leucine is an endogenous metabolite.

   

Methyl parathion

Phosphorothioic acid, O,O-dimethyl O-(4-nitrophenyl) ester

C8H10NO5PS (263.0017)


Methyl parathion is an insecticide that does not occur naturally in the environment. Pure methyl parathion exists as white crystals. Impure methyl parathion is a brownish liquid that smells like rotten eggs.Methyl parathion is used to kill insects on farm crops, especially cotton. The EPA now restricts how methyl parathion can be used and applied; only trained people are allowed to spray it. Methyl parathion can no longer be used on food crops commonly consumed by children. Methyl parathion is a white crystalline solid which is often dissolved in a liquid solvent carrier. The commercial product is a tan liquid (xylene solution) with a pungent odor. It is slightly soluble to insoluble in water. Usually with the liquid solvent it is a combustible liquid. It is toxic by inhalation, ingestion and skin absorption. It is used as an insecticide. Parathion-methyl is a C-nitro compound that is 4-nitrophenol substituted by a (dimethoxyphosphorothioyl)oxy group at position 4. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an acaricide, an agrochemical, a genotoxin, an environmental contaminant and an antifungal agent. It is an organic thiophosphate, an organothiophosphate insecticide and a C-nitro compound. It is functionally related to a 4-nitrophenol.

   

Pipecolic acid

Pipecolic acid, 14C-labeled CPD, (+,-)-isomer

C6H11NO2 (129.079)


Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients (PMID 12705501). Pipecolic acid is found to be associated with adrenoleukodystrophy, infantile Refsum disease, and peroxisomal biogenesis defect, which are also inborn errors of metabolism. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Pipecolic acid is a metabolite of lysine found in human physiological fluids such as urine, plasma and CSF. However, it is uncertain if pipecolic acid originates directly from food intake or from mammalian or intestinal bacterial enzyme metabolism. Recent studies suggest that plasma pipecolic acid, particularly the D-isomer, originates mainly from the catabolism of dietary lysine by intestinal bacteria rather than by direct food intake. In classic Zellweger syndrome (a cerebro-hepato-renal genetic disorder, OMIM 214100) pipecolic acid accumulate in the plasma of the patients. It is known that plasma pipecolic acid levels are also elevated in patients with chronic liver diseases. Pipecolic acid is moderately elevated in patients with pyridoxine-dependent seizures and might therefore be a possible biochemical marker for selecting candidates for pyridoxine therapy (Plecko et al 2000). Pipecolic acid was also elevated in CSF in these vitamin B6-responsive patients. (PMID 12705501) [HMDB]. Pipecolic acid is a biomarker for the consumption of dried and cooked beans. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P048 L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

Alprazolam

12-chloro-3-methyl-9-phenyl-2,4,5,8-tetraazatricyclo[8.4.0.0²,⁶]tetradeca-1(10),3,5,8,11,13-hexaene

C17H13ClN4 (308.0829)


Alprazolam is only found in individuals that have used or taken this drug. It is a triazolobenzodiazepine compound with antianxiety and sedative-hypnotic actions, that is efficacious in the treatment of panic disorders, with or without agoraphobia, and in generalized anxiety disorders. (From AMA Drug Evaluations Annual, 1994, p238)Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

Boldenon

(8xi,9xi,14xi)-17-Hydroxyandrosta-1,4-dien-3-one

C19H26O2 (286.1933)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid Same as: D07536 Origin: Animal; SubCategory_DNP: The sterols, Androstanes

   

cathinone

2-Aminopropiophenone

C9H11NO (149.0841)


D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant The S stereoisomer of 2-aminopropiophenone.

   

Etomidate

(R)-(+)-1-(alpha-Methylbenzyl)imidazole-5-carboxylic acid ethyl ester

C14H16N2O2 (244.1212)


Etomidate is only found in individuals that have used or taken this drug. It is an midazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic. [PubChem]Etomidate binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Tridemorph

2,6-Dimethyl-N-tridecyl-morpholine

C19H39NO (297.3031)


Systemic eradicant cereal fungicide Tridemorph is a fungicide. It was developed in the 1960s by the German multinational BASF who sell tridemorph under the trade name Calixin. It is used to control the fungus Erysiphe graminis in cereals, Mycosphaerella species in bananas, and Caticum solmonicolor in tea. Tridemorph is applied onto many crops across the world, but very little data on usage and production is in the public domain. In high doses it has been shown to have teratogenic effects. These effect are manifested in edemas, hemorrhages, hematomas, abnormal development of the brain (hydrocephalia), visceral cranium (micrognathia, cleft palate) and genitourinary system (hydronephrosis), in decreased size of pelvic bones, shoulder girdle, front and hind limbs, etc. (PMID 7324433

   

Ampicillin

(2S,5R,6R)-6-{[(2R)-2-amino-2-phenylethanoyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylIC ACID

C16H19N3O4S (349.1096)


Ampicillin is found in common pea. It is also a potential contaminant of cows milk arising from its veterinary use. Ampicillin is a semi-synthetic derivative of penicillin that functions as an orally active broad-spectrum antibiotic. It has been used extensively to treat bacterial infections since 1961. It is considered part of the aminopenicillin family and is roughly equivalent to amoxicillin in terms of spectrum and level of activity J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic KEIO_ID A197

   

Dihydrobiopterin

2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one

C9H13N5O3 (239.1018)


Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia. Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB] 7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

Eprosartan

4-({2-butyl-5-[(1E)-2-carboxy-2-(thiophen-2-ylmethyl)eth-1-en-1-yl]-1H-imidazol-1-yl}methyl)benzoic acid

C23H24N2O4S (424.1457)


Eprosartan is an angiotensin II receptor antagonist used for the treatment of high blood pressure. It acts on the renin-angiotensin system in two ways to decrease total peripheral resistance. First, it blocks the binding of angiotensin II to AT1 receptors in vascular smooth muscle, causing vascular dilatation. Second, it inhibits sympathetic norepinephrine production, further reducing blood pressure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2776 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

Nicosulfuron

nicosulfuron [ANSI]

C15H18N6O6S (410.1008)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 129 CONFIDENCE standard compound; INTERNAL_ID 2532

   

Pantoprazole

6-(difluoromethoxy)-2-[(3,4-dimethoxypyridin-2-yl)methanesulfinyl]-1H-1,3-benzodiazole

C16H15F2N3O4S (383.0751)


Pantozol; Pantoprazole (brand names Pantopan in Italy; Protium; Protonix; Pantozol; Pantor; Pantoloc) is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained; Pantoprazole is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained. Pantoprazole is metabolized in the liver by the cytochrome P450 system. Metabolism mainly consists of demethylation by CYP2C19 followed by sulfation. Another metabolic pathway is oxidation by CYP3A4. Pantoprazole metabolites are not thought to have any pharmacological significance; Protium; Pantor; Pantoloc) is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained; Protonix; Pantoprazole (brand names Pantopan in Italy. Pantozol; Pantoprazole (brand names Pantopan in Italy; Protium; Protonix; Pantozol; Pantor; Pantoloc) is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained; Pantoprazole is a proton pump inhibitor drug used for short-term treatment of erosion and ulceration of the esophagus caused by gastroesophageal reflux disease. Initial treatment is generally of eight weeks duration, after which another eight week course of treatment may be considered if necessary. It can be used as a maintenance therapy for long term use after initial response is obtained. A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors CONFIDENCE standard compound; INTERNAL_ID 8336 CONFIDENCE standard compound; INTERNAL_ID 2274

   

Taurolithocholate 3-sulfate

2-[[(4R)-4-[(3R,5R,10S,13R,17R)-10,13-dimethyl-3-sulfooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid

C26H45NO8S2 (563.2586)


Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids KEIO_ID T072

   

Uridine 5'-monophosphate

{[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H13N2O9P (324.0359)


Uridine 5-monophosphate (UMP), also known as uridylic acid or uridylate, belongs to the class of organic compounds known as pyrimidine ribonucleoside monophosphates. These are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. UMP consists of a phosphate group, a pentose sugar ribose, and the nucleobase uracil; hence, it is a ribonucleotide monophosphate. Uridine 5-monophosphate exists in all living species, ranging from bacteria to plants to humans. UMP is a nucleotide that is primarily used as a monomer in RNA biosynthesis. Uridine monophosphate is formed from Orotidine 5-monophosphate (orotidylic acid) in a decarboxylation reaction catalyzed by the enzyme orotidylate decarboxylase. Within humans, uridine 5-monophosphate participates in a number of enzymatic reactions. In particular, uridine 5-monophosphate can be converted into uridine 5-diphosphate through the action of the enzyme UMP-CMP kinase. In addition, uridine 5-monophosphate can be biosynthesized from uridine 5-diphosphate through its interaction with the enzyme soluble calcium-activated nucleotidase 1. In brain research studies, uridine monophosphate has been used as a convenient delivery compound for uridine. Uridine is present in many foods, mainly in the form of RNA. Non-phosphorylated uridine is not bioavailable beyond first-pass metabolism. In a study, gerbils fed a combination of uridine monophosphate, choline, and docosahexaenoic acid (DHA) were found to have significantly improved performance in running mazes over those not fed the supplements, implying an increase in cognitive function (PMID: 18606862). 5′-UMP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-97-9 (retrieved 2024-07-02) (CAS RN: 58-97-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1].

   

Dibutyl succinate

2,4-Dinitrofluorobenzene Sulfonic Acid

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

Fentrazamide

4-(2-chlorophenyl)-N-cyclohexyl-N-ethyl-5-oxo-4,5-dihydro-1H-1,2,3,4-tetrazole-1-carboxamide

C16H20ClN5O2 (349.1305)


   
   

Dimethylbenzimidazole

5,6-Dimethylbenzimidazole hydrochloride

C9H10N2 (146.0844)


Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. Dimethylbenzimidazole is the second to last step for the synthesis of alpha-Ribazole. It is converted from Riboflavin then it is converted to N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via the enzyme nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21). Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. KEIO_ID D087 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

5-Fluorouridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-fluoro-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H11FN2O6 (262.0601)


5-Fluorouridine is a metabolite of fluorouracil. Fluorouracil (5-FU or f5U) (sold under the brand names Adrucil, Carac, Efudix, Efudex and Fluoroplex) is a drug that is a pyrimidine analog which is used in the treatment of cancer. It is a suicide inhibitor and works through irreversible inhibition of thymidylate synthase. It belongs to the family of drugs called antimetabolites. It is typically administered with leucovorin. (Wikipedia) 5-Fluorouridine, a metabolite of 5-fluorouracil (HY-90006), is a potent ribozyme self-cleavage inhibitor. 5-Fluorouridine incorporates into both total and poly A RNA and has antiproliferative activity. 5-Fluorouridine induces apoptosis[1][2][3].

   

Butyl 4-aminobenzoate

p-Aminobenzoic acid butyl ester

C11H15NO2 (193.1103)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Phenolphthalein

3,3-bis(4-hydroxyphenyl)-1,3-dihydro-2-benzofuran-1-one

C20H14O4 (318.0892)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins

   

Betaxolol

1-(4-(2-(Cyclopropylmethoxy)ethyl)phenoxy)-3-((1-methylethyl)amino)-2-propanol

C18H29NO3 (307.2147)


Betaxolol is only found in individuals that have used or taken this drug. It is a cardioselective beta-1-adrenergic antagonist with no partial agonist activity. [PubChem]Betaxolol selectively blocks catecholamine stimulation of beta(1)-adrenergic receptors in the heart and vascular smooth muscle. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Betaxolol can also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles, causing bronchospasm. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

Zolpidem

N,N,6-Trimethyl-2-(4-methylphenyl)imidazo(1,2a)pyridine-3-acetamide hemitartrate

C19H21N3O (307.1685)


Some users take zolpidem recreationally for these side effects. However, it may be less common than benzodiazepine abuse. In the United States, recreational use may be less common than in countries where the drug is available as a less expensive generic. Zolpidem can become addictive if taken for extended periods of time, due to dependence on its ability to put one to sleep or to the euphoria it can sometimes produce. Like most addictive drugs, a tolerance in the zolpidem user develops and increases all the more quickly the longer she or he has been regularly taking it. Under the influence of the drug it is common to take more zolpidem than is necessary due to either forgetting that one has already taken a pill (elderly users are particularly at risk here), or knowingly taking more than the prescribed dosage. Users with a predilection for abuse are advised to keep additional zolpidem in a safe place that is unlikely to be remembered or accessed while intoxicated to avoid this risk. A trustworthy friend or relative is the best defense if such people are available; otherwise, a box or cupboard locked with a combination padlock is a good defense against this tendency, as the abovementioned side-effects can easily prevent a user from operating such a lock while under the drugs influence; Zolpidem is a prescription drug used for the short-term treatment of insomnia. It works quickly (usually within 15 minutes) and has a short half-life (2-3 hours). Some trade names of zolpidem are Ambien, Stilnox, Stilnoct, Hypnogen or Myslee. Its hypnotic effects are similar to those of the benzodiazepines, but it is classified as an imidazopyridine, and the anticonvulsant and muscle relaxant effects only appear at 10 and 20 times the dose required for sedation, respectively. For that reason, it has never been approved for either muscle relaxation or seizure prevention. Such drastically increased doses are more likely to induce one or more negative side effects, including hallucinations and/or amnesia. (See below.); Some users take zolpidem recreationally for these side effects. However, it may be less common than benzodiazepine abuse. In the United States, recreational use may be less common than in countries where the drug is available as a less expensive generic. Zolpidem can become addictive if taken for extended periods of time, due to dependence on its ability to put one to sleep or to the euphoria it can sometimes produce. Like most addictive drugs, a tolerance in the zolpidem user develops and increases all the more quickly the longer she or he has been regularly taking it. Under the influence of the drug it is common to take more zolpidem than is necessary due to either forgetting that one has already taken a pill (elderly users are particularly at risk here), or knowingly taking more than the prescribed dosage. Users with a predilection for abuse are advised to keep additional zolpidem in a safe place that is unlikely to be remembered or accessed while intoxicated to avoid this risk. A trustworthy friend or relative is the best defense if such people are available; Recreational zolpidem use is speculated to lead to tolerance and dependence much more quickly than prescribed use. Recreational use is rising, as demonstrated by the use of street names for the pill, such as: A (which is most likely due to the imprint on the Ambien CR brand of zolpidem, which consists of a capital A along with a tilde, which looks roughly like A~, as well as for sedative and calming effects, A+ is a street name for Adderall, named so because of its stimulant effects) and zombie pills (because of the waking sleep/sensory deprivation effect some users have reported experiencing). Another buzz term for Ambien is tic-tacs, referring to the shape and color of commonly abused 10mg tablets; Zolpidem is a prescription drug used for the short-term treatment of insomnia. It works quickly (usually within 15 minutes) and has a short half-life (2-3 hours). Its hypnotic eff... Zolpidem (sold under the brand names Ambien, Ambien CR, Stilnox, and Sublinox) is a prescription medication used for the treatment of insomnia, as well as some brain disorders. It is a short-acting nonbenzodiazepine hypnotic of the imidazopyridine class that potentiates gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, by binding to GABAA receptors at the same location as benzodiazepines. It works quickly (usually within 15 minutes) and has a short half-life (two to three hours). Zolpidem has not adequately demonstrated effectiveness in maintaining sleep (unless delivered in a controlled-release form); however, it is effective in initiating sleep. Some users take zolpidem recreationally for these side effects. However, it may be less common than benzodiazepine abuse. Zolpidem can become addictive if taken for extended periods of time, due to dependence on its ability to put one to sleep or to the euphoria it can sometimes produce. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

Propoxyphene

(3R)-4-(dimethylamino)-3-methyl-1,2-diphenylbutan-2-yl propanoate

C22H29NO2 (339.2198)


Propoxyphene is only found in individuals that have used or taken this drug. It is a narcotic analgesic structurally related to methadone. Only the dextro-isomer has an analgesic effect; the levo-isomer appears to exert an antitussive effect. [PubChem]Propoxyphene acts as a weak agonist at OP1, OP2, and OP3 opiate receptors within the central nervous system (CNS). Propoxyphene primarily affects OP3 receptors, which are coupled with G-protein receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. Opioids such as propoxyphene also inhibit the release of vasopressin, somatostatin, insulin, and glucagon. Opioids close N-type voltage-operated calcium channels (OP2-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (OP3 and OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AC - Diphenylpropylamine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Flecainide

N-(piperidin-2-ylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide

C17H20F6N2O3 (414.1378)


A potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Paradoxically, however, in myocardial infarct patients with either symptomatic or asymptomatic arrhythmia, flecainide exacerbates the arrhythmia and is not recommended for use in these patients. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3020 CONFIDENCE standard compound; INTERNAL_ID 2276 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Temazepam

7-chloro-3-hydroxy-1-methyl-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-2-one

C16H13ClN2O2 (300.0666)


Temazepam is only found in individuals that have used or taken this drug. It is a benzodiazepine that acts as a gamma-aminobutyric acid modulator and anti-anxiety agent. [PubChem]Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent

   

Penconazole

1-(2,4-dichloro-beta-Propylphenethyl)-1H-1,2,4-triazole

C13H15Cl2N3 (283.0643)


CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9666; ORIGINAL_PRECURSOR_SCAN_NO 9664 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9722; ORIGINAL_PRECURSOR_SCAN_NO 9721 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9751; ORIGINAL_PRECURSOR_SCAN_NO 9750 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9670; ORIGINAL_PRECURSOR_SCAN_NO 9668 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9676; ORIGINAL_PRECURSOR_SCAN_NO 9675 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9793; ORIGINAL_PRECURSOR_SCAN_NO 9792 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3107 D016573 - Agrochemicals D010575 - Pesticides

   

Cyanuric acid

1,3,5-Triazine-2,4,6-triol (acd/name 4.0)

C3H3N3O3 (129.0174)


Because of their trifunctionality, CYA is a precursor to crosslinking agents, especially for polyurethane resins. Cyanuric acid or 1,3,5-triazine-2,4,6-triol is a chemical compound with the formula (CNOH)3. Like many industrially useful chemicals, this triazine has many synonyms. This white, odorless solid finds use as a precursor or a component of bleaches, disinfectants, and herbicides. In 1997, worldwide production was 160 million kilograms.

   

Fenpropidin

1-(2-Methyl-3-(4-(2-methyl-2-propanyl)phenyl)propyl)piperidine

C19H31N (273.2456)


CONFIDENCE standard compound; INTERNAL_ID 8461 CONFIDENCE standard compound; INTERNAL_ID 2589 D016573 - Agrochemicals D010575 - Pesticides

   

Cefoperazone

(6R,7R)-7-[(2-{[(4-ethyl-2,3-dioxopiperazin-1-yl)(hydroxy)methylidene]amino}-1-hydroxy-2-(4-hydroxyphenyl)ethylidene)amino]-3-{[(1-methyl-1H-1,2,3,4-tetrazol-5-yl)sulphanyl]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C25H27N9O8S2 (645.1424)


Cefoperazone is only found in individuals that have used or taken this drug. It is a semisynthetic broad-spectrum cephalosporin with a tetrazolyl moiety that is resistant to beta-lactamase. It has been proposed especially against Pseudomonas infections.Like all beta-lactam antibiotics, cefoperazone binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

4,4'-Methylenedianiline

4,4-Diaminodiphenylmethane, sodium chloride (3:1)

C13H14N2 (198.1157)


4,4’-Methylenedianiline (MDA) is an industrial chemical that is produced and used industrially as a precursor to polyamides, epoxy resins, and polyurethane foams (PMID: 20621954). It is a primary aromatic amine, belonging to the family of compounds known as Diphenylmethanes. Diphenylmethanes are compounds consisting of methane with two of the hydrogen atoms replaced by phenyl groups. MDA is used mainly as a precursor to 4,4 ́-methylene diphenyl diisocyanate (MDI), which is a precursor to many polyurethane foams. To generate MDI, which is a highly reactive isocyanate, MDA is treated with phosgene. Workers exposed to MDI may develop sensitization, leading to occupational asthma. MDI is metabolized in the body and secreted in the urine as MDA, Therefore MDA is a urinary biomarker of MDI exposure. On its own, MDA is a known animal carcinogen, and human hepatotoxin. MDA produces genotoxic effects by forming DNA adducts in the liver and inducing DNA damage to hepatocytes (PMID: 32038824). The Occupational Safety and Health Administration has set a permissible exposure limit at 0.01 ppm over an eight-hour time-weighted average, and a short-term exposure limit at 0.10 ppm. D009676 - Noxae > D002273 - Carcinogens

   

Coumaphos

Phosphorothioic acid, O-(3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl) O,O-diethyl ester

C14H16ClO5PS (362.0145)


CONFIDENCE standard compound; INTERNAL_ID 248; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9799; ORIGINAL_PRECURSOR_SCAN_NO 9798 CONFIDENCE standard compound; INTERNAL_ID 248; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9759; ORIGINAL_PRECURSOR_SCAN_NO 9756 CONFIDENCE standard compound; INTERNAL_ID 248; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9789; ORIGINAL_PRECURSOR_SCAN_NO 9784 CONFIDENCE standard compound; INTERNAL_ID 248; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9760; ORIGINAL_PRECURSOR_SCAN_NO 9757 CONFIDENCE standard compound; INTERNAL_ID 248; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9707; ORIGINAL_PRECURSOR_SCAN_NO 9702 CONFIDENCE standard compound; INTERNAL_ID 248; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9747; ORIGINAL_PRECURSOR_SCAN_NO 9745 D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics CONFIDENCE standard compound; INTERNAL_ID 1136 D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Nitrofurantoin

1-[(Z)-[(5-nitrofuran-2-yl)methylidene]amino]imidazolidine-2,4-dione

C8H6N4O5 (238.0338)


A bacteriostatic or bactericidal agent depending on the concentration and susceptibility of the infecting organism. Nitrofurantoin is active against some gram positive organisms such as S. aureus, S. epidermidis, S. saprophyticus, Enterococcus faecalis, S. agalactiae, group D streptococci, viridians streptococci and Corynebacterium. Its spectrum of activity against gram negative organisms includes E. coli, Enterobacter, Neisseria, Salmonella and Shigella. It may be used as an alternative to trimethoprim/sulfamethoxazole for treating urinary tract infections though it may be less effective at eradicating vaginal bacteria. May also be used in females as prophylaxis against recurrent cystitis related to coitus. Nitrofurantoin is highly stable to the development of bacterial resistance, a property thought to be due to its multiplicity of mechanisms of action. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01X - Other antibacterials > J01XE - Nitrofuran derivatives C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Phosmet

S-((1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)methyl)phosphorodithioic acid O,O-dimethyl ester

C11H12NO4PS2 (316.9945)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Trihexyphenidyl

Pharmaceutical associates brand OF trihexyphenidyl hydrochloride

C20H31NO (301.2406)


Trihexyphenidyl is only found in individuals that have used or taken this drug. It is one of the centrally acting muscarinic antagonists used for treatment of parkinsonian disorders and drug-induced extrapyramidal movement disorders and as an antispasmodic. [PubChem]Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinsons disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Dicyclomine

2-(Diethylamino)ethyl 1-cyclohexylcyclohexanecarboxylic acid

C19H35NO2 (309.2668)


Dicyclomine is only found in individuals that have used or taken this drug. It is a muscarinic antagonist used as an antispasmodic and in urinary incontinence. It has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. [PubChem]Action is achieved via a dual mechanism: (1) a specific anticholinergic effect (antimuscarinic) at the acetylcholine-receptor sites and (2) a direct effect upon smooth muscle (musculotropic). A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Milbemectin

Milbemycin B, 5-O-demethyl-28-deoxy-6-28-epoxy-25-methyl-, (6R,25R)-

C31H44O7 (528.3087)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Fenthion

Phosphorothioic acid, O,O-dimethyl O-(3-methyl-4-(methylthio)phenyl) ester

C10H15O3PS2 (278.02)


Fenthion is an insecticide with low mammalian toxicity. Fenthion is used in agriculture and against mosquito larvae in tropical fresh waters.Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via cholinesterase inhibition. Due to its relatively low toxicity towards humans and mammals, fenthion is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class. (Wikipedia). Insecticide with low mammalian toxicity. It is used in agriculture and against mosquito larvae in tropical fresh waters D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

N,N-Dimethyl-N-phenylurea

N,N-Dimethyl-N-phenylurea

C9H12N2O (164.095)


CONFIDENCE standard compound; INTERNAL_ID 1163; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6669; ORIGINAL_PRECURSOR_SCAN_NO 6668 CONFIDENCE standard compound; INTERNAL_ID 1163; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6668; ORIGINAL_PRECURSOR_SCAN_NO 6667 CONFIDENCE standard compound; INTERNAL_ID 1163; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6608; ORIGINAL_PRECURSOR_SCAN_NO 6607 CONFIDENCE standard compound; INTERNAL_ID 1163; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6673; ORIGINAL_PRECURSOR_SCAN_NO 6671 CONFIDENCE standard compound; INTERNAL_ID 1163; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6616; ORIGINAL_PRECURSOR_SCAN_NO 6615 CONFIDENCE standard compound; INTERNAL_ID 1163; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6616; ORIGINAL_PRECURSOR_SCAN_NO 6614 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3111 CONFIDENCE standard compound; INTERNAL_ID 4045 CONFIDENCE standard compound; INTERNAL_ID 8425 CONFIDENCE standard compound; INTERNAL_ID 2611

   

Monolinuron

3-(4-Chlorophenyl)-1-methoxy-1-methylurea

C9H11ClN2O2 (214.0509)


CONFIDENCE standard compound; INTERNAL_ID 955; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8335; ORIGINAL_PRECURSOR_SCAN_NO 8330 CONFIDENCE standard compound; INTERNAL_ID 955; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8309; ORIGINAL_PRECURSOR_SCAN_NO 8304

   

Meclizine

1-[(4-chlorophenyl)(phenyl)methyl]-4-[(3-methylphenyl)methyl]piperazine

C25H27ClN2 (390.1863)


Meclizine is only found in individuals that have used or taken this drug. It is a histamine H1 antagonist used in the treatment of motion sickness, vertigo, and nausea during pregnancy and radiation sickness. [PubChem]Along with its actions as an antagonist at H1-receptors, meclizine also possesses anticholinergic, central nervous system depressant, and local anesthetic effects. Meclizine depresses labyrinth excitability and vestibular stimulation and may affect the medullary chemoreceptor trigger zone. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3084 D002491 - Central Nervous System Agents D018926 - Anti-Allergic Agents

   

Oxybutynin

Benzeneacetic acid, alpha-cyclohexyl-alpha-hydroxy-, 4-(diethylamino)-2-butynyl ester

C22H31NO3 (357.2304)


Oxybutynin is an anticholinergic medication used to relieve urinary and bladder difficulties, including frequent urination and inability to control urination, by decreasing muscle spasms of the bladder. It competitively antagonizes the M1, M2, and M3 subtypes of the muscarinic acetylcholine receptor. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3025 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Clipper

Paclobutrazol

C15H20ClN3O (293.1295)


   

Lapachol

4-hydroxy-3-(3-methylbut-2-en-1-yl)-1,2-dihydronaphthalene-1,2-dione

C15H14O3 (242.0943)


Lapachol is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. It has a role as a plant metabolite, an antineoplastic agent, an antibacterial agent and an anti-inflammatory agent. It is a hydroxy-1,4-naphthoquinone and an olefinic compound. NA is a natural product found in Plenckia populnea, Stereospermum colais, and other organisms with data available. A hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents [Raw Data] CB290_Lapachol_pos_40eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_50eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_10eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_30eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_20eV_CB000086.txt [Raw Data] CB290_Lapachol_neg_10eV_000049.txt [Raw Data] CB290_Lapachol_neg_20eV_000049.txt [Raw Data] CB290_Lapachol_neg_40eV_000049.txt [Raw Data] CB290_Lapachol_neg_50eV_000049.txt [Raw Data] CB290_Lapachol_neg_30eV_000049.txt Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

Colchicoside

N-[(7S)-1,2,10-trimethoxy-9-oxo-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-6,7-dihydro-5H-benzo[d]heptalen-7-yl]acetamide

C27H33NO11 (547.2054)


   

Diflubenzuron

N-[[(4-Chlorophenyl)amino]carbonyl]-2,6-difluorobenzamide, 9ci

C14H9ClF2N2O2 (310.0321)


Insecticide, interfering with chitin deposition by oral absorption. Diflubenzuron is used on soya beans, citrus, tea, vegetables and mushrooms. Also used as an insecticide in feed for poultry and pigs and as a controlled release bolus in cattl D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Same as: D07829

   
   

Tamsulosin

5-[(2R)-2-{[2-(2-ethoxyphenoxy)ethyl]amino}propyl]-2-methoxybenzene-1-sulfonamide

C20H28N2O5S (408.1719)


Tamsulosin is a selective antagonist at alpha-1A and alpha-1B-adrenoceptors in the prostate, prostatic capsule, prostatic urethra, and bladder neck. At least three discrete alpha1-adrenoceptor subtypes have been identified: alpha-1A, alpha-1B and alpha-1D; their distribution differs between human organs and tissue. Approximately 70\\\% of the alpha1-receptors in human prostate are of the alpha-1A subtype. Blockage of these receptors causes relaxation of smooth muscles in the bladder neck and prostate. G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tamsulosin ((R)-(-)-YM12617 free base) is an inhibitor of α1-adrenergic receptor. Tamsulosin is used for the research of prostatic hyperplasia. Tamsulosin attenuates abdominal aortic aneurysm growth in animal models[1].

   

Cefixime

(6R,7R)-7-({(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-[(carboxymethoxy)imino]acetyl}amino)-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C16H15N5O7S2 (453.0413)


Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C61101 - Glycopeptide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Normorphine

(1S,5R,13R,14S,17R)-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7,9,11(18),15-tetraene-10,14-diol

C16H17NO3 (271.1208)


Normorphine, also known as desmethylmorphine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. The compound has relatively little opioid activity in its own right, but is a useful intermediate which can be used to produce both opioid antagonists such as nalorphine, and also potent opioid agonists such as N-phenethylnormorphine. Normorphine is a very strong basic compound (based on its pKa). Its formation from morphine is catalyzed by the liver enzymes CYP3A4 and CYP2C8. Normorphine is a controlled substance listed under the Single Convention On Narcotic Drugs 1961 and the laws in various states implementing it; for example, in the United States, it is a Schedule I Narcotic controlled substance, with an ACSCN of 9313 and an annual aggregate manufacturing quota of 18 grams in 2014, unchanged from the prior year. Normorphine is an opiate analogue, the N-demethylated derivative of morphine, that was first described in the 1950s when a large group of N-substituted morphine analogues were characterized for activity. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist

   

Adrenic acid

7,10,13,16-Docosatetraenoic acid (van) adrenic acid

C22H36O2 (332.2715)


Adrenic acid, also known as 7,10,13,16-docosatetraenoic acid or adrenate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Adrenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Adrenic acid can be found in blood and in human myelin tissue. Within the cell, adrenic acid is primarily located in the cytoplasm, in the membrane (predicted from logP), and in the peroxisome. It can also be found in the extracellular space. In humans, adrenic acid is involved in alpha-linolenic acid and linoleic acid metabolism. Docosatetraenoic acid designates any straight chain 22:4 fatty acid. In particular, all-cis-7,10,13,16-docosatetraenoic acid is an ω-6 fatty acid with the trivial name adrenic acid (AdA). This is a naturally occurring polyunsaturated fatty acid formed through a 2-carbon chain elongation of arachidonic acid. It is one of the most abundant fatty acids in the early human brain. This unsaturated fatty acid is also metabolized by cells into biologically active products, such as dihomoprostaglandins and dihomo-epoxyeicosatrienoic acids (dihomo-EETs) (Wikipedia). Adrenic acid, which is a prostacyclin inhibitor, appears to be a potential prothrombotic agent (PMID: 1642692). Adrenic acid, which is a prostacyclin inhibitor, appears to be potential prothrombotic agent. (PMID 1642692) [HMDB]

   

(+)-Sesamin

1,3-BENZODIOXOLE, 5,5-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS-, (1S-(1.ALPHA.,3A .ALPHA.,4.ALPHA.,6A .ALPHA.))-

C20H18O6 (354.1103)


(+)-Sesamin, also known as fagarol or sezamin, belongs to the class of organic compounds known as furanoid lignans. These are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. (+)-Sesamin is an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-Sesamin is found, on average, in the highest concentration within sesames. (+)-Sesamin has also been detected, but not quantified in, several different foods, such as fats and oils, flaxseeds, ginkgo nuts, and ucuhuba. This could make (+)-sesamin a potential biomarker for the consumption of these foods. (+)-sesamin is a lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. It has a role as an antineoplastic agent, a neuroprotective agent and a plant metabolite. It is a lignan, a member of benzodioxoles and a furofuran. Sesamin is a natural product found in Pandanus boninensis, Podolepis rugata, and other organisms with data available. See also: Sesame Oil (part of). A lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Tiagabine

(R)-(4,4-Bis(3-methyl-2-thienyl)-3-butenyl)-3-piperidinecarboxylic acid, hydrochloride

C20H25NO2S2 (375.1327)


Tiagabine is an anti-convulsive medication. It is also used in the treatment for panic disorder as are a few other anticonvulsants. Though the exact mechanism by which tiagabine exerts its effect on the human body is unknown, it does appear to operate as a selective GABA reuptake inhibitor. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators

   

Epibatidine

(+/-)-epibatidine

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Ethionamide

2-ethylpyridine-4-carbothioamide

C8H10N2S (166.0565)


Ethionamide is only found in individuals that have used or taken this drug. It is a second-line antitubercular agent that inhibits mycolic acid synthesis. It also may be used for treatment of leprosy. (From Smith and Reynard, Textbook of Pharmacology, 1992, p868)Ethionamide may be bacteriostatic or bactericidal in action, depending on the concentration of the drug attained at the site of infection and the susceptibility of the infecting organism. Ethionamide, like prothionamide and pyrazinamide, is a nicotinic acid derivative related to isoniazid. It is thought that ethionamide undergoes intracellular modification and acts in a similar fashion to isoniazid. Isoniazid inhibits the synthesis of mycoloic acids, an essential component of the bacterial cell wall. Specifically isoniazid inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. It is the INH-NAD adduct that acts as a slow, tight-binding competitive inhibitor of InhA. Ethionamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=536-33-4 (retrieved 2024-07-12) (CAS RN: 536-33-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ethionamide (2-ethylthioisonicotinamide) is a second-line anti-tuberculosis antibiotic.

   

Fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


Fenoprofen is only found in individuals that have used or taken this drug. It is an anti-inflammatory analgesic and antipyretic highly bound to plasma proteins. It is pharmacologically similar to aspirin, but causes less gastrointestinal bleeding. [PubChem]Fenoprofens exact mode of action is unknown, but it is thought that prostaglandin synthetase inhibition is involved. Fenoprofen has been shown to inhibit prostaglandin synthetase isolated from bovine seminal vesicles. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Medrysone

(1S,2R,8S,10S,11S,14S,15S,17S)-14-acetyl-17-hydroxy-2,8,15-trimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C22H32O3 (344.2351)


Medrysone is only found in individuals that have used or taken this drug. It is a corticosteroid used in ophthalmology. [Wikipedia]There is no generally accepted explanation for the mechanism of action of ocular corticosteroids. However, corticosteroids are thought to act by the induction of phospholipase A2 inhibitory proteins, collectively called lipocortins. It is postulated that these proteins control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes by inhibiting the release of their common precursor, arachidonic acid. Arachidonic acid is released from membrane phospholipids by phospholipase A2. Initially, the drug binds to the glucocorticoid receptor in the cytosol. This migrates to the nucleus and binds to genetic elements which cause activation and repression of the involved genes in the inflammatory pathway. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D02289

   

Oxaprozin

3-(diphenyl-1,3-oxazol-2-yl)propanoic acid

C18H15NO3 (293.1052)


Oxaprozin is only found in individuals that have used or taken this drug. It is a non-narcotic, non-steroidal anti-inflammatory drug (NSAID), used to relieve the inflammation, swelling, stiffness, and joint pain associated with osteoarthritis and rheumatoid arthritis.Anti-inflammatory effects of Oxaprozin are believed to be due to inhibition of cylooxygenase in platelets which leads to the blockage of prostaglandin synthesis. Antipyretic effects may be due to action on the hypothalamus, resulting in an increased peripheral blood flow, vasodilation, and subsequent heat dissipation. Oxaprozin is a non-selective NSAID, with a cell assay system showing lower COX-2 selectivity implying higher COX-1 selectivity. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Oxaprozin is an orally active and potent COX inhibitor, with IC50 values of 2.2 μM for human platelet COX-1 and and 36 μM for IL-1-stimulated human synovial cell COX-2, respectively. Oxaprozin also inhibits the activation of NF-κB. Oxaprozin induces cell apoptosis. Oxaprozin shows anti-inflammatory activity. Oxaprozin-mediated inhibition of the Akt/IKK/NF-κB pathway contributes to its anti-inflammatory properties[1][2].

   

dinatin

Scutellarein 6-methyl ether

C16H12O6 (300.0634)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Phenylacetylglycine

[(Phenylacetyl)amino]acetic acid

C10H11NO3 (193.0739)


Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:. acyl-CoA + glycine < -- > CoA + N-acylglycine. Phenylacetylglycine or PAG is a glycine conjugate of phenylacetic acid. Phenylacetic acid may arise from exposure to styrene (plastic) or through the consumption of fruits and vegetables. Phenylacetic acid is used in some perfumes, possessing a honey-like odour in low concentrations, and is also used in penicillin G production. PAG is a putative biomarker of phospholipidosis. Urinary PAG is elevated in animals exhibiting abnormal phospholipid accumulation in many tissues and may thus be useful as a surrogate biomarker for phospholipidosis. (PMID: 15764292) The presence of phenylacetylglycine in urine has been confirmed for dogs, rats and mice. However, the presence of this compound in human urine is controversial. GC-MS studies have not found this compound (PMID: 7492634) while NMR studies claimed to have identified it (PMID: 21167146). It appears that phenylacetylglycine may sometimes be mistaken for phenylacetylglutamine via NMR. Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].

   

Nalbuphine

(1S,5R,13R,14S,17S)-4-(cyclobutylmethyl)-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7,9,11(18)-triene-10,14,17-triol

C21H27NO4 (357.194)


Nalbuphine is only found in individuals that have used or taken this drug. It is a narcotic used as a pain medication. It appears to be an agonist at kappa opioid receptors and an antagonist or partial agonist at mu opioid receptors. [PubChem]The exact mechanism of action is unknown, but is believed to interact with an opiate receptor site in the CNS (probably in or associated with the limbic system). The opiate antagonistic effect may result from competitive inhibition at the opiate receptor, but may also be a result of other mechanisms. Nalbuphine is thought primarily to be a kappa agonist. It is also a partial mu antagonist analgesic, with some binding to the delta receptor and minimal agonist activity at the sigma receptor. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AF - Morphinan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Ethylene thiourea

4,5-dihydro-1H-imidazole-2-thiol

C3H6N2S (102.0252)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 271 CONFIDENCE standard compound; INTERNAL_ID 8704

   

D-2-Hydroxyglutaric acid

alpha-Hydroxyglutarate, disodium salt

C5H8O5 (148.0372)


In humans, D-2-hydroxyglutaric acid is formed by a hydroxyacid-oxoacid transhydrogenase whereas in bacteria it is formed by a 2-hydroxyglutarate synthase. D-2-Hydroxyglutaric acid is also formed via the normal activity of hydroxyacid-oxoacid transhydrogenase during conversion of 4-hydroxybutyrate to succinate semialdehyde. The compound can be converted to alpha-ketoglutaric acid through the action of a 2-hydroxyglutarate dehydrogenase (EC 1.1.99.2). In humans, there are two such enzymes (D2HGDH and L2HGDH). Both the D and the L stereoisomers of hydroxyglutaric acid are found in body fluids. D-2-Hydroxyglutaric acid is a biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (OMIM: 600721) and the genetic disorder glutaric aciduria II. D-2-Hydroxyglutaric aciduria (caused by loss of D2HGDH or gain of function of IDH) is rare, with symptoms including cancer, macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. An elevated urine level of D-2-hydroxyglutaric acid has been reported in patients with spondyloenchondrodysplasia (OMIM: 271550). D-2-Hydroxyglutaric acid can be converted to alpha-ketoglutaric acid through the action of 2-hydroxyglutarate dehydrogenase (D2HGDH). Additionally, the enzyme D-3-phosphoglycerate dehydrogenase (PHGDH) can catalyze the NADH-dependent reduction of alpha-ketoglutarate (AKG) to D-2-hydroxyglutarate (D-2HG). Nyhan et al. (1995) described 3 female patients, 2 of them sibs, who were found to have excess accumulation of D-2-hydroxyglutaric acid in the urine. The phenotype was quite variable, even among the sibs, but included mental retardation, macrocephaly with cerebral atrophy, hypotonia, seizures, and involuntary movements. One of the patients developed severe intermittent vomiting and was given a pyloromyotomy. The electroencephalogram demonstrated hypsarrhythmia. There was an increased concentration of protein in cerebrospinal fluid, an unusual finding in inborn errors of metabolism. D-2-Hydroxyglutaric acid can also be produced via gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). IDH is part of the TCA cycle and this compound is generated in high abundance when IDH is mutated. Since D-2-hydroxyglutaric acid is sufficiently similar in structure to 2-oxoglutarate (2OG), it is able to inhibit a range of 2OG-dependent dioxygenases, including histone lysine demethylases (KDMs) and members of the ten-eleven translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. This inhibitory effect leads to alterations in the hypoxia-inducible factor (HIF)-mediated hypoxic response and alterations in gene expression through global epigenetic remodeling. The net effect is that D-2-hydroxyglutaric acid causes a cascading effect that leads genetic perturbations and malignant transformation. Depending on the circumstances, D-2-hydroxyglutaric acid can act as an oncometabolite, a neurotoxin, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumour growth and survival. A neurotoxin is compound that is toxic to neurons or nerual tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As an oncometabolite, D-2-hydroxyglutaric acid is a competitive inhibitor of multiple alpha-ketoglutarate-dependent dioxygenases, including histone demethylases and the TET family of 5mC hydroxylases. As a result, high levels of 2-hydroxyglutarate lead to genome-wide histone and DNA methylation alterations, which in turn lead to mutations that ultimately cause cancer (PMID: 29038145). As a neurotoxin, D-2-hydroxyglutaric acid mediates its neurotoxicity through activation of N-methyl-D-aspartate receptors. D-2-Hydroxyglutaric acid is structurally similar to the excitatory amino acid glutamate and stimul... Tissue accumulation of high amounts of D 2 hydroxyglutaric acid is the biochemical hallmark of the inherited neurometabolic disorder D 2 hydroxyglutaric aciduria.

   

Maltol

3-Hydroxy-2-methyl-4-pyrone; 3-Hydroxy-2-methyl-pyran-4-one; Maltol; Deferiprone Impurity B

C6H6O3 (126.0317)


Maltol, also known as E636 or fema 2656, belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Some synthetic derivatives of maltol, developed at the University of Urbino, showed limited in vitro antiproliferative activity towards cancer cells lines, perhaps inducing apoptosis in these cells. Maltol is a sweet, baked, and bread tasting compound. Maltol has been detected, but not quantified, in several different foods, such as milk and milk products, nuts, soy beans, pepper (c. annuum), and coffee and coffee products. Maltols sweetness adds to the odor of freshly baked bread, and is used as a flavor enhancer (INS Number 636) in breads and cakes. Related to this property, maltol has been reported to greatly increase aluminum uptake in the body and to increase the oral bioavailability of gallium and iron. Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is a white crystalline powder that is soluble in hot water, chloroform, and other polar solvents. Maltol is registered as a flavor component in the EU. Maltol, like related 3-hydroxy-4-pyrones such as kojic acid, binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+. It is known in the European E number food additive series as E636. Because it has the odor of cotton candy and caramel, maltol is used to impart a sweet aroma to fragrances. Maltol is a white crystalline powder with a fragrant caramel-butterscotch odor. pH (5\\\\% aqueous solution) 5.3. (NTP, 1992) 3-hydroxy-2-methyl-4-pyrone is a member of 4-pyranones. It has a role as a metabolite. Maltol is a natural product found in Cercidiphyllum japonicum, Coffea arabica, and other organisms with data available. 3-Hydroxy-2-methyl-4-pyrone is a metabolite found in or produced by Saccharomyces cerevisiae. Found in chicory, roasted malt, breads, milk, heated butter, uncured smoked pork, cocoa, coffee, roasted barley, roasted peanuts, roasted filbert, soybean etc. Flavour enhancer and flavouring agent C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].

   

m-Phenylenediamine

Meta-phenylenediamine

C6H8N2 (108.0687)


KEIO_ID P035

   

Diethylthiophosphate

O,O-Diethyl phosphorothionate, potassium salt

C4H11O3PS (170.0167)


Diethylthiophosphate, also known as DETP, belongs to the class of organic compounds known as thiophosphate diesters. These are organic compounds containing the thiophosphoric acid functional group or a derivative thereof, with the general structure ROP(OR)(OR)=S, where exactly two R-groups are organyl groups. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Diethylthiophosphate is a potentially toxic compound. Acute OP intoxication results from blockage of the decomposition of synaptic acetylcholine because the pesticide covalently binds to chlolinesterase Chronic exposure to POs has neurological sequelae as well and data suggests that OP exposure alters sperm chromatin condensation (A3181, A3182, A3183, A3181). Chronic exposure to POs has neurological sequelae as well (PMID 8179040) and data suggests that OP exposure alters sperm chromatin condensation (PMID 15050412). PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Acute OP intoxication results from blockage of the decomposition of synaptic acetylcholine because the pesticide covalently binds to chlolinesterase (PMID 11991535). Diethylthiophosphate is the most frequent metabolite of organophosphorus (OP) found in urine (PMID 15050412). Organophosphorus compounds are widely used as pesticides because of easy degradation in the environment. Acute OP intoxication results from blockage of the decomposition of synaptic acetylcholine because the pesticide covalently binds to chlolinesterase (PMID 11991535). Chronic exposure to POs has neurological sequelae as well (PMID 8179040) and data suggests that OP exposure alters sperm chromatin condensation (PMID 15050412) [HMDB] KEIO_ID D113

   

Epsilon-caprolactam

Hexahydro 2H azepin 2 one

C6H11NO (113.0841)


Caprolactam, also known as aminocaproic lactam or hexahydro-2h-azepin-2-one, is a member of the class of compounds known as caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Caprolactam is soluble (in water) and a very weakly acidic compound (based on its pKa). Caprolactam is an amine, bitter, and spicy tasting compound found in sunflower, which makes caprolactam a potential biomarker for the consumption of this food product. Caprolactam (CPL) is an organic compound with the formula (CH2)5C(O)NH. This colourless solid is a lactam (a cyclic amide) of caproic acid. Global demand for this compound is approximately 5 million tons per year, and the vast majority is used to make Nylon 6 filament, fiber, and plastics . Epsilon-caprolactam, also known as Caprolactam or Aminocaproic lactam, is classified as a member of the Caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Epsilon-caprolactam is considered to be soluble (in water) and relatively neutral. Epsilon-caprolactam is an amine, bitter, and spicy tasting compound found in Sunflowers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Acetylcarnitine

O-Acety-L-carnitine hydrochloride

[C9H18NO4]+ (204.1236)


Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A143; [MS2] KO009087 KEIO_ID A143

   

3,4-Dichloroaniline

1-Amino-3,4-dichlorobenzene

C6H5Cl2N (160.9799)


CONFIDENCE standard compound; INTERNAL_ID 8104

   

N-METHYLANILINE

Methylaniline hydrochloride

C7H9N (107.0735)


N-methylaniline, also known as methylphenylamine or N-methylbenzenamine, is a member of the class of compounds known as phenylalkylamines. Phenylalkylamines are organic amines where the amine group is secondary and linked on one end to a phenyl group and on the other end, to an alkyl group. N-methylaniline is soluble (in water) and a strong basic compound (based on its pKa). N-methylaniline can be found in a number of food items such as carrot, wild carrot, orange bell pepper, and red bell pepper, which makes N-methylaniline a potential biomarker for the consumption of these food products. N-Methylaniline (NMA) is an aniline derivative. It is an organic compound with the chemical formula C6H5NH(CH3). The substance exists as a colorless or slightly yellow viscous liquid and turns brown when exposed to air. The chemical is insoluble in water. It is used as a latent and coupling solvent and is also used as an intermediate for dyes, agrochemicals and other organic products manufacturing. NMA is toxic and exposure can cause damage to the central nervous system and can also cause liver and kidney failure . CONFIDENCE standard compound; INTERNAL_ID 8126 KEIO_ID M066

   

Hexachlorophene

3,4,6-trichloro-2-[(2,3,5-trichloro-6-hydroxyphenyl)methyl]phenol

C13H6Cl6O2 (403.8499)


A chlorinated bisphenol antiseptic with a bacteriostatic action against Gram-positive organisms, but much less effective against Gram-negative organisms. It is mainly used in soaps and creams and is an ingredient of various preparations used for skin disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p797) CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5466; ORIGINAL_PRECURSOR_SCAN_NO 5464 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5477; ORIGINAL_PRECURSOR_SCAN_NO 5475 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5465; ORIGINAL_PRECURSOR_SCAN_NO 5464 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5448; ORIGINAL_PRECURSOR_SCAN_NO 5447 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5472; ORIGINAL_PRECURSOR_SCAN_NO 5470 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5445; ORIGINAL_PRECURSOR_SCAN_NO 5443 D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8355 D000890 - Anti-Infective Agents

   

7-Amino-4-methylcoumarin

7-Amino-4-methylcoumarin, conjugate monoacid

C10H9NO2 (175.0633)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents CONFIDENCE standard compound; INTERNAL_ID 8840 CONFIDENCE standard compound; INTERNAL_ID 2482 CONFIDENCE standard compound; INTERNAL_ID 66

   

2-Phenylacetamide

(alpha-)2-Phenylacetamide

C8H9NO (135.0684)


2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. [HMDB] 2-Phenylacetamide is an intermediate in phenylalanine metabolism and styrene degradation(KEGG ID C02505). It is the third to last step in the synthesis of phenylacetylglutamine and is converted from phenylalanine via the enzyme phenylalanine 2-monooxygenase [EC:1.13.12.9]. It is then converted to phenylacetate via the enzyme amidase [EC:3.5.1.4]. 2-Phenylacetamide is an endogenous metabolite.

   

4-Hydroxyquinoline

1,4-dihydroquinolin-4-one

C9H7NO (145.0528)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE standard compound; INTERNAL_ID 2492 KEIO_ID H139

   

Allantoic acid

Bis[(aminocarbonyl)amino]acetic acid

C4H8N4O4 (176.0546)


Allantoic acid is the end product of Allantoicase [EC:3.5.3.4], an enzyme involved in uric acid degradation (Purine metabolism). Although it is commonly accepted that allantoicase is lost in mammals, it has been identified in mice and humans. (PMID 11852104). A crystalline, transparent, colorless substance found in the allantoic liquid of the fetal calf. It was formerly called allantoic acid and amniotic acid. Isolated from coffee beans and leaves KEIO_ID A139 Allantoic acid is a degradative product of uric acid and associated with purine metabolism[1][2][3].

   

Biuret

1-(carbamoylamino)formamide

C2H5N3O2 (103.0382)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

Vantin

1-[(Isopropoxycarbonyl)oxy]ethyl (6R,7R)-7-{[(2E)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino}-3-(methoxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate

C21H27N5O9S2 (557.125)


The 1-[(isopropoxycarbonyl)oxy]ethyl (proxetil) ester prodrug of cefpodoxime. After swallowing, hydrolysis of the ester group occurs in the intestinal epithelium, to release active cefpodoxime in the bloodstream. It is used to treat acute otitis media, pharyngitis, and sinusitis. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Dofetilide

N-[4-(2-{[2-(4-methanesulfonamidophenyl)ethyl](methyl)amino}ethoxy)phenyl]methanesulfonamide

C19H27N3O5S2 (441.1392)


Dofetilide is a class III antiarrhythmic agent that is approved by the Food and Drug Administration (FDA) for the maintenance of sinus rhythm in individuals prone to the formation of atrial fibrillation and flutter, and for the chemical cardioversion to sinus rhythm from atrial fibrillation and flutter. [Wikipedia] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

N-Methylalanine

N-Methylalanine hydrochloride, (DL-ala)-isomer

C4H9NO2 (103.0633)


N-Methylalanine, also known as (S)-2-methylaminopropanoate or N-methyl-L-alanine, is classified as an alanine or an alanine derivative. Alanines are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-Methylalanine is considered to be soluble (in water) and acidic. (ChemoSummarizer) Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M028

   

Nalpha-Methylhistidine

Nalpha-Methylhistidine

C7H11N3O2 (169.0851)


   

3-methyl-2-oxovalerate

alpha-keto-beta-Methyl-n-valeric acid

C6H10O3 (130.063)


3-Methyl-2-oxovaleric acid (CAS: 1460-34-0) is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of 3-methyl-2-oxovaleric acid are associated with maple syrup urine disease. MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). 3-Methyl-2-oxovaleric acid is a keto-acid, which is a subclass of organic acids. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated MSUD. Many affected children with organic acidemias experience intellectual disability or delayed development. (s)-3-methyl-2-oxopentanoate, also known as (3s)-2-oxo-3-methyl-N-valeric acid or (S)-omv, belongs to short-chain keto acids and derivatives class of compounds. Those are keto acids with an alkyl chain the contains less than 6 carbon atoms. Thus, (s)-3-methyl-2-oxopentanoate is considered to be a fatty acid lipid molecule (s)-3-methyl-2-oxopentanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). (s)-3-methyl-2-oxopentanoate can be found in a number of food items such as bean, prickly pear, wild leek, and nutmeg, which makes (s)-3-methyl-2-oxopentanoate a potential biomarker for the consumption of these food products (s)-3-methyl-2-oxopentanoate may be a unique S.cerevisiae (yeast) metabolite.

   

7alpha-Hydroxycholesterol

(1S,2R,5S,9S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-ene-5,9-diol

C27H46O2 (402.3498)


7alpha-Hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation (PMID: 17386651). Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery (PMID: 17364953). 7alpha-Hydroxycholesterol is a cholesterol oxide that has been described as a biomarker of oxidative stress in subjects with impaired glucose tolerance and diabetes (PMID: 16634125). 7alpha-Hydroxycholesterol has been identified in the human placenta (PMID: 32033212). 7alpha-hydroxycholesterol is an oxysterol and can serve as a biomarker for lipid peroxidation. (PMID: 17386651) Products of cholesterol oxidation accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery. (PMID: 17364953) 7α-Hydroxycholesterol is a cholesterol oxide and is formed by both enzymatic and non-enzymatic oxidation. 7α-Hydroxycholesterol can be used as a biomarker for lipid peroxidation[1][2].

   

Acenaphthene

1,2-dihydroacenaphthylene

C12H10 (154.0782)


   

ANTHRACENE

Anthracene, sodium salt, ion (1-)

C14H10 (178.0782)


Anthracene, also known as anthrazen or anthracene, sodium salt, ion (1-), is a member of the class of compounds known as anthracenes. Anthracenes are organic compounds containing a system of three linearly fused benzene rings. Anthracene can be found in sorrel, which makes anthracene a potential biomarker for the consumption of this food product. Anthracene is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the production of the red dye alizarin and other dyes. Anthracene is colorless but exhibits a blue (400-500 nm peak) fluorescence under ultraviolet radiation . PAHs are carcinogens and have been associated with the increased risk of skin, respiratory tract, bladder, stomach, and kidney cancers. They may also cause reproductive effects and depress the immune system (L10) (T3DB).

   

Ononin

3-(4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C22H22O9 (430.1264)


Widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium subspecies Formononetin 7-glucoside is found in chickpea, soy bean, and pulses. Ononin is found in chickpea. Ononin is widely distributed in the Leguminosae subfamily Papilionoideae, e.g. in Medicago sativa (alfalfa) and Trifolium species. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 381; CONFIDENCE confident structure Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

(S)-2-Azetidinecarboxylic acid

1-Azetidinecarboxylicacid, 2-(aminocarbonyl)-, 1,1-dimethylethyl ester, (2S)-

C4H7NO2 (101.0477)


Azetidine-2-carboxylic acid is an azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. It has a role as a plant metabolite and a teratogenic agent. It is an azetidinecarboxylic acid and an amino acid. A proline analog that acts as a stoichiometric replacement of proline. It causes the production of abnormal proteins with impaired biological activity. (S)-2-Azetidinecarboxylic acid is found in common beet. (S)-2-Azetidinecarboxylic acid is present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the US Present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the USA. (S)-2-Azetidinecarboxylic acid is found in red beetroot and common beet. An azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. KEIO_ID A219 Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.

   

Aminomethylphosphonic acid

aminomethylphosphonic acid

CH6NO3P (111.0085)


Aminomethylphosphonic acid, also known as AMPA, belongs to the class of organic compounds known as organic phosphonic acids. These are organic compounds containing phosphonic acid. Based on a literature review a significant number of articles have been published on Aminomethylphosphonic acid. (aminomethyl)phosphonic acid is a member of the class of phosphonic acids that is phosphonic acid substituted by an aminomethyl group. It is a metabolite of the herbicide glyphosate. It is a one-carbon compound and a member of phosphonic acids. It is functionally related to a phosphonic acid. It is a conjugate acid of an (aminomethyl)phosphonate(1-). (Aminomethyl)phosphonic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1066-51-9 (retrieved 2024-10-30) (CAS RN: 1066-51-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Succinimide

Dihydro-3-pyrroline-2,5-dione

C4H5NO2 (99.032)


Succinimide is an organic compound with the formula (CH2)2(CO)2NH. This white solid is used in a variety of organic syntheses, as well as in some industrial silver plating processes. The compound is classified as a cyclic imide. It may be prepared by thermal decomposition of ammonium succinate.[4] Succinimide, also known as butanimide, belongs to the class of organic compounds known as pyrrolidine-2-ones. These are pyrrolidines that bear a C=O group at position 2 of the pyrrolidine ring. Succinimide has been identified in urine (PMID: 22409530). Succinimides refers to compounds that contain the succinimide group. These compounds have some notable uses. Several succinimides are used as anticonvulsant drugs, including ethosuximide, phensuximide, and methsuximide.[5] Succinimides are also used to form covalent bonds between proteins or peptides and plastics, which is useful in a variety of assay techniques. Succinimide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-56-8 (retrieved 2024-06-29) (CAS RN: 123-56-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Taurolithocholate

2-[(4R)-4-[(1S,2S,5R,7R,10R,11S,14R,15R)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]ethane-1-sulfonic acid

C26H45NO5S (483.3018)


Lithocholyltaurine is a bile salt formed in the liver from lithocholic acid conjugation with taurine, usually as the sodium salt. It solubilizes fats for absorption and is itself absorbed. Lithocholic acid, a hydrophobic secondary bile acid, is well known to cause intrahepatic cholestasis. There have been extensive studies on the mechanisms of lithocholate-induced cholestasis in animals. Lithocholate diminishes both the bile acid-dependent and independent bile flow. In humans, elevated levels of lithocholic acid are found in patients with chronic cholestatic liver disease. Lithocholyltaurine impairs both the bile canalicular contractions and the canalicular bile secretion, possibly by acting directly on the canalicular membranes in lithocholyltaurine-induced cholestasis. Lithocholyltaurine induce acute cholestasis-associated with retrieval of the bile salt export pump. The bile salt export pump (BSEP) of hepatocyte secretes conjugated bile salts across the canalicular membrane in an ATP-dependent manner. Hepatic retention of bile acids may lead to liver injury by hepatocyte apoptosis and eventually deterioration of cholestatic liver diseases. One mechanism of induced apoptosis by lithocholyltaurine is the induction of transcriptional activity of AP-1 (activation protein-1). (PMID: 16981261, 15763547, 16332456, 18164257) [HMDB] Lithocholyltaurine is a bile salt formed in the liver from lithocholic acid conjugation with taurine, usually as the sodium salt. It solubilizes fats for absorption and is itself absorbed. Lithocholic acid, a hydrophobic secondary bile acid, is well known to cause intrahepatic cholestasis. There have been extensive studies on the mechanisms of lithocholate-induced cholestasis in animals. Lithocholate diminishes both the bile acid-dependent and independent bile flow. In humans, elevated levels of lithocholic acid are found in patients with chronic cholestatic liver disease. Lithocholyltaurine impairs both the bile canalicular contractions and the canalicular bile secretion, possibly by acting directly on the canalicular membranes in lithocholyltaurine-induced cholestasis. Lithocholyltaurine induce acute cholestasis-associated with retrieval of the bile salt export pump. The bile salt export pump (BSEP) of hepatocyte secretes conjugated bile salts across the canalicular membrane in an ATP-dependent manner. Hepatic retention of bile acids may lead to liver injury by hepatocyte apoptosis and eventually deterioration of cholestatic liver diseases. One mechanism of induced apoptosis by lithocholyltaurine is the induction of transcriptional activity of AP-1 (activation protein-1). (PMID: 16981261, 15763547, 16332456, 18164257). D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents CONFIDENCE standard compound; INTERNAL_ID 61

   

Galactinol

Galactinol (1-α-d-galactosyl-myo-inositol)

C12H22O11 (342.1162)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Sennoside A

(9R)-9-[(9R)-2-carboxy-4-hydroxy-10-oxo-5-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracen-9-yl]-4-hydroxy-10-oxo-5-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-2-carboxylic acid

C42H38O20 (862.1956)


Senna (powdered) is a yellow-brown powder with a slight odor and taste. (NTP, 1992) Sennoside A is a member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. It is a member of sennosides and an oxo dicarboxylic acid. Senna (Cassia species) is a popular herbal laxative that is available without prescription. Senna is generally safe and well tolerated, but can cause adverse events including clinically apparent liver injury when used in high doses for longer than recommended periods. Sennoside A is a natural product found in Rheum officinale, Rheum palmatum, and other organisms with data available. Preparations of SENNA PLANT. They contain sennosides, which are anthraquinone type CATHARTICS and are used in many different preparations as laxatives. A member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. Cathartic principle from rhubarb. Sennoside A is found in green vegetables and garden rhubarb. Sennoside A is found in garden rhubarb. Cathartic principle from rhubar D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].

   

L-Homocysteic acid

(2S)-2-Amino-4-sulphobutanoic acid

C4H9NO5S (183.0201)


L-homocysteic acid is a homocysteic acid with L-configuration. It has a role as a NMDA receptor agonist. It is an enantiomer of a D-homocysteic acid. L-Homocysteic acid is a sulfur-containing glutamic acid analog and a potent NMDA receptor agonist. It is related to homocysteine, a by-product of methionine metabolism. It belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Short-term incubation of lymphocytes with homocysteine or its oxidation product homocysteinic acid increased the formation of reactive oxygen species and cell necrosis [HMDB]

   

Homocitrulline

(2S)-2-amino-6-(carbamoylamino)hexanoic acid

C7H15N3O3 (189.1113)


Homocitrulline is a metabolite that can be detected in larger amounts in the urine of individuals with urea cycle disorders (OMIM 238970). The accumulation of carbamylphosphate due to depleted supply of ornithine for the urea cycle may be responsible for the enhanced synthesis of homocitrulline and homoarginine in some cases (PMID 2474087). Homocitrulline has been identified in the human placenta (PMID: 32033212). Homocitrulline is a metabolite that can be detected in larger amounts in the urine of individuals with urea cycle disorders (OMIM 238970). The accumulation of carbamylphosphate due to depleted supply of ornithine for the urea cycle may be responsible for the enhanced synthesis of homocitrulline and homoarginine in some cases (PMID 2474087). [HMDB] L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI). L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI).

   

1-Pyrroline-5-carboxylic acid

delta-1-Pyrroline-5-carboxylate, 14C-labeled, (+-)-isomer

C5H7NO2 (113.0477)


1-Pyrroline-5-carboxylic acid (CAS: 2906-39-0) is an enamine or an imino acid that forms upon the spontaneous dehydration of L-glutamate gamma-semialdehyde in aqueous solutions. The stereoisomer (S)-1-pyrroline-5-carboxylate is an intermediate in glutamate metabolism, arginine degradation, and proline biosynthesis and degradation. It can also be converted into or be formed from three amino acids: L-glutamate, L-ornithine, and L-proline. In particular, it is synthesized via the oxidation of proline by pyrroline-5-carboxylate reductase 1 (PYCR1) (EC 1.5.1.2) or by proline dehydrogenase (PRODH) (EC 1.5.99.8). It is hydrolyzed into L-glutamate by delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) (EC 1.5.1.12). It is also one of the few metabolites that can act as a precursor to other metabolites of both the urea cycle and the tricarboxylic acid (TCA) cycle. Under certain conditions, pyrroline-5-carboxylate can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyrroline-5-carboxylate are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. Hyperprolinemia type II results in high levels of pyrroline-5-carboxylate. People with hyperprolinemia type II have signs and symptoms that vary in severity, but they are more likely than type I to have seizures or intellectual disability. Pyrroline-5-carboxylate is highly reactive and excess quantities have been shown to cause cell death and apoptosis (PMID: 15548746). (s)-1-pyrroline-5-carboxylate, also known as delta-1-pyrroline-5-carboxylate, (+-)-isomer, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-1-pyrroline-5-carboxylate is soluble (in water) and a moderately acidic compound (based on its pKa). (s)-1-pyrroline-5-carboxylate can be found in a number of food items such as beech nut, mango, oyster mushroom, and other bread, which makes (s)-1-pyrroline-5-carboxylate a potential biomarker for the consumption of these food products (s)-1-pyrroline-5-carboxylate may be a unique E.coli metabolite.

   

Cupressuflavone

8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-8-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C30H18O10 (538.09)


Cupressuflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities. It has a role as an EC 3.4.21.37 (leukocyte elastase) inhibitor, a radical scavenger and a metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Cupressuflavone is a natural product found in Fitzroya cupressoides, Juniperus drupacea, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-8 of the two chromene rings respectively. Isolated from Cupressus sempervirens and Juniperus occidentalis, it exhibits free radical scavenging and antielastase activities.

   

alpha-Tocopherol acetate

2,5,7,8-Tetramethyl-2-(4,8,12-trimethyltridecyl)-3,4-dihydro-2H-1-benzopyran-6-yl acetic acid

C31H52O3 (472.3916)


D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols Vitamin E supplement and antioxidant for foodstuffs Vitamin E supplement and antioxidant for foodstuff D018977 - Micronutrients > D014815 - Vitamins Same as: D01735 D-α-Tocopherol acetate (D-Vitamin E acetate) can be hydrolyzed to d-alpha-tocopherol (VE) and absorbed in the small intestine[1]. D-α-Tocopherol acetate (D-Vitamin E acetate) can be hydrolyzed to d-alpha-tocopherol (VE) and absorbed in the small intestine[1].

   

1-Methoxy-4-(2-propenyl)benzene

BENZENE,1-ALLYL,4-METHOXY METHYLCHAVICOL

C10H12O (148.0888)


1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].

   

Toyomycin

chromomycin a3

C57H82O26 (1182.5094)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D002865 - Chromomycins D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes Same as: D02062

   

N6,N6,N6-Trimethyl-L-lysine

S)-5-Amino-5-carboxy-N,N,N-trimethyl-1-pentanaminium

C9H20N2O2 (188.1525)


N6,N6,N6-Trimethyl-L-lysine is a methylated derivative of the amino acid lysine. It is a component of histone proteins, a precursor of carnitine and a coenzyme of fatty acid oxidation. N6,N6,N6-Trimethyl-L-lysine residues are found in a number of proteins and are generated by the action of S-adenosyl-L-methionine on exposed lysine residues. When trimethyllysine is released from cognate proteins via proteolysis, it serves as a precursor for carnitine biosynthesis. Mitochondrial 6-N-trimethyllysine dioxygenase converts 6-N-trimethyllysine to 3-hydroxy-6-N-trimethyllysine as the first step for carnitine biosynthesis. Because the subsequent carnitine biosynthesis enzymes are cytosolic, 3-hydroxy-6-N-trimethyllysine must be transported out of the mitochondria by a putative mitochondrial 6-N-trimethyllysine/3-hydroxy-6-N-trimethyllysine transporter system. Plasma -N-trimethyllysine concentrations are significantly lower in systemic carnitine deficiency patients compared to normal individuals, but no significant difference in urinary -N-trimethyllysine excretion is seen between the two groups. [HMDB] N6,N6,N6-Trimethyl-L-lysine is a methylated derivative of the amino acid lysine. It is a component of histone proteins, a precursor of carnitine and a coenzyme of fatty acid oxidation. N6,N6,N6-Trimethyl-L-lysine residues are found in a number of proteins and are generated by the action of S-adenosyl-L-methionine on exposed lysine residues. When trimethyllysine is released from cognate proteins via proteolysis, it serves as a precursor for carnitine biosynthesis. Mitochondrial 6-N-trimethyllysine dioxygenase converts 6-N-trimethyllysine to 3-hydroxy-6-N-trimethyllysine as the first step for carnitine biosynthesis. Because the subsequent carnitine biosynthesis enzymes are cytosolic, 3-hydroxy-6-N-trimethyllysine must be transported out of the mitochondria by a putative mitochondrial 6-N-trimethyllysine/3-hydroxy-6-N-trimethyllysine transporter system. Plasma -N-trimethyllysine concentrations are significantly lower in systemic carnitine deficiency patients compared to normal individuals, but no significant difference in urinary -N-trimethyllysine excretion is seen between the two groups. D050258 - Mitosis Modulators > D008934 - Mitogens

   

Nivalenol

(1S,2R,2R,3S,7R,9R,10R,11S)-3,10,11-trihydroxy-2-(hydroxymethyl)-1,5-dimethyl-8-oxaspiro[oxirane-2,12-tricyclo[7.2.1.0^{2,7}]dodecan]-5-en-4-one

C15H20O7 (312.1209)


Nivalenol is a trichothecene produced by Fusaria, Stachybotrys, Trichoderma and other fungi, and some higher plants. They may contaminate food or feed grains, induce emesis and hemorrhage in lungs and brain, and damage bone marrow due to protein and DNA synthesis inhibition.(PubChem). It has been reported in the urine of patients suffering chronic idiopathic spastic paraparesis. These patients are usually found in hot and humid regions, most of which have heavy rains, and these conditions allow foods to be polluted by fungi some of which become toxigenic (PubMed ID 8855894 ). Nivalenol is a trichothecene produced by Fusaria, Stachybotrys, Trichoderma and other fungi, and some higher plants. They may contaminate food or feed grains, induce emesis and hemorrhage in lungs and brain, and damage bone marrow due to protein and DNA synthesis inhibition.(PubChem) D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

FA 15:0

Dodecanoic acid, 3,7,11-trimethyl-

C15H30O2 (242.2246)


A branched-chain saturated fatty acid comprising tetradecanoic acid carrying a 12-methyl substituent. CONFIDENCE standard compound; INTERNAL_ID 246 CONFIDENCE standard compound; INTERNAL_ID 247 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2]. 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].

   

FT-0775149

methyl (Z)-2-[(2S,3R,12bS)-3-ethyl-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl]-3-methoxyprop-2-enoate

C22H28N2O3 (368.21)


   

12-oxo-PDA

8-[(1S,5S)-4-oxo-5-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-yl]octanoic acid

C18H28O3 (292.2038)


12-oxo-pda, also known as (15z)-12-oxophyto-10,15-dienoate or 12-oxo-10,15(Z)-phytodienoic acid, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, 12-oxo-pda is considered to be an octadecanoid lipid molecule. 12-oxo-pda is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 12-oxo-pda can be found in corn, which makes 12-oxo-pda a potential biomarker for the consumption of this food product. D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

PE(16:0/18:1(9Z))

(2-aminoethoxy)[(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C39H76NO8P (717.5308)


PE(16:0/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(16:0/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

Cytidine triphosphate

({[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C9H16N3O14P3 (482.9845)


Cytidine triphosphate (CTP), also known as 5-CTP, is pyrimidine nucleoside triphosphate. Formally, CTP is an ester of cytidine and triphosphoric acid. It belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. CTP, much like ATP, consists of a base (cytosine), a ribose sugar, and three phosphate groups. CTP is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. CTP exists in all living species, ranging from bacteria to plants to humans and is used in the synthesis of RNA via RNA polymerase. Another enzyme known as cytidine triphosphate synthetase (CTPS) mediates the conversion of uridine triphosphate (UTP) into cytidine triphosphate (CTP) which is the rate-limiting step of de novo CTP biosynthesis. CTPS catalyzes a complex set of reactions that include the ATP-dependent transfer of the amide nitrogen from glutamine (i.e., glutaminase reaction) to the C-4 position of UTP to generate CTP. GTP stimulates the glutaminase reaction by accelerating the formation of a covalent glutaminyl enzyme intermediate. CTPS activity regulates the intracellular rates of RNA synthesis, DNA synthesis, and phospholipid synthesis. CTPS is an established target for a number of antiviral, antineoplastic, and antiparasitic drugs. CTP also acts as an inhibitor of the enzyme known as aspartate carbamoyltransferase, which is used in pyrimidine biosynthesis. CTP also reacts with nitrogen-containing alcohols to form coenzymes that participate in the formation of phospholipids. In particular, CTP is the direct precursor of the activated, phospholipid pathway intermediates CDP-diacylglycerol, CDP-choline, and CDP-ethanolamine ((PMID: 18439916). CDP-diacylglycerol is the source of the phosphatidyl moiety for phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (synthesized by way of the CDP-diacylglycerol pathway) as well as phosphatidylglycerol, cardiolipin, and phosphatidylinositol (PMID: 18439916). Cytidine triphosphate, also known as 5-ctp or cytidine 5-triphosphoric acid, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Cytidine triphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Cytidine triphosphate can be found in a number of food items such as lowbush blueberry, black radish, american pokeweed, and cherry tomato, which makes cytidine triphosphate a potential biomarker for the consumption of these food products. Cytidine triphosphate can be found primarily in cellular cytoplasm, as well as throughout all human tissues. Cytidine triphosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine triphosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-14:0/i-17:0/i-16:0/i-21:0), cardiolipin biosynthesis cl(a-13:0/a-21:0/i-22:0/i-17:0), phosphatidylethanolamine biosynthesis PE(18:2(9Z,12Z)/24:0), and cardiolipin biosynthesis cl(i-13:0/a-21:0/a-15:0/i-16:0). Cytidine triphosphate is also involved in several metabolic disorders, some of which include sialuria or french type sialuria, tay-sachs disease, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and g(m2)-gangliosidosis: variant B, tay-sachs disease. Cytidine triphosphate is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. Cytidine triphosphate is a coenzyme in metabolic reactions like the synthesis of glycerophospholipids and glycosylation of proteins . Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].

   

1-Pentanol

N-Pentanol, 1-(13)C-labeled CPD

C5H12O (88.0888)


1-Pentanol, also known as butylcarbinol or 1-pentyl alcohol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-pentanol is considered to be a fatty alcohol lipid molecule. 1-Pentanol is an organic compound with the formula C5H12O. 1-Pentanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. All eight isomers of 1-Pentanol are known:; It is a colourless liquid of density 0.8247 g/cm3 (0 oC), boiling at 131.6 oC, slightly soluble in water, easily soluble in organic solvents. 1-Pentanol exists in all eukaryotes, ranging from yeast to humans. 1-Pentanol is a sweet, balsamic, and fusel tasting compound. 1-Pentanol can be found in a few different foods, such as black walnuts, common thymes, and tea and in a lower concentration in safflowers, highbush blueberries, and kohlrabis. 1-Pentanol has also been detected, but not quantified, in several different foods, such as corns, garden tomato (var.), allspices, cherry tomato, and evergreen blackberries. It possesses a characteristic strong smell and a sharp burning taste. The other amyl alcohols may be obtained synthetically. It is a solid that melts at 48 to 50 °C and boils at 112.3 °C. On passing its vapour through a red-hot tube, it decomposes with production of acetylene, ethylene, propylene, and other compounds. Of these, tertiary 1-Pentanol has been the most difficult to obtain, its synthesis having first been reported in 1891, by L. Tissier (Comptes Rendus, 1891, 112, p. 1065) by the reduction of a mixture of trimethyl acetic acid and trimethylacetyl chloride with sodium amalgam. It is oxidized by chromic acid to isovaleraldehyde, and it forms crystalline addition compounds with calcium chloride and tin(IV) chloride. When pure, it is nontoxic, while the impure product is toxic. Widely distributed in plant sources, e.g. peppermint oil, tomatoes, tea, potatoes. Flavouring ingredient

   

Benzoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(benzoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C28H40N7O17P3S (871.1414)


Benzoyl-CoA is an intermediate in phenylalanine (as well as benzoate and salicylate) metabolism. In bacteria and gut microflora, benzoyl-CoA is a compound that is formed as a central intermediate in the degradation of a large number of aromatic growth substrates. Benzoyl CoA can be synthesized from hippuric acid and vice versa. [HMDB]. Benzoyl-CoA is found in many foods, some of which are malabar plum, barley, vanilla, and banana. Benzoyl-CoA is an intermediate in phenylalanine (as well as benzoate and salicylate) metabolism. In bacteria and gut microflora, benzoyl-CoA is a compound that is formed as a central intermediate in the degradation of a large number of aromatic growth substrates. Benzoyl CoA can be synthesized from hippuric acid and vice versa. Benzoyl-CoA is a microbial metabolite that can be found in Streptomyces (PMID: 12511484).

   

Dibenzofuran

8-oxatricyclo[7.4.0.0^{2,7}]trideca-1(13),2,4,6,9,11-hexaene

C12H8O (168.0575)


   

Pyrophosphate

phosphono dihydrogen phosphate

H4O7P2 (177.9432)


The anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Formamide

Ameisensaeureamid

CH3NO (45.0215)


Formamide, also known as methanamide or ameisensaeureamid, belongs to the class of organic compounds known as carboximidic acids. These are organic acids with the general formula RC(=N)-OH (R=H, organic group). Formamide, in its pure state, has been used as an alternative solvent for the electrostatic self-assembly of polymer nanofilms. Formamide exists in all living organisms, ranging from bacteria to humans. Formamide has been detected, but not quantified in several different foods, such as hyssops, rose hips, asian pears, brassicas, and green bell peppers. It has been used as a softener for paper and fiber. Inhalation of large amounts of formamide vapor may require medical attention. In the past, formamide was produced by treating formic acid with ammonia, which produces ammonium formate, which in turn yields formamide upon heating:HCOOH + NH3 → HCOO−NH+4HCOO−NH+4 → HCONH2 + H2O. Formamide is also generated by aminolysis of ethyl formate: HCOOCH2CH3 + NH3 → HCONH2 + CH3CH2OH. The current industrial process for the manufacture of formamide involves either the carbonylation of ammonia: CO + NH3 → HCONH2. An alternative two-stage process involves the ammonolysis of methyl formate, which is formed from carbon monoxide and methanol: CO + CH3OH → HCOOCH3HCO2CH3 + NH3 → HCONH2 + CH3OH. Formamide is used in the industrial production of hydrogen cyanide. Formamide has been shown to exhibit hematoxicity in animals and is considered hazardous by prolonged exposure through inhalation, oral intake and dermal absorption. Formamide is a metabolite used for biological monitoring of workers exposed to N-N-dimethylformamide (DMF).(PMID 7622279).

   
   

3-Oxoadipic acid

3-Oxoadipic acid, disodium salt

C6H8O5 (160.0372)


3-Oxoadipic acid is a regularly occurring Adipic dicarboxylic acid human metabolite found occasionally in biofluids of healthy individuals. (PMIDs 8340451, 1769109, 2338430) Increased amounts of 3-Oxoadipic acid are excreted after ingestion of Sebacic acid, supporting the hypothesis that dicarboxylic acids are degraded by ordinary beta-oxidation. (PMID 3220884) [HMDB] 3-Oxoadipic acid is a regularly occurring Adipic dicarboxylic acid human metabolite found occasionally in biofluids of healthy individuals. (PMIDs 8340451, 1769109, 2338430) Increased amounts of 3-Oxoadipic acid are excreted after ingestion of Sebacic acid, supporting the hypothesis that dicarboxylic acids are degraded by ordinary beta-oxidation. (PMID 3220884).

   

Phosphoglycolic acid

Glycolic acid dihydrogen phosphate

C2H5O6P (155.9824)


Phosphoglycolic acid, also known as 2-phosphoglycolate or (phosphonooxy)-acetate, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Phosphoglycolic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoglycolic acid can be found in a number of food items such as arrowhead, rocket salad (sspecies), roselle, and natal plum, which makes phosphoglycolic acid a potential biomarker for the consumption of these food products. Phosphoglycolic acid can be found primarily throughout most human tissues. Phosphoglycolic acid exists in all living species, ranging from bacteria to humans. Phosphoglycolic acid is a substrate for triose-phosphate isomerase. This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group.

   

Pantetheine 4'-phosphate

[(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphonic acid

C11H23N2O7PS (358.0964)


Pantetheine 4-phosphate, or 4-phosphopantetheine, is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites. 4-phosphopantetheine is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites. [HMDB]

   

Glycerophosphoinositol

[(2R)-2,3-dihydroxypropoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

C9H19O11P (334.0665)


Glycerophosphoinositol (CAS: 16824-65-0), also known as 1-(sn-glycero-3-phospho)-1D-myo-inositol, is produced through deacylation by phospholipase B of the essential phospholipid phosphatidylinositol. Glycerophosphoinositols are ubiquitous phosphoinositide metabolites involved in the control of several cell functions. They exert their actions both intracellularly and by rapidly equilibrating across the plasma membrane. Their transport is mediated by the Glut2 transporter, the human ortholog of GIT1 (PMID: 17141226). Glycerophosphoinositol is a substrate for glycerophosphoinositol inositolphosphodiesterase (EC 3.1.4.43) and is involved in the following reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = glycerol + 1D-myo-inositol 1-phosphate. It is also a substrate for glycerophosphoinositol glycerophosphodiesterase (EC 3.1.4.44) which catalyzes the chemical reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = myo-inositol + sn-glycerol 3-phosphate. Isolated from beef liver. Glycerylphosphoinositol is found in animal foods.

   

5-O-(1-Carboxyvinyl)-3-phosphoshikimate

5-(1-carboxyethenoxy)-4-hydroxy-3-phosphonooxycyclohexene-1-carboxylic acid

C10H13O10P (324.0246)


   

Tauropine

2-(2-sulfoethylamino)propanoic acid

C5H11NO5S (197.0358)


A derivative of L-alanine having a 2-sulfoethyl group attached to the alpha-nitrogen.

   

beta-Alanopine

N-(D-1-Carboxyethyl)-beta-alanine

C6H11NO4 (161.0688)


   

Propylene glycol

(R)-2-Hydroxy-1-propanol

C3H8O2 (76.0524)


Propylene glycol (CAS: 57-55-6), also known as 1,2-propanediol, is an organic compound (a diol alcohol), usually a tasteless, odourless, and colourless clear oily liquid that is hygroscopic and miscible with water, acetone, and chloroform. It is manufactured by the hydration of propylene oxide. Propylene glycol is used as a solvent for intravenous, oral, and topical pharmaceutical preparations It is generally considered safe. However, in large doses, it can be toxic, especially if given over a short period of time. Intravenous lorazepam contains the largest amount of propylene glycol of commonly used drugs. In adults with normal liver and kidney function, the terminal half-life of propylene glycol ranges from 1.4 to 3.3 hours. Propylene glycol is metabolized by the liver to form lactate, acetate, and pyruvate. The nonmetabolized drug is excreted in the urine mainly as the glucuronide conjugate, approximately 12 to 45 percent is excreted unchanged in urine. Renal clearance decreases as the dose administered increases (390 ml/minute/173 m2 at a dose of 5 g/day but only 144 ml/minute/173 m2 at a dose of 21 g/day). These data suggest that renal clearance declines at higher propylene glycol doses because of the saturation of proximal tubular secretion of the drug. As an acceptable level of propylene glycol has not been defined, the clinical implication of a propylene glycol level is unclear. The World Health Organization (WHO) recommends a maximum consumption of 25 mg/kg/day (1.8 g/day for a 75 kg male) of propylene glycol when used as a food additive, but this limit does not address its use as a drug solvent. No maximum dose is recommended in the literature for intravenous therapy with propylene glycol. Intoxication occurs at much higher doses than the WHO dose limit and is exclusive to pharmacologic exposure. Propylene glycol toxicity includes the development of serum hyperosmolality, lactic acidosis, and kidney failure. It has been suggested that proximal tubular necrosis is the cause of acute kidney injury from propylene glycol. Along these lines, proximal tubular cell injury occurs in cultured human cells exposed to propylene glycol. Acute tubular necrosis was described with propylene glycol toxicity in a case of concomitant administration of intravenous lorazepam and trimethoprim sulfamethoxazole. Propylene glycol induced intoxication can also mimic sepsis or systemic inflammatory response syndrome (SIRS). Patients suspected of having sepsis with negative cultures should be evaluated for propylene glycol toxicity if they have been exposed to high dose lorazepam or other medications containing this solvent (PMID:17555487). Propylene glycol is an anticaking agent, antioxidant, dough strengthener, emulsifier, flavouring agent, formulation aid, humectant, solvent, preservative, stabiliser, hog/poultry scald agent, and surface active agent. It is found in foods such as roasted sesame seeds, oats, truffle and other mushrooms. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

Methacrylyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylprop-2-enoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H40N7O17P3S (835.1414)


Methacrylyl-CoA, also known as methacryloyl-CoA, belongs to the class of organic compounds known as organic pyrophosphates. These are organic compounds containing the pyrophosphate oxoanion, with the structure OP([O-])(=O)OP(O)([O-])=O. Thus, methacrylyl-CoA is considered to be a fatty ester lipid molecule. Methacrylyl-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Methacrylyl-CoA has been detected, but not quantified in, several different foods, such as beechnuts, hyacinth beans, devilfish, eggplants, and cupuaçus. This could make methacrylyl-CoA a potential biomarker for the consumption of these foods. Methacrylyl-CoA is a metabolite in the valine, leucine, and isoleucine degradation pathway and highly reacts with free thiol compounds (PMID: 14684172). Cirrhosis results in a significant decrease in 3-hydroxyisobutyryl-CoA hydrolase activity, a key enzyme in the valine catabolic pathway that plays an important role in the catabolism of a potentially toxic compound, methacrylyl-CoA, formed as an intermediate in the catabolism of valine and isobutyrate (PMID: 8938168). Methacrylyl-coenzyme a, also known as methylacrylyl-coa or 2-methylprop-2-enoyl-coa, is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, methacrylyl-coenzyme a is considered to be a fatty ester lipid molecule. Methacrylyl-coenzyme a is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Methacrylyl-coenzyme a can be found in a number of food items such as tea leaf willow, mexican groundcherry, new zealand spinach, and parsnip, which makes methacrylyl-coenzyme a a potential biomarker for the consumption of these food products.

   

Deoxy-5-methylcytidylate

2-Deoxy-5-methylcytidine-5-monophosphate disodium salt

C10H16N3O7P (321.0726)


   

Mg-protoporphyrin IX

Mg-protoporphyrin IX

C34H32MgN4O4 (584.2274)


   

2-Chloro-1,4-naphthoquinone

2-Chloro-1,4-naphthoquinone

C10H5ClO2 (191.9978)


   

Strombine

2,2-(Methylazanediyl)diacetic acid

C5H9NO4 (147.0532)


   

Coumermycin

Coumermycin A1

C55H59N5O20 (1109.3753)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic D004791 - Enzyme Inhibitors

   

2-(a-Hydroxyethyl)thiamine diphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy(phosphonooxy)phosphoryl]oxy}ethyl)-2-(1-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium

C14H23N4O8P2S+ (469.0712)


2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125] [HMDB] 2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125].

   

1-Benzyl-1,2,3,4-tetrahydroisoquinoline

1,2,3,4-tetrahydro-1-(Phenylmethyl)isoquinoline hydrochloride

C16H17N (223.1361)


1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) as a possible PD-eliciting neurotoxin and evaluated its characteristics relevant to Parkinson disease (PD). 1BnTIQ exist in mammals and is proposed as possible PD-eliciting neurotoxin. PD is believed to be induced by the interaction of genetic predisposition and environmental factors, and a type of neurotoxin is proposed to be one of the environmental factors. 1BnTIQ inhibits [3H] dopamine uptake in HEK293 cells which stably express dopamine transporter. 1BnTIQ also inhibits NADH-ubiquinone oxidoreductase (complex I) in the mitochondrial respiratory chain. 1BnTIQ decreases the dopamine content in the mesencephalon in both dose- and time-dependent manners and it irreversibly reduced the dopamine content. Furthermore, it causes morphological changes in tyrosine hydroxylase-positive cells in the mesencephalon and reduced the number of cells. (PMID 12440154) [HMDB] 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) as a possible PD-eliciting neurotoxin and evaluated its characteristics relevant to Parkinson disease (PD). 1BnTIQ exist in mammals and is proposed as possible PD-eliciting neurotoxin. PD is believed to be induced by the interaction of genetic predisposition and environmental factors, and a type of neurotoxin is proposed to be one of the environmental factors. 1BnTIQ inhibits [3H] dopamine uptake in HEK293 cells which stably express dopamine transporter. 1BnTIQ also inhibits NADH-ubiquinone oxidoreductase (complex I) in the mitochondrial respiratory chain. 1BnTIQ decreases the dopamine content in the mesencephalon in both dose- and time-dependent manners and it irreversibly reduced the dopamine content. Furthermore, it causes morphological changes in tyrosine hydroxylase-positive cells in the mesencephalon and reduced the number of cells. (PMID 12440154). D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists

   

Zymosterol intermediate 2

(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C27H44O (384.3392)


Zymosterol, also known as 5alpha-cholesta-8,24-dien-3beta-ol or delta8,24-cholestadien-3beta-ol, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, zymosterol is considered to be a sterol lipid molecule. Zymosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Zymosterol can be synthesized from 5alpha-cholestane. Zymosterol is also a parent compound for other transformation products, including but not limited to, 4beta-methylzymosterol-4alpha-carboxylic acid, 3-dehydro-4-methylzymosterol, and zymosterol intermediate 1b. Zymosterol can be found in a number of food items such as squashberry, hard wheat, salmonberry, and loquat, which makes zymosterol a potential biomarker for the consumption of these food products. Zymosterol exists in all eukaryotes, ranging from yeast to humans. In humans, zymosterol is involved in several metabolic pathways, some of which include zoledronate action pathway, alendronate action pathway, pravastatin action pathway, and atorvastatin action pathway. Zymosterol is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, lysosomal acid lipase deficiency (wolman disease), smith-lemli-opitz syndrome (SLOS), and chondrodysplasia punctata II, X linked dominant (CDPX2). Zymosterol is an intermediate in cholesterol biosynthesis. Disregarding some intermediate compounds (e.g. 4-4-dimethylzymosterol) lanosterol can be considered a precursor of zymosterol in the cholesterol synthesis pathway. The conversion of zymosterol into cholesterol happens in the endoplasmic reticulum. Zymosterol accumulates quickly in the plasma membrane coming from the cytosol. The movement of zymosterol across the cytosol is more than twice as fast as the movement of cholesterol itself . Zymosterol is the precursor of cholesterol and is found in the plasma membrane. zymosterol circulates within the cells. The structural features of zymosterol provided optimal substrate acceptability. In human fibroblasts, zymosterol is converted to cholesterol solely in the rough ER. Little or no zymosterol or cholesterol accumulates in the rough ER in vivo. Newly synthesized zymosterol moves to the plasma membrane without a detectable lag and with a half-time of 9 min, about twice as fast as cholesterol. The pool of radiolabeled zymosterol in the plasma membrane turns over rapidly, faster than does intracellular cholesterol. Thus, plasma membrane zymosterol is not stagnant. [3H]Zymosterol pulsed into intact cells is initially found in the plasma membrane. (PMID: 1939176). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Ergosta-5,7,22,24(28)-tetraen-3beta-ol

(3S,10R,13R)-10,13-dimethyl-17-[(E,2R)-6-methyl-5-methylidenehept-3-en-2-yl]-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H42O (394.3235)


A 3beta-sterol having double bonds in the 5-, 7- and 22-positions and a methylene group at position 24.

   

Indoxyl

1H-Indol-3-ol

C8H7NO (133.0528)


Indoxyl, also known as 1H-indol-3-ol, belongs to the class of organic compounds known as hydroxyindoles. These are organic compounds containing an indole moiety that carries a hydroxyl group. Indoxyl is isomeric with oxindol and is obtained as an oily liquid. Indoxyl exists in all living organisms, ranging from bacteria to humans. Indoxyl is obtained from indican, which is a glycoside. Obermayers reagent is a dilute solution FeCl3 in hydrochloric acid. The hydrolysis of indican yields β-D-glucose and indoxyl. Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent such as atmospheric oxygen. In chemistry, indoxyl is a nitrogenous substance with the chemical formula: C8H7NO. Indoxyl can be found in urine and is titrated with Obermayers reagent. Indigo dye is a product of the reaction of indoxyl by a mild oxidizing agent, eg. atmospheric oxygen.

   

Selenate

Selenic acid, disodium salt, 75Se-labeled

H2O4Se (145.9118)


Selenate, also known as selenic acid, is a member of the class of compounds known as non-metal selanates. These are inorganic non-metallic compounds containing a selenate as its largest oxoanion. Selenate can be found in a number of foods such as chives, naranjillas, moth beans, other soy products, black crowberries, rapes, acorns, and Alaska blueberries. Selenates are analogous to sulfates and have similar chemistry (Wikipedia). They are highly soluble in aqueous solutions at ambient temperatures (Wikipedia). Selenate can be metabolized to methyl-2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (SeSug1) and methyl-2-amino-2-deoxy-1-seleno-β-D-galactopyranoside (SeSug3) (PMID: 25270623). Selenate is metabolized only marginally and is excreted rapidly via urine generally (PMID: 25270623). Sodium selenate is effectively used for bio-fortification of crops hence fortifying food/feed to mitigate selenium deficiency in humans and livestock (Wikipedia). The decahydrate is a common ingredient in multivitamins and livestock feed as a source of selenium (Wikipedia). D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014131 - Trace Elements

   

(3Z)-phytochromobilin

(3Z)-phytochromobilin

C33H36N4O6 (584.2635)


   

Prostaglandin-c2

(5Z)-7-[(1R)-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopent-2-en-1-yl]hept-5-enoic acid

C20H30O4 (334.2144)


This compound belongs to the family of Prostaglandins and related compounds. These are unsaturated carboxylic acids consisting of of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid.

   

Prostaglandin G2

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroperoxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O6 (368.2199)


Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. The COX site activity that catalyzes the conversion of arachidonic acid to PGG2 is the target for nonsteroidal antiinflammatory drugs (NSAIDs). The peroxidase site activity catalyzes the two-electron reduction of the hydroperoxide bond of PGG2 to yield the corresponding alcohol prostaglandin H2 (PGH2). The formation of a phenoxyl radical on Tyr385 couples the activities of the two sites. The Tyr385 radical is produced via oxidation by compound I, an oxoferryl porphyrin -cation radical, which is generated by reaction of the hemin resting state with PGG2 or other hydroperoxides. The tyrosyl radical homolytically abstracts the 13proS hydrogen atom of arachidonic acid which initiates a radical cascade that ends with the stereoselective formation of PGG2. PGG2 then migrates from the cyclooxygenase (COX) site to the peroxidase (POX) site where it reacts with the hemin group to generate PGH2 and compound I. The heterolytic oxygen-oxygen bond cleavage is assisted by the conserved distal residues His207 and Gln203, mutation of which has been shown to severely impair enzyme activity. Compound I, upon reaction with Tyr385, gives compound II, which in turn is reduced to the hemin resting state by one-electron oxidation of reducing cosubstrates or undergoes reactions that result in enzyme self-inactivation. Prostaglandin endoperoxide H synthase (PGHS) 1 is a bifunctional membrane enzyme of the endoplasmic reticulum that converts arachidonic acid into prostaglandin H2 (PGH2), the precursor of all prostaglandins, thromboxanes, and prostacyclins. These lipid mediators are intricately involved in normal physiology, namely, in mitogenesis, fever generation, pain response, lymphocyte chemotaxis, fertility, and contradictory stimuli such as vasoconstriction and vasodilatation, as well as platelet aggregation and quiescence. PGHS is implicated in numerous pathologies, including inflammation, cancers of the colon, lung, and breast, Alzheimers disease, Parkinsons disease, and numerous cardiovascular diseases including atherosclerosis, thrombosis, myocardial infarction, and stroke. (PMID: 14594816, 16552393, 16411757). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

2-Thioxo-4-thiazolidinone

2-sulfanylidene-1,3-thiazolidin-4-one

C3H3NOS2 (132.9656)


   

Previtamin D3

(1S)-3-[(Z)-2-[(1R,7aR)-7a-methyl-1-[(2R)-6-methylheptan-2-yl]-2,3,3a,6,7,7a-hexahydro-1H-inden-4-yl]ethenyl]-4-methylcyclohex-3-en-1-ol

C27H44O (384.3392)


Previtamin D3 is an intermediate in the production of Vitamin D. [HMDB] Previtamin D3 is an intermediate in the production of Vitamin D.

   

Sulbactam

Sulbactam (sodium salt)

C8H11NO5S (233.0358)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CG - Beta-lactamase inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D065093 - beta-Lactamase Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C2140 - Adjuvant > C183118 - Beta-lactamase Inhibitor D004791 - Enzyme Inhibitors

   

Tazobactam

(2S,3S,5S)-3-Methyl-7-oxo-3-(1H-1,2,3-triazol-1-ylmethyl)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid 4,4-dioxide

C10H12N4O5S (300.0528)


Tazobactam is only found in individuals that have used or taken this drug.It is a antibacterial penicillin derivative which inhibits the action of bacterial beta-lactamases.Tazobactam broadens the spectrum of piperacillin by making it effective against organisms that express beta-lactamase and would normally degrade piperacillin. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CG - Beta-lactamase inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D065093 - beta-Lactamase Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C2140 - Adjuvant > C183118 - Beta-lactamase Inhibitor D004791 - Enzyme Inhibitors Tazobactam (CL-298741) is a potent β-lactamases inhibitor and penicillin antibiotic. Tazobactam has antibacterial activity. Tazobactam can be used for pneumonia research[1][2].

   

Mometasone

(1R,2S,10S,11S,13R,14R,15S,17S)-1-chloro-14-(2-chloroacetyl)-14,17-dihydroxy-2,13,15-trimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-3,6-dien-5-one

C22H28Cl2O4 (426.1365)


Mometasone is a medium-potency synthetic corticosteroid with antiinflammatory, antipruritic, and vasoconstrictive properties. Studies in asthmatic patients have demonstrated that mometasone provides a favorable ratio of topical to systemic activity due to its primary local effect along with the extensive hepatic metabolism and the lack of active metabolites. Though effective for the treatment of asthma, glucocorticoids do not affect asthma symptoms immediately. Maximum improvement in symptoms following inhaled administration of mometasone furoate may not be achieved for 1 to 2 weeks or longer after starting treatment. he antiinflammatory actions of corticosteroids are thought to involve phospholipase A2 inhibitory proteins, lipocortins, which control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes. D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XC - Corticosteroids, potent, other combinations R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents D003879 - Dermatologic Agents

   

Paraldehyde

2,4,6-Trimethyl-1,3,5-trioxacyclohexane

C6H12O3 (132.0786)


Paraldehyde is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CC - Aldehydes and derivatives D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Thiamylal

Dihydro-5-(1-methylbutyl)-5-(2-propenyl)-2-thioxo-4,6(1H,5H)-pyrimidinedione

C12H18N2O2S (254.1089)


Thiamylal is only found in individuals that have used or taken this drug. It is a barbiturate that is administered intravenously for the production of complete anesthesia of short duration, for the induction of general anesthesia, or for inducing a hypnotic state. (From Martindale, The Extra Pharmacopoeia, 30th ed, p919)Thiamylal binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Cabergoline

1-[3-(dimethylamino)propyl]-3-ethyl-1-[(2R,4R,7R)-6-(prop-2-en-1-yl)-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraene-4-carbonyl]urea

C26H37N5O2 (451.2947)


Cabergoline is only found in individuals that have used or taken this drug. It is a long-acting dopamine agonist and prolactin inhibitor. It is used to treat hyperprolactinemic disorders and Parkinsonian Syndrome. Cabergoline possesses potent agonist activity on dopamine D2 receptors. The dopamine D2 receptor is a 7-transmembrane G-protein coupled receptor associated with Gi proteins. In lactotrophs, stimulation of dopamine D2 causes inhibition of adenylyl cyclase, which decreases intracellular cAMP concentrations and blocks IP3-dependent release of Ca2+ from intracellular stores. Decreases in intracellular calcium levels may also be brought about via inhibition of calcium influx through voltage-gated calcium channels, rather than via inhibition of adenylyl cyclase. Additionally, receptor activation blocks phosphorylation of p42/p44 MAPK and decreases MAPK/ERK kinase phosphorylation. Inhibition of MAPK appears to be mediated by c-Raf and B-Raf-dependent inhibition of MAPK/ERK kinase. Dopamine-stimulated growth hormone release from the pituitary gland is mediated by a decrease in intracellular calcium influx through voltage-gated calcium channels rather than via adenylyl cyclase inhibition. Stimulation of dopamine D2 receptors in the nigrostriatal pathway leads to improvements in coordinated muscle activity in those with movement disorders. Cabergoline is a long-acting dopamine receptor agonist with a high affinity for D2 receptors. Receptor-binding studies indicate that cabergoline has low affinity for dopamine D1, alpha1,- and alpha2- adrenergic, and 5-HT1- and 5-HT2-serotonin receptors. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CB - Prolactine inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist Cabergoline is an ergot derived-dopamine D2-like receptor agonist that has high affinity for D2, D3, and 5-HT2B receptors (Ki=0.7, 1.5, and 1.2, respectively).

   
   

Ptaerochromenol

Ptaerochromenol

C15H14O5 (274.0841)


   

beta-cyclocostunolide

[3aR-(3aalpha,5aalpha,9abeta,9balpha)]-Decahydro-5a-methyl-3,9-bis(methylene)naphtho[1,2-b]furan-2(3H)-one

C15H20O2 (232.1463)


   

Multistatin

Multistatin

C20H22O6 (358.1416)


   

Ascaridole

1-Methyl-4-(1-methylethyl)-2,3-dioxabicyclo[2.2.2]oct-5-ene, 9ci

C10H16O2 (168.115)


Ascaridole is found in cardamom. Said to be the major constituent of oil of Peumus boldus (boldo).Ascaridole is a natural organic compound classified as a bicyclic monoterpene that has an unusual bridging peroxide functional group. It is the primary constituent of the oil of Mexican Tea (Dysphania ambrosioides, formerly Chenopodium ambrosioides). It is a colorless liquid that is soluble in most organic solvents. Like other low molecular weight organic peroxides, it is unstable and prone to explosion when heated or treated with organic acids Said to be the major constituent of oil of Peumus boldus (boldo) D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Sciadopitysin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-methoxyphenyl)-

C33H24O10 (580.1369)


Sciadopitysin is a biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. It has a role as a bone density conservation agent and a platelet aggregation inhibitor. It is a biflavonoid, a hydroxyflavone, a methoxyflavone and a ring assembly. It is functionally related to an amentoflavone. Sciadopitysin is a natural product found in Podocarpus elongatus, Podocarpus urbanii, and other organisms with data available. A biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2]. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2].

   

Otonecine

1H-Pyrrolizinium, 2,3,5,7a-tetrahydro-1,7a-dihydroxy-7-(hydroxymethyl)-4-methyl-, (1R-(1alpha,4beta,7abeta))-

C9H15NO3 (185.1052)


   

Physcion 8-glucoside

1-Hydroxy-3-methoxy-6-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)anthracene-9,10-dione

C22H22O10 (446.1213)


Physcion 8-glucoside is an anthraquinone. Physcion 8-glucoside is a natural product found in Rheum palmatum, Rheum australe, and Senna obtusifolia with data available.

   

Pseudohypericin

9,11,13,16,18,20-hexahydroxy-5-(hydroxymethyl)-24-methyloctacyclo[13.11.1.12,10.03,8.04,25.019,27.021,26.014,28]octacosa-1(26),2,4(25),5,8,10,12,14(28),15(27),16,18,20,23-tridecaene-7,22-dione

C30H16O9 (520.0794)


Pseudohypericin is an ortho- and peri-fused polycyclic arene. Pseudohypericin is a natural product found in Hypericum bithynicum, Hypericum linarioides, and other organisms with data available. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Phaseollin

17,17-dimethyl-4,12,18-trioxapentacyclo[11.8.0.0²,¹¹.0⁵,¹⁰.0¹⁴,¹⁹]henicosa-1(13),5(10),6,8,14(19),15,20-heptaen-7-ol

C20H18O4 (322.1205)


Isolated from Phaseolus vulgaris (kidney bean) and Vigna unguiculata. Phaseollin is found in many foods, some of which are yellow wax bean, soy bean, pulses, and cowpea. Phaseollin is found in common bean. Phaseollin is isolated from Phaseolus vulgaris (kidney bean) and Vigna unguiculata.

   

Scopoline

(4S)-6-Methyl-2-oxa-6-azatricyclo[3.3.1.03,7]nonan-4-ol

C8H13NO2 (155.0946)


Scopoline (compound 3a) is a compound easily formed from scopine[1]. Scopoline (compound 3a) is a compound easily formed from scopine[1].

   

Benomyl

N-butyl-2-{[hydroxy(methoxy)methylidene]amino}-1H-1,3-benzodiazole-1-carboximidic acid

C14H18N4O3 (290.1379)


Benomyl is an Agricultural and horticultural systemic fungicide mainly used on rice and soybea D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D016573 - Agrochemicals D010575 - Pesticides

   

Tetrabenazine

9,10-dimethoxy-3-(2-methylpropyl)-1H,2H,3H,4H,6H,7H,11bH-pyrido[2,1-a]isoquinolin-2-one

C19H27NO3 (317.1991)


A drug formerly used as an antipsychotic but now used primarily in the treatment of various movement disorders including tardive dyskinesia. Tetrabenazine blocks uptake into adrenergic storage vesicles and has been used as a high affinity label for the vesicle transport system. [PubChem] D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators N - Nervous system Same as: D08575

   

Valspodar

3-Keto-bmt(1)-val(2)-cyclosporin A

C63H111N11O12 (1213.8413)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D003524 - Cyclosporins C1744 - Multidrug Resistance Modulator Same as: D06277

   

Azidopine

3-{2-[(4-azidophenyl)formamido]ethyl} 5-ethyl 2,6-dimethyl-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3,5-dicarboxylic acid

C27H26F3N5O5 (557.1886)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels

   

Xanomeline tartrate

5-[4-(hexyloxy)-1,2,5-thiadiazol-3-yl]-1-methyl-1,2,3,6-tetrahydropyridine

C14H23N3OS (281.1562)


Same as: D06330 Xanomeline, as an effective and selective muscarinic type 1 and type 4 (M1/M4) receptor agonist, increases neuronal excitability. Xanomeline can be used for the research of neurological disorders, such as schizophrenia[1][2].

   

Etorphine

6,14-Ethenomorphinan-7-methanol, 4,5-epoxy-3-hydroxy-6-methoxy-alpha,17-dimethyl-alpha-propyl-, (5alpha,7alpha(R))-

C25H33NO4 (411.2409)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D07937

   

Gibberellin A14

Gibberellin A14

C20H28O5 (348.1937)


   

DB-065692

Desoxyepothilone b

C27H41NO5S (491.2705)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Bropirimine

Bropirimine

C10H8BrN3O (264.9851)


D007155 - Immunologic Factors > D007369 - Interferon Inducers C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D000970 - Antineoplastic Agents Same as: D01666

   

24-Hydroxycholesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5S)-5-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C27H46O2 (402.3498)


24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622). 24-Hydroxycholesterol has been found to accumulate in hereditary hypercholesterolemia, an inborn error of metabolism. 24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622) [HMDB] 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].

   

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

10,10-bis[(pyridin-4-yl)methyl]-9,10-dihydroanthracen-9-one

C26H20N2O (376.1576)


   

Monobenzone

MONOBENZYL ether OF hydroquinone

C13H12O2 (200.0837)


Monobenzone is the monobenzyl ether of hydroquinone used medically for depigmentation. Monobenzone occurs as a white, almost tasteless crystalline powder, soluble in alcohol and practically insoluble in water. The topical application of monobenzone in animals increases the excretion of melanin from the melanocytes. The same action is thought to be responsible for the depigmenting effect of the drug in humans. Monobenzone may cause destruction of melanocytes and permanent depigmentation. D - Dermatologicals Same as: D05072

   

1,2-Dichlorobenzene

Ortho-dichlorobenzene

C6H4Cl2 (145.969)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

1,2-DIBROMO-3-CHLOROPROPANE

1,2-DIBROMO-3-CHLOROPROPANE

C3H5Br2Cl (233.8446)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Pentachloronitrobenzene

1,2,3,4,5-pentachloro-6-nitrobenzene

C6Cl5NO2 (292.8372)


D016573 - Agrochemicals D010575 - Pesticides

   

1,2,3-Trichlorobenzene

1,2,6-Trichlorobenzene

C6H3Cl3 (179.93)


   

FENSULFOTHION

FENSULFOTHION

C11H17O4PS2 (308.0306)


CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8595; ORIGINAL_PRECURSOR_SCAN_NO 8592 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8562; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8609; ORIGINAL_PRECURSOR_SCAN_NO 8605 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8582; ORIGINAL_PRECURSOR_SCAN_NO 8581 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8608; ORIGINAL_PRECURSOR_SCAN_NO 8606 CONFIDENCE standard compound; INTERNAL_ID 348; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8628; ORIGINAL_PRECURSOR_SCAN_NO 8627

   

Ethyl-4,4-dichlorobenzilate

Ethyl 2-hydroxy-2,2-bis(4-chlorophenyl)acetate

C16H14Cl2O3 (324.032)


   

2-Ethoxyethanol

Ether monoethylique de lethylene-glycol

C4H10O2 (90.0681)


2-Ethoxyethanol is a diluent in colour additive mixtures for marking food. 2-Ethoxyethanol, also known by the trademark Cellosolve or ethyl cellosolve, is a solvent used widely in commercial and industrial applications. It is a clear, colorless, nearly odorless liquid that is miscible with water, ethanol, diethyl ether, acetone, and ethyl acetate. As with other glycol ethers, 2-ethoxyethanol has the useful property of being able to dissolve chemically diverse compounds. It will dissolve oils, resins, grease, waxes, nitrocellulose, and lacquers. This is an ideal property as a multi-purpose cleaner and therefore 2-ethoxyethanol is used in products such as varnish removers and degreasing solutions

   

Diethyl sulfate

Diethyl sulfate, tin salt

C4H10O4S (154.03)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens

   

Chloroacetyl chloride

Monochloroacetyl chloride

C2H2Cl2O (111.9483)


Chloroacetyl chloride is a chlorinated acyl chloride. It is a bifunctional compound, making it a useful building block chemical. (Wikipedia)

   

Tropolone

2-Hydroxy-2,4,6-cycloheptatrien-1-one

C7H6O2 (122.0368)


Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].

   

Decylubiquinone

2-decyl-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione

C19H30O4 (322.2144)


   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578)


Pyrrolines, also known under the name dihydropyrroles, are three different heterocyclic organic chemical compounds which differ in the position of the double bond. Pyrrolines are formally derived from the aromate pyrrole by hydrogenation. 1-Pyrroline is a cyclic imine while 2-pyrroline and 3-pyrroline are cyclic amines. Present in clam and squid. Flavouring agent for fish products and other foods. 3,4-Dihydro-2H-pyrrole is found in many foods, some of which are garden onion (variety), breadnut tree seed, chinese bayberry, and kiwi.

   

5-Fluorouridine monophosphate

{[(2R,3S,4R,5R)-5-(5-fluoro-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H12FN2O9P (342.0264)


5-Fluorouridine monophosphate is a metabolite of fluorouracil. Fluorouracil (5-FU or f5U) (sold under the brand names Adrucil, Carac, Efudix, Efudex and Fluoroplex) is a drug that is a pyrimidine analog which is used in the treatment of cancer. It is a suicide inhibitor and works through irreversible inhibition of thymidylate synthase. It belongs to the family of drugs called antimetabolites. It is typically administered with leucovorin. (Wikipedia)

   

N-Deacetylcolchicine

(7S)-7-amino-1,2,3,10-tetramethoxy-6,7-dihydro-5H-benzo[a]heptalen-9-one

C20H23NO5 (357.1576)


Deacetylcolchicine is a carbotricyclic compound, an alkaloid and a member of acetamides.N-Deacetylcolchicine has been reported in Apis cerana

   

Dendrolasin

3-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]furan

C15H22O (218.1671)


Dendrolasin is found in root vegetables. Dendrolasin is a constituent of sweet potato Constituent of sweet potato. Dendrolasin is found in root vegetables.

   

Dinophysistoxin 1

3-{8-[(3E)-4-[6-(3-{3,11-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl}-1-hydroxybutyl)-8-hydroxy-7-methylidene-hexahydro-3H-spiro[oxolane-2,2-pyrano[3,2-b]pyran]-5-yl]but-3-en-2-yl]-5-hydroxy-10-methyl-1,7-dioxaspiro[5.5]undec-10-en-2-yl}-2-hydroxy-2-methylpropanoic acid

C45H70O13 (818.4816)


Dinophysistoxin 1 is found in mollusks. Dinophysistoxin 1 is a metabolite of Dinophysis fortii. Dinophysistoxin 1 is found in scallops and mussels. Component toxin in diarrhetic shellfish poisonin D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

Jaspamide

jasplakinolide

C36H45BrN4O6 (708.2522)


A cyclodepsipeptide isolated from Jaspis splendens and has been shown to exhibit antineoplastic activity. It is an actin polymerization and stabilization inducer. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals

   

mycalolide b

mycalolide b

C52H74N4O17 (1026.5049)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

Cinobufotalin

(1R,2R,2aR,3aS,3bR,5aS,7S,9aR,9bS,11aR)-5a,7-dihydroxy-9a,11a-dimethyl-1-(2-oxo-2H-pyran-5-yl)hexadecahydronaphtho[1,2:6,7]indeno[1,7a-b]oxiren-2-yl acetate

C26H34O7 (458.2304)


Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].

   
   

Brassinolide

6H-BENZ(C)INDENO(5,4-E)OXEPIN-6-ONE, 1-(2,3-DIHYDROXY-1,4,5-TRIMETHYLHEXYL)HEXADECAHYDRO-8,9-DIHYDROXY-10A,12A-DIMETHYL-, (1R-(1.ALPHA.(1S*,2R*,3R*,4R*),3A.BETA.,3B.ALPHA.,6A.BETA.,8.BETA.,9.BETA.,10A.ALPHA.,10B.BETA.,12A.ALPHA.))-

C28H48O6 (480.3451)


24-epi-brassinolide is a 2alpha-hydroxy steroid, a 3alpha-hydroxy steroid, a 22-hydroxy steroid, a 23-hydroxy steroid and a brassinosteroid. 24-epi-Brassinolide is a natural product found in Arabidopsis thaliana, Vicia faba, and other organisms with data available. Constituent of bee collected rape pollen (Brassica napus). Brassinolide is found in many foods, some of which are coconut, grass pea, red huckleberry, and strawberry guava. Brassinolide is found in brassicas. Brassinolide is a constituent of bee collected rape pollen (Brassica napus). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D060406 - Brassinosteroids Brassinolide is a predominant plant growth modulator that regulate plant cell elongation. Brassinolide is a predominant plant growth modulator that regulate plant cell elongation. Epibrassinolide (24-Epibrassinolide) is a ubiquitously occurring plant growth hormone which shows great potential to alleviate heavy metals and pesticide stress in plants[1]. Epibrassinolide is a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth[2]. Epibrassinolide (24-Epibrassinolide) is a ubiquitously occurring plant growth hormone which shows great potential to alleviate heavy metals and pesticide stress in plants[1]. Epibrassinolide is a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth[2].

   

D-Tyrosine

2-amino-3-(4-hydroxyphenyl)propanoic acid

C9H11NO3 (181.0739)


   

(+)-Nicotine

(±)-3-(1-Methyl-2-pyrrolidinyl)pyridine

C10H14N2 (162.1157)


Chemical Structure of (+)-Nicotine: (+)-Nicotine, also known as d-nicotine, has a complex chemical structure that consists of a pyridine ring with a methyl group at position 3 and a pyrrolidine ring at position 2. The molecular formula of nicotine is C10H14N2. The presence of a nitrogen-containing pyridine ring and a pyrrolidine ring makes nicotine a type of alkaloid. The (+) sign indicates that this is the dextrorotatory isomer, meaning it rotates plane-polarized light to the right. The chemical structure can be described as follows: A six-membered pyridine ring, which is a nitrogen-containing aromatic heterocycle. A methyl group (-CH3) attached to the pyridine ring at the 3-position. A five-membered pyrrolidine ring, which is a saturated nitrogen-containing heterocycle, fused to the pyridine ring at the 2-position. The pyrrolidine ring contains a secondary amine group (-NH-), which is part of the ring structure. Biological Functions of (+)-Nicotine: Neurotransmitter Mimic: (+)-Nicotine acts as an agonist at nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels found in both the central and peripheral nervous systems. By binding to these receptors, nicotine mimics the action of the neurotransmitter acetylcholine, leading to the release of various neurotransmitters and hormones. Central Nervous System Stimulation: When (+)-nicotine binds to nAChRs in the brain, it can increase the release of dopamine, a neurotransmitter associated with reward and pleasure. This effect contributes to the addictive properties of nicotine. Cardiovascular Effects: (+)-Nicotine can have various effects on the cardiovascular system, including increasing heart rate and blood pressure due to the stimulation of nAChRs on adrenergic neurons, which leads to the release of catecholamines (e.g., adrenaline). Metabolic Effects: Nicotine can increase metabolic rate and decrease appetite, which can lead to weight loss in some individuals. Insecticide: (+)-Nicotine has insecticidal properties and has been used historically as a pesticide. It acts by binding to nAChRs in insects, causing paralysis and death. Therapeutic Uses: (+)-Nicotine is used in nicotine replacement therapies (NRT), such as patches, gum, lozenges, and inhalers, to help smokers reduce withdrawal symptoms and quit smoking. It is also being investigated for its potential therapeutic effects in neurological disorders like Alzheimer’s disease and Parkinson’s disease. Toxicity: At high doses, (+)-nicotine can be toxic, leading to nausea, vomiting, dizziness, and in severe cases, respiratory failure and death due to its paralytic effects on the respiratory center. (+)-Nicotine, also known as nikotin or L-nicotine, belongs to the class of organic compounds known as pyrrolidinylpyridines. Pyrrolidinylpyridines are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring (+)-Nicotine is a primary metabolite. Primary metabolites are metabolically or physiologically essential metabolites. They are directly involved in an organism’s growth, development or reproduction. Based on a literature review a significant number of articles have been published on (+)-Nicotine. This compound has been identified in human blood as reported by (PMID: 31557052 ). (+)-nicotine is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically (+)-Nicotine is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

DL-Proline

Pyrrolidine-2-carboxylic acid

C5H9NO2 (115.0633)


Proline, also known as dl-proline or hpro, belongs to proline and derivatives class of compounds. Those are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Proline is soluble (in water) and a moderately acidic compound (based on its pKa). Proline can be found in a number of food items such as yellow zucchini, swiss chard, spinach, and cucumber, which makes proline a potential biomarker for the consumption of these food products. Proline (abbreviated as Pro or P; encoded by the codons CCU, CCC, CCA, and CCG) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated NH2+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain pyrrolidine, classifying it as a nonpolar (at physiological pH), aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it from the non-essential amino acid L-glutamate . CONFIDENCE standard compound; ML_ID 53 (R)-pyrrolidine-2-carboxylic acid is an endogenous metabolite. (R)-pyrrolidine-2-carboxylic acid is an endogenous metabolite.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1252)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

2-Oxo-3-methylvalerate

(+-)-3-Methyl-2-oxovaleric acid sodium salt

C6H10O3 (130.063)


CONFIDENCE standard compound; ML_ID 14 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.

   

Senna

(9S)-9-[(9R)-2-carboxy-4-hydroxy-10-oxo-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9H-anthracen-9-yl]-4-hydroxy-10-oxo-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-9H-anthracene-2-carboxylic acid

C42H38O20 (862.1956)


Sennosides (also known as senna glycoside or senna) is a medication used to treat constipation and empty the large intestine before surgery. The medication is taken by mouth or via the rectum. It typically begins working in minutes when given by rectum and within twelve hours when given by mouth. It is a weaker laxative than bisacodyl or castor oil. Sennoside A, one of the sennosides present in the laxative medication, has recently proven effective in inhibiting the ribonuclease H (RNase H) activity of human immunodeficiency virus (HIV) reverse transcriptase. Sennosides is anthraquinone glycosides found in senna plant, usually referring to the sennosides A and B, with laxative activity. Sennosides act on and irritate the lining of the intestine wall, thereby causing increased intestinal muscle contractions leading to vigorous bowel movement. Medications derived from SENNA EXTRACT that are used to treat CONSTIPATION. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].

   

Wuweizisu A

Dibenzo(a,c)cycloocten-6-ol, 5,6,7,8-tetrahydro-6,7-dimethyl-1,2 3,10,11,12-hexamethoxy-,stereoisomer

C24H32O7 (432.2148)


Schizandrin is a tannin. Schisandrin is a natural product found in Schisandra rubriflora, Schisandra sphenanthera, and Schisandra chinensis with data available. Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3]. Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3].

   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. It has a role as a metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a genkwanin(1-). Genkwanin is a natural product found in Odontites viscosus, Eupatorium capillifolium, and other organisms with data available. A monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

Rheochrysin

1-Hydroxy-6-methoxy-3-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)anthracene-9,10-dione

C22H22O10 (446.1213)


Rheochrysin is an anthraquinone. Rheochrysin is a natural product found in Selaginella delicatula, Rheum australe, and other organisms with data available. Rheochrysin is found in green vegetables. Rheochrysin occurs in root of Rheum sp Occurs in root of Rheum subspecies Rheochrysin is found in green vegetables. Physcion 8-O-β-D-glucopyranosideis an anthraquinone compound isolated from Rumex japonicus Houtt. Physcion 8-O-β-D-glucopyranoside exerts anti-inflammatory and anti-cancer properties, can be for common malignancy cancer research[1].

   

Dimethyl_phthalate

BENZENE,1,2-DICARBOXYLIC ACID,DIMETHYL ESTER (PHTHALIC ACID,DIMETHYL ESTER)

C10H10O4 (194.0579)


Dimethyl phthalate appears as a water-white liquid without significant odor. Denser than water and insoluble in water. Hence sinks in water. Flash point 300 °F. Eye contact may produce severe irritation and direct skin contact may produce mild irritation. Used in the manufacture of a variety of products including plastics, insect repellents, safety glass, and lacquer coatings. Dimethyl phthalate is a phthalate ester, a diester and a methyl ester. Dimethyl phthalate has many uses, including in solid rocket propellants, plastics, and insect repellants. Acute (short-term) exposure to dimethyl phthalate, via inhalation in humans and animals, results in irritation of the eyes, nose, and throat. No information is available on the chronic (long-term), reproductive, developmental, or carcinogenic effects of dimethyl phthalate in humans. Animal studies have reported slight effects on growth and on the kidney from chronic oral exposure to the chemical. EPA has classified dimethyl phthalate as a Group D, not classifiable as to human carcinogencity. Dimethyl phthalate is a natural product found in Eleutherococcus sessiliflorus, Allium ampeloprasum, and other organisms with data available. Dimethyl phthalate is a phthalate ester. Phthalate esters are esters of phthalic acid and are mainly used as plasticizers, primarily used to soften polyvinyl chloride. They are found in a number of products, including glues, building materials, personal care products, detergents and surfactants, packaging, childrens toys, paints, pharmaceuticals, food products, and textiles. Phthalates are hazardous due to their ability to act as endocrine disruptors. They are being phased out of many products in the United States and European Union due to these health concerns. (L1903) P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents D020011 - Protective Agents D016573 - Agrochemicals D005404 - Fixatives ATC code: P03BX02

   

Galactinol

(1S,2R,3R,4S,5S,6R)-6-{[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexane-1,2,3,4,5-pentol

C12H22O11 (342.1162)


Galactinol belongs to the class of organic compounds known as O-glycosyl compounds. These are glycoside in which a sugar group is bonded through one carbon to another group via an O-glycosidic bond. Galactinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Galactinol is an intermediate in galactose metabolism. Galactinol is the fourth-to-last step in the synthesis of D-galactose and the third-to-last step in the synthesis of D-glucose and D-fructose. Galactinol is converted from UDP-galactose via the enzyme inositol 3-alpha-galactosyltransferase (EC 2.4.1.123). It is then converted into raffinose via the enzyme raffinose synthase (EC 2.4.1.82). Constituent of sugar-beet juice, castor-oil seed meal and potatoes after cold storage

   

L-Pipecolic acid

Pipecolic acid, 14C-labeled CPD, (+,-)-isomer

C6H11NO2 (129.079)


L-pipecolic acid is a normal human metabolite present in human blood, where is present as the primary enantiomer of pipecolic acid. L-pipecolic acid is a cyclic imino acid (contains both imino (>C=NH) and carboxyl (-C(=O)-OH) functional groups) produced during the degradation of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, including Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), and infantile Refsum disease (OMIM 266510). L-pipecolic acid levels are also elevated in patients with chronic liver diseases. L-pipecolic acid is the substrate of delta1-piperideine-2-carboxylate reductase (EC 1.5.1.21) in the pathway of lysine degradation (PMID: 2717271, 8305590, 1050990). Present in beans and other legumes, and in lesser quantities in other plants including barley, hops, malt and mushrooms. L-Pipecolic acid is found in many foods, some of which are macadamia nut (m. tetraphylla), linden, tinda, and cumin. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2]. Pipecolic acid, a metabolite of Lysine, is an important precursor of many useful microbial secondary metabolites. Pipecolic acid can be used as a diagnostic marker of Pyridoxine-dependent epilepsy[1][2].

   

(+)-Epibatidine

2-(6-chloropyridin-3-yl)-7-azabicyclo[2.2.1]heptane

C11H13ClN2 (208.0767)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

(1R,3As,4S,6aS)-1,4-di(benzo[d][1,3]dioxol-5-yl)hexahydrofuro[3,4-c]furan

5-[4-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]-2H-1,3-benzodioxole

C20H18O6 (354.1103)


Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Etorphine

19-(2-hydroxypentan-2-yl)-15-methoxy-3-methyl-13-oxa-3-azahexacyclo[13.2.2.1^{2,8}.0^{1,6}.0^{6,14}.0^{7,12}]icosa-7,9,11,16-tetraen-11-ol

C25H33NO4 (411.2409)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

1,9-Heptadecadiene-4,6-diyn-3-ol, (3R,9Z)-

1,9-Heptadecadiene-4,6-diyn-3-ol, (3R,9Z)-

C17H24O (244.1827)


   

7-Hydroxycholesterol

2,15-dimethyl-14-(6-methylheptan-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,9-diol

C27H46O2 (402.3498)


   

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methyl-6-nonenamide

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enimidate

C18H27NO3 (305.1991)


   

Aconine

11-ethyl-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,5,7,8,14-pentol

C25H41NO9 (499.2781)


Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation. Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation.

   

DL-Homocysteic acid

Homocysteic acid, monosodium salt, (+-)-isomer

C4H9NO5S (183.0201)


   

Itopride

N-({4-[2-(dimethylamino)ethoxy]phenyl}methyl)-3,4-dimethoxybenzene-1-carboximidate

C20H26N2O4 (358.1892)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03F - Propulsives > A03FA - Propulsives C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

lapachol

4-hydroxy-3-(3-methylbut-2-en-1-yl)-1,2-dihydronaphthalene-1,2-dione

C15H14O3 (242.0943)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

Pseudohypericin

9,11,13,16,18,20-hexahydroxy-5-(hydroxymethyl)-24-methyloctacyclo[13.11.1.1^{2,10}.0^{3,8}.0^{4,25}.0^{19,27}.0^{21,26}.0^{14,28}]octacosa-1,3,5,8,10,12,14(28),15(27),16,18,20,23,25-tridecaene-7,22-dione

C30H16O9 (520.0794)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Talatisamine

11-ethyl-6,16-dimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8-diol

C24H39NO5 (421.2828)


Talatisamine, a aconitum alkaloid, is specific K+ channel blocker. Talatisamine attenuates beta-amyloid oligomers induced neurotoxicity in cultured cortical neurons[1]. Talatisamine, a aconitum alkaloid, is specific K+ channel blocker. Talatisamine attenuates beta-amyloid oligomers induced neurotoxicity in cultured cortical neurons[1].

   

Valnemulin

2-Amino-N-(2-{[2-({4-ethenyl-3-hydroxy-2,4,7,14-tetramethyl-9-oxotricyclo[5.4.3.0,]tetradecan-6-yl}oxy)-2-oxoethyl]sulphanyl}-2-methylpropyl)-3-methylbutanimidic acid

C31H52N2O5S (564.3597)


   

5,6-dihydrothymine

Dihydro-5-methyl-2,4(1H,3H)-pyrimidinedione

C5H8N2O2 (128.0586)


Dihydrothymine, also known as 5,6-dihydro-5-methyluracil or 5,6-dihydrothymine, (S)-isomer, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Dihydrothymine is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydrothymine can be found in a number of food items such as hyssop, arrowroot, nopal, and red rice, which makes dihydrothymine a potential biomarker for the consumption of these food products. Dihydrothymine can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human prostate tissue. Dihydrothymine exists in all living organisms, ranging from bacteria to humans. In humans, dihydrothymine is involved in the pyrimidine metabolism. Dihydrothymine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dihydrothymine is found to be associated with beta-ureidopropionase deficiency and dihydropyrimidinase deficiency. Dihydrothymine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Dihydrothymine is an intermediate in the metabolism of thymine . Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine to 5, 6-dihydrothymine then dihydropyrimidinase hydrolyzes 5, 6-dihydrothymine to N-carbamyl-b-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-b-alanine to beta-alanine. Accumulation of dihydrothymine in the body has been shown to be toxic (T3DB). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

3-methyl-2-oxovalerate

(3S)-3-Methyl-2-oxopentanoic acid

C6H10O3 (130.063)


3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.

   

Pipecolic acid

L(-)-Pipecolinic acid

C6H11NO2 (129.079)


L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.

   

Cholylglycine

N-(3Alpha,7Alpha,12Alpha-trihydroxy-5Beta-cholan-24-oyl)-glycine

C26H43NO6 (465.309)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

pantoprazole

pantoprazole

C16H15F2N3O4S (383.0751)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors CONFIDENCE standard compound; EAWAG_UCHEM_ID 644

   

Hispidulin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

sesamin

1,3-Benzodioxole, 5,5-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.))-

C20H18O6 (354.1103)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Ononin

3-(4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C22H22O9 (430.1264)


Ononin is a 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of 4-methoxyisoflavones and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a formononetin. Ononin is a natural product found in Cicer chorassanicum, Thermopsis lanceolata, and other organisms with data available. See also: Astragalus propinquus root (part of). A 4-methoxyisoflavone that is formononetin attached to a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Brassinolide

6H-BENZ(C)INDENO(5,4-E)OXEPIN-6-ONE, 1-(2,3-DIHYDROXY-1,4,5-TRIMETHYLHEXYL)HEXADECAHYDRO-8,9-DIHYDROXY-10A,12A-DIMETHYL-, (1R-(1.ALPHA.(1S*,2R*,3R*,4R*),3A.BETA.,3B.ALPHA.,6A.BETA.,8.BETA.,9.BETA.,10A.ALPHA.,10B.BETA.,12A.ALPHA.))-

C28H48O6 (480.3451)


24-epi-brassinolide is a 2alpha-hydroxy steroid, a 3alpha-hydroxy steroid, a 22-hydroxy steroid, a 23-hydroxy steroid and a brassinosteroid. 24-epi-Brassinolide is a natural product found in Arabidopsis thaliana, Vicia faba, and other organisms with data available. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D060406 - Brassinosteroids Brassinolide is a predominant plant growth modulator that regulate plant cell elongation. Brassinolide is a predominant plant growth modulator that regulate plant cell elongation. Epibrassinolide (24-Epibrassinolide) is a ubiquitously occurring plant growth hormone which shows great potential to alleviate heavy metals and pesticide stress in plants[1]. Epibrassinolide is a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth[2]. Epibrassinolide (24-Epibrassinolide) is a ubiquitously occurring plant growth hormone which shows great potential to alleviate heavy metals and pesticide stress in plants[1]. Epibrassinolide is a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth[2].

   

Punicic acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


   

3-Methyl-2-oxovaleric acid

(3S)-3-Methyl-2-oxopentanoic acid

C6H10O3 (130.063)


A 2-oxo monocarboxylic acid that is valeric acid carrying oxo- and methyl substituents at C-2 and C-3, respectively. An alpha-keto acid analogue and metabolite of isoleucine in man, animals and bacteria. Used as a clinical marker for maple syrup urine disease (MSUD). 3-Methyl-2-oxovaleric acid is a neurotoxin, an acidogen, and a metabotoxin, and also an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids.

   

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-chroman-4-one

C21H22O11 (450.1162)


Neoisoastilbin is a natural product found in Smilax corbularia, Neolitsea sericea, and other organisms with data available. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].

   

dinatin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

ononin

3-(4-methoxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C22H22O9 (430.1264)


Origin: Plant; Formula(Parent): C22H22O9; Bottle Name:Ononin; PRIME Parent Name:Formononetin-7-O-glucoside; PRIME in-house No.:S0305, Pyrans Annotation level-1 Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil. Ononin is an isoflavone that inhibits the growth of Pluchea lanceolata in soil.

   

Genkwanin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

   

sulfurein

(2Z)-2-[[3,4-bis(oxidanyl)phenyl]methylidene]-6-oxidanyl-1-benzofuran-3-one

C15H10O5 (270.0528)


Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].

   

Itopride

Itopride

C20H26N2O4 (358.1892)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03F - Propulsives > A03FA - Propulsives C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Limonene

(S)-(−)-Limonene

C10H16 (136.1252)


A monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. Found in over 300 essential oils, the ==(R)==-form is the most widespread, followed by the racemate and then the (S)-form. Extensively used in the flavour industry [DFC] (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1].

   

Senna

Senna, Cassia obovata, ext.

C42H38O20 (862.1956)


D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].

   

4-Phosphopantetheine

4-Phosphopantetheine

C11H23N2O7PS (358.0964)


   

Phaseolin_(pterocarpan)

(2R,11R)-17,17-dimethyl-4,12,18-trioxapentacyclo[11.8.0.02,11.05,10.014,19]henicosa-1(13),5(10),6,8,14(19),15,20-heptaen-7-ol

C20H18O4 (322.1205)


Phaseolin is a natural product found in Erythrina abyssinica, Erythrina suberosa, and other organisms with data available.

   

1-Methoxy-4-(2-propenyl)benzene

InChI=1/C10H12O/c1-3-4-9-5-7-10(11-2)8-6-9/h3,5-8H,1,4H2,2H

C10H12O (148.0888)


1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Estragole is a colorless liquid with odor of anise. Insoluble in water. Isolated from rind of persea gratissima grath. and from oil of estragon. Found in oils of Russian anise, basil, fennel turpentine, tarragon oil, anise bark oil. (NTP, 1992) Estragole is a phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. It has a role as a flavouring agent, an insect attractant, a plant metabolite, a genotoxin and a carcinogenic agent. It is an alkenylbenzene, a monomethoxybenzene and a phenylpropanoid. It is functionally related to a chavicol. Estragole is a natural product found in Vitis rotundifolia, Chaerophyllum macrospermum, and other organisms with data available. See also: Anise Oil (part of). Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. A phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].

   

Tropolone

InChI=1/C7H6O2/c8-6-4-2-1-3-5-7(6)9/h1-5H,(H,8,9

C7H6O2 (122.0368)


Tropolone is a cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. It has a role as a bacterial metabolite, a toxin and a fungicide. It is a cyclic ketone, an enol and an alpha-hydroxy ketone. It derives from a hydride of a cyclohepta-1,3,5-triene. A seven-membered aromatic ring compound. It is structurally related to a number of naturally occurring antifungal compounds (ANTIFUNGAL AGENTS). A cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].

   

Cefoperazone

Cefoperazone (Cefobid)

C25H27N9O8S2 (645.1424)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins A semi-synthetic parenteral cephalosporin with a tetrazolyl moiety that confers beta-lactamase resistance. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; INTERNAL_ID 1050

   

temazepam

temazepam

C16H13ClN2O2 (300.0666)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 1557 CONFIDENCE standard compound; INTERNAL_ID 8605

   

alprazolam

alprazolam

C17H13ClN4 (308.0829)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BA - Benzodiazepine derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent CONFIDENCE standard compound; INTERNAL_ID 1570

   

fenthion

fenthion

C10H15O3PS2 (278.02)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3155 CONFIDENCE standard compound; INTERNAL_ID 8480

   

DIFLUBENZURON

Pesticide3_Diflubenzuron_C14H9ClF2N2O2_N-[(4-Chlorophenyl)carbamoyl]-2,6-difluorobenzamide

C14H9ClF2N2O2 (310.0321)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Same as: D07829 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5071; ORIGINAL_PRECURSOR_SCAN_NO 5069 INTERNAL_ID 492; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5071; ORIGINAL_PRECURSOR_SCAN_NO 5069 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5087; ORIGINAL_PRECURSOR_SCAN_NO 5086 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5048; ORIGINAL_PRECURSOR_SCAN_NO 5047 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5086; ORIGINAL_PRECURSOR_SCAN_NO 5085 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5077; ORIGINAL_PRECURSOR_SCAN_NO 5076 CONFIDENCE standard compound; INTERNAL_ID 492; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5076; ORIGINAL_PRECURSOR_SCAN_NO 5075 CONFIDENCE standard compound; INTERNAL_ID 3388 CONFIDENCE standard compound; INTERNAL_ID 2332 INTERNAL_ID 2332; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 8458

   

Fenpropimorph

Pesticide7_Fenpropimorph_C20H33NO_Morpholine, 4-[3-[4-(1,1-dimethylethyl)phenyl]-2-methylpropyl]-2,6-dimethyl-, (2R,6S)-

C20H33NO (303.2562)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 4023 CONFIDENCE standard compound; EAWAG_UCHEM_ID 146

   

MONURON

MONURON

C9H11ClN2O (198.056)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 161

   

Fenpropidin

Fenpropidin

C19H31N (273.2456)


D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 2958

   

Phosmet

Phosmet

C11H12NO4PS2 (316.9945)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 3101

   

MONOLINURON

Pesticide3_Monolinuron_C9H11ClN2O2_Urea, N-(4-chlorophenyl)-N-methoxy-N-methyl-

C9H11ClN2O2 (214.0509)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3173

   

Propoxyphene

dextropropoxyphene

C22H29NO2 (339.2198)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AC - Diphenylpropylamine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3344

   

Paclobutrazol

Pesticide6_Paclobutrazol_C30H40Cl2N6O2_1H-1,2,4-Triazole-1-ethanol, beta-[(4-chlorophenyl)methyl]-alpha-(1,1-dimethylethyl)-

C15H20ClN3O (293.1295)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3705

   

Melamine

Melamine

C3H6N6 (126.0654)


CONFIDENCE standard compound; INTERNAL_ID 3870 CONFIDENCE Reference Standard (Level 1) Melamine is a metabolite?of?cyromazine. Melamine is a intermediate for the synthesis of melamine resin and plastic materials[1].

   

Tyrosine

L-(-)-Tyrosine

C9H11NO3 (181.0739)


An alpha-amino acid that is phenylalanine bearing a hydroxy substituent at position 4 on the phenyl ring. Annotation level-2 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 56 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 3 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.

   

Proline

H-DL-Pro-OH

C5H9NO2 (115.0633)


An alpha-amino acid that is pyrrolidine bearing a carboxy substituent at position 2. Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins.

   

betaxolol

betaxolol

C18H29NO3 (307.2147)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.

   

oxaprozin

oxaprozin

C18H15NO3 (293.1052)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Oxaprozin is an orally active and potent COX inhibitor, with IC50 values of 2.2 μM for human platelet COX-1 and and 36 μM for IL-1-stimulated human synovial cell COX-2, respectively. Oxaprozin also inhibits the activation of NF-κB. Oxaprozin induces cell apoptosis. Oxaprozin shows anti-inflammatory activity. Oxaprozin-mediated inhibition of the Akt/IKK/NF-κB pathway contributes to its anti-inflammatory properties[1][2].

   

Schizandrin

Schizandrin

C24H32O7 (432.2148)


Annotation level-1 Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3]. Schisandrin (Schizandrin), a dibenzocyclooctadiene lignan, is isolated from the fruit of Schisandra chinensis Baill. Schisandrin exhibits antioxidant, hepatoprotective, anti-cancer and anti-inflammatory activities. Schisandrin also can reverses memory impairment in rats[1][2][3].

   

2-Deoxy-5-Guanylic Acid

[(2R,5R)-5-(2-Amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methyl dihydrogen phosphate

C10H14N5O7P (347.0631)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055

   

Isoalantolactone

Isoalantolactone

C15H20O2 (232.1463)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.234 Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

10-Hydroxycamptothecin

10-Hydroxy camptothecin

C20H16N2O5 (364.1059)


SubCategory_DNP: : Alkaloids derived from anthranilic acid, Quinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.944 D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.947 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.929 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.928 (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4]. (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4].

   

Dofetilide

Dofetilide (Tikosyn)

C19H27N3O5S2 (441.1392)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Oxybutynin

Oxybutynin (Ditropan)

C22H31NO3 (357.2304)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; INTERNAL_ID 2516 CONFIDENCE standard compound; INTERNAL_ID 8497 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

L-Pipecolic acid

L(-)-Pipecolinic acid

C6H11NO2 (129.079)


The L-enantiomer of pipecolic acid. It is a metabolite of lysine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; HXEACLLIILLPRG-YFKPBYRVSA-N_STSL_0204_L-pipecolic Acid_0500fmol_180831_S2_L02M02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy. L-Pipecolic acid (H-HoPro-OH) is a breakdown product of lysine, accumulates in body fluids of infants with generalized genetic peroxisomal disorders, such as Zellweger syndrome, neonatal adrenoleukodystrophy.

   

Guanidinosuccinic acid

Guanidinosuccinic acid

C5H9N3O4 (175.0593)


Guanidinosuccinic acid is a nitrogenous metabolite.

   

Uridine monophosphate

Uridine 5_-monophosphate

C9H13N2O9P (324.0359)


A pyrimidine ribonucleoside 5-monophosphate having uracil as the nucleobase. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1].

   

N-Acetyl-L-leucine

N-Acetyl-L-leucine

C8H15NO3 (173.1052)


The N-acetyl derivative of L-leucine. N-Acetyl-L-leucine is an endogenous metabolite.

   

2-Isopropylmalic acid

2-HYDROXY-2-ISOPROPYLSUCCINIC ACID

C7H12O5 (176.0685)


A dicarboxylic acid that is malic acid (2-hydroxysuccinic acid) in which the hydrogen at position 2 is substituted by an isopropyl group. α-Isopropylmalate (α-IPM) is the leucine biosynthetic precursor in Yeast[1].

   

Neohesperidin

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1898)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. A flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

hexachlorophene

hexachlorophene

C13H6Cl6O2 (403.8499)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents CONFIDENCE Identification confirmed with Reference Standard (Level 1); Source 402_8423_MSMS.txt

   

L-Homocysteic acid

L-Homocysteic acid

C4H9NO5S (183.0201)


   

L-Homocitrulline

L-Homocitrulline

C7H15N3O3 (189.1113)


A L-lysine derivative that is L-lysine having a carbamoyl group at the N(6)-position. It is found in individuals with urea cycle disorders. L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI). L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI).

   

Metanephrine

(±)-Metanephrine

C10H15NO3 (197.1052)


   

Arctiin

(3R,4R)-4-[(3,4-dimethoxyphenyl)methyl]-3-[[3-methoxy-4-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]phenyl]methyl]-2-tetrahydrofuranone

C27H34O11 (534.2101)


Annotation level-1 Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity. Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity.

   

ISOPROTURON

Pesticide3_Isoproturon_C12H18N2O_Arelon

C12H18N2O (206.1419)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

LINURON

Pesticide3_Linuron_C9H10Cl2N2O2_Urea, N-(3,4-dichlorophenyl)-N-methoxy-N-methyl-

C9H10Cl2N2O2 (248.0119)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

dihydrobiopterin

7,8-Dihydro-L-biopterin

C9H13N5O3 (239.1018)


7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

Dihydrothymine

5,6-Dihydrothymine

C5H8N2O2 (128.0586)


A pyrimidone obtained by formal addition of hydrogen across the 5,6-position of thymine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].

   

3-ketoadipate

3-Oxoadipic acid

C6H8O5 (160.0372)


An oxo dicarboxylic acid consisting of adipic acid having a single oxo group at the 3-position.

   

Phenylacetylglycine

Phenylacetylglycine

C10H11NO3 (193.0739)


A N-acylglycine that is glycine substituted on nitrogen with a phenylacetyl group. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].

   

N,N-dimethylaniline

N,N-dimethylaniline

C8H11N (121.0891)


   

Allantoic acid

Allantoic acid

C4H8N4O4 (176.0546)


A member of the class of ureas that consists of acetic acid in which the two methyl hydrogens are replaced by carbamoylamino groups respectively. Allantoic acid is a degradative product of uric acid and associated with purine metabolism[1][2][3].

   

indoxyl

1H-Indol-3-ol

C8H7NO (133.0528)


   

2-PHENYLACETAMIDE

2-PHENYLACETAMIDE

C8H9NO (135.0684)


A monocarboxylic acid amide that is acetamide substituted by a phenyl group at position 2. 2-Phenylacetamide is an endogenous metabolite.

   

5,6-Dimethylbenzimidazole

5,6-Dimethylbenzimidazole

C9H10N2 (146.0844)


A dimethylbenzimidazole carrying methyl substituents at positions 5 and 6. 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

Biuret

Biuret

C2H5N3O2 (103.0382)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

(E)-Cefixime

Cefixime anhydrous, (E)-

C16H15N5O7S2 (453.0413)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams A third-generation cephalosporin antibiotic bearing vinyl and (2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-[(carboxymethoxy)imino]acetamido groups at positions 3 and 7, respectively, of the cephem skeleton. It is used in the treatment of gonorrhoea, tonsilitis, pharyngitis, bronchitis, and urinary tract infections. C254 - Anti-Infective Agent > C258 - Antibiotic > C61101 - Glycopeptide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Etomidate

Etomidate

C14H16N2O2 (244.1212)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   
   

N-METHYLANILINE

N-METHYLANILINE

C7H9N (107.0735)


   

nalbuphine

nalbuphine

C21H27NO4 (357.194)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AF - Morphinan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

pantoprazole

pantoprazole

C16H15F2N3O4S (383.0751)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) > A02BC - Proton pump inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent > C29723 - Proton Pump Inhibitor D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors

   

Tiagabine

Tiagabine

C20H25NO2S2 (375.1327)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D058805 - GABA Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AG - Fatty acid derivatives C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents D049990 - Membrane Transport Modulators

   

zolpidem

zolpidem

C19H21N3O (307.1685)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic

   

CID 440908

(1S,2R,3S,10R,11S)-3,10,11-trihydroxy-2-(hydroxymethyl)-1,5-dimethylspiro[8-oxatricyclo[7.2.1.02,7]dodec-5-ene-12,2-oxirane]-4-one

C15H20O7 (312.1209)


D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1)

   

3,4-DICHLOROANILINE

3,4-DICHLOROANILINE

C6H5Cl2N (160.9799)


CONFIDENCE standard compound; INTERNAL_ID 4004

   

Tridemorph

2,6-Dimethyl-4-tridecylmorpholine

C19H39NO (297.3031)


   

Milbemycin A3

Milbemycin A3

C31H44O7 (528.3087)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

flecainide

flecainide

C17H20F6N2O3 (414.1378)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

butamben

Butyl 4-aminobenzoate

C11H15NO2 (193.1103)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Nitrofurantoin

Hydantoin, 1-(5-nitro-furfurylideneamino)-

C8H6N4O5 (238.0338)


An imidazolidine-2,4-dione that is hydantoin substituted at position 1 by a (5-nitro-2-furyl)methylene]amino group. An antibiotic that damages bacterial DNA. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01X - Other antibacterials > J01XE - Nitrofuran derivatives C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE standard compound; INTERNAL_ID 2361

   

rotundine

DL-TETRAHYDROPALMATINE

C21H25NO4 (355.1783)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].

   

PE 34:1

7-Octadecenoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, [R-(Z)]- (9CI)

C39H76NO8P (717.5308)


Found in mouse brain; TwoDicalId=80; MgfFile=160720_brain_AA_18_Neg; MgfId=1248

   

Tetrahydropalmatin

D-Tetrahydropalmatine

C21H25NO4 (355.1783)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2302 D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3]. D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3]. D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3].

   

phenolphthalein

phenolphthalein

C20H14O4 (318.0892)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3720; ORIGINAL_PRECURSOR_SCAN_NO 3717 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3689; ORIGINAL_PRECURSOR_SCAN_NO 3687 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3685; ORIGINAL_PRECURSOR_SCAN_NO 3683 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3891; ORIGINAL_PRECURSOR_SCAN_NO 3888 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3687; ORIGINAL_PRECURSOR_SCAN_NO 3684 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3922; ORIGINAL_PRECURSOR_SCAN_NO 3920 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8029; ORIGINAL_PRECURSOR_SCAN_NO 8028 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8044; ORIGINAL_PRECURSOR_SCAN_NO 8041 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8074; ORIGINAL_PRECURSOR_SCAN_NO 8072 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8093; ORIGINAL_PRECURSOR_SCAN_NO 8092 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8106; ORIGINAL_PRECURSOR_SCAN_NO 8104 CONFIDENCE standard compound; INTERNAL_ID 173; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8082; ORIGINAL_PRECURSOR_SCAN_NO 8078

   

Penconazole

Pesticide6_Penconazole_C13H15Cl2N3_1H-1,2,4-Triazole, 1-[2-(2,4-dichlorophenyl)pentyl]-

C13H15Cl2N3 (283.0643)


D016573 - Agrochemicals D010575 - Pesticides

   

Levorphanol

17-Methylmorphinan-3-ol

C17H23NO (257.178)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Falcarinol

(CIS)-(-)-3-HYDROXY-1,9-HEPTADECADIEN-4,6-DIYNE

C17H24O (244.1827)


Panaxynol is a long-chain fatty alcohol. It has a role as a metabolite. Falcarinol is a natural product found in Chaerophyllum aureum, Cussonia arborea, and other organisms with data available. A natural product found in Panax ginseng and Angelica japonica.

   

Prostaglandin G2

9S,11R-epidioxy-15S-hydroperoxy-5Z,13E-prostadienoic acid

C20H32O6 (368.2199)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Prostaglandin C2

9-oxo-15S-hydroxy-5Z,11Z,13E-prostatrienoic acid

C20H30O4 (334.2144)


A member of the class of prostaglandins C that is prosta-5,11,13-trien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 5Z,13E,15S-stereoisomer).

   

panaxynol

(3R,9Z)-heptadeca-1,9-dien-4,6-diyn-3-ol

C17H24O (244.1827)


   

CoA 4:1

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-2,2-dimethyl-4-{[3-({2-[(2-methylprop-2-enoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-4-oxobutyl] dihydrogen diphosphate}

C25H40N7O17P3S (835.1414)


   

Zymosterol

5alpha-cholesta-8,24-dien-3beta-ol

C27H44O (384.3392)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

ST 28:4;O

(22E)-24-methylcholesta-5,7,22,24(24(1))-tetraen-3beta-ol

C28H42O (394.3235)


   

brassinolide

2alpha-3alpha,22R,23R-tetrahydroxy-24-methyl-6,7-s-5alpha-cholestano-6,7-lactone

C28H48O6 (480.3451)


D006133 - Growth Substances > D010937 - Plant Growth Regulators > D060406 - Brassinosteroids Brassinolide is a predominant plant growth modulator that regulate plant cell elongation. Brassinolide is a predominant plant growth modulator that regulate plant cell elongation.

   

Aureusidin

(2Z)-2-[(3,4-dihydroxyphenyl)methylidene]-4,6-dihydroxy-2,3-dihydro-1-benzofuran-3-one

C15H10O6 (286.0477)


Aureusidin is a hydroxyaurone that is aurone substituted by hydroxy groups at positions 4, 6, 3 and 4 respectively. It has a role as a plant metabolite. It is functionally related to an aurone. It is a conjugate acid of an aureusidin-6-olate. Aureusidin is a natural product found in Eleocharis dulcis, Eleocharis pallens, and other organisms with data available. A hydroxyaurone that is aurone substituted by hydroxy groups at positions 4, 6, 3 and 4 respectively. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1]. Aureusidin is an aurone with high antioxidant and lipoxygenase inhibitory activity. Aureusidin also shows anti-inflammatory effects[1].

   

COUMAPHOS

COUMAPHOS

C14H16ClO5PS (362.0145)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Monobenzone

4-(Phenylmethoxy)phenol

C13H12O2 (200.0837)


D - Dermatologicals Same as: D05072

   

TETRABENAZINE

TETRABENAZINE

C19H27NO3 (317.1991)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators N - Nervous system Same as: D08575

   

Medrysone

11beta-Hydroxy-6alpha-methylpregn-4-ene-3,20-dione

C22H32O3 (344.2351)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid Same as: D02289

   

473-15-4

InChI=1\C15H26O\c1-11-6-5-8-15(4)9-7-12(10-13(11)15)14(2,3)16\h12-13,16H,1,5-10H2,2-4H3\t12-,13+,15-\m1\s

C15H26O (222.1984)


Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].

   

octacosanol

Octacosyl alcohol

C28H58O (410.4487)


   

3952-18-9

8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-chromen-8-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C30H18O10 (538.09)


   

Toralactone

9,10-Dihydroxy-7-methoxy-3-methyl-1H-naphtho(2,3-c)pyran-1-one

C15H12O5 (272.0685)


Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1]. Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1].

   

Esdragon

InChI=1\C10H12O\c1-3-4-9-5-7-10(11-2)8-6-9\h3,5-8H,1,4H2,2H

C10H12O (148.0888)


Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].

   

Rheochrysin

1-hydroxy-6-methoxy-3-methyl-8-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]anthracene-9,10-dione

C22H22O10 (446.1213)


Physcion 8-O-β-D-glucopyranosideis an anthraquinone compound isolated from Rumex japonicus Houtt. Physcion 8-O-β-D-glucopyranoside exerts anti-inflammatory and anti-cancer properties, can be for common malignancy cancer research[1].

   

(R)-(−)-Propylene glycerol

(R)-(−)-Propylene glycerol

C3H8O2 (76.0524)


(R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

Amylol

4-01-00-01640 (Beilstein Handbook Reference)

C5H12O (88.0888)


   

Vetol

5-18-01-00114 (Beilstein Handbook Reference)

C6H6O3 (126.0317)


C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].

   

480-66-0

InChI=1\C8H8O4\c1-4(9)8-6(11)2-5(10)3-7(8)12\h2-3,10-12H,1H

C8H8O4 (168.0423)


Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].

   

83-32-9

InChI=1\C12H10\c1-3-9-4-2-6-11-8-7-10(5-1)12(9)11\h1-6H,7-8H

C12H10 (154.0782)


   

Mipax

BENZENE,1,2-DICARBOXYLIC ACID,DIMETHYL ESTER (PHTHALIC ACID,DIMETHYL ESTER)

C10H10O4 (194.0579)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents D020011 - Protective Agents D016573 - Agrochemicals D005404 - Fixatives

   

PARALDEHYDE

PARALDEHYDE

C6H12O3 (132.0786)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CC - Aldehydes and derivatives D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Anthracen

paranaphthalene, anthracin, anthraxcene, green oil, tetra olive n2g

C14H10 (178.0782)


   

CPD-926

InChI=1\C12H8O\c1-3-7-11-9(5-1)10-6-2-4-8-12(10)13-11\h1-8

C12H8O (168.0575)


   

Stilon

InChI=1\C6H11NO\c8-6-4-2-1-3-5-7-6\h1-5H2,(H,7,8

C6H11NO (113.0841)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Zymostrol

(3S,5S,10S,13R,14R,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,5,6,7,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3392)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

64-67-5

InChI=1\C4H10O4S\c1-3-7-9(5,6)8-4-2\h3-4H2,1-2H

C4H10O4S (154.03)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens

   

AI3-31148

Naphtho[2,3-b]furan-2(3H)-one, decahydro-8a-methyl-3,5-bis(methylene)-, [3aR-(3a.alpha.,4a.alpha.,8a.beta.,9a.alpha.)]-

C15H20O2 (232.1463)


Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

melilotin

InChI=1\C9H8O2\c10-9-6-5-7-3-1-2-4-8(7)11-9\h1-4H,5-6H

C9H8O2 (148.0524)


Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].

   

Tecomin

InChI=1\C15H14O3\c1-9(2)7-8-12-13(16)10-5-3-4-6-11(10)14(17)15(12)18\h3-7,18H,8H2,1-2H

C15H14O3 (242.0943)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

N-Deacetylcolchicine

N-Deacetylcolchicine

C20H23NO5 (357.1576)


   

Isohelenin

Naphtho(2,3-b)furan-2(3H)-one, decahydro-8a-methyl-3,5-bis(methylene)-, (3aR-(3a alpha,4a alpha,8a beta,9a alpha))-

C15H20O2 (232.1463)


Isoalantolactone is a sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. It has a role as an apoptosis inducer, an antifungal agent and a plant metabolite. It is a sesquiterpene lactone and a eudesmane sesquiterpenoid. Isoalantolactone is a natural product found in Eupatorium cannabinum, Critonia quadrangularis, and other organisms with data available. A sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

Ginsenoside

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[(2S)-6-methyl-2-[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,6,12-trihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]hept-5-en-2-yl]oxyoxane-3,4,5-triol

C36H62O9 (638.4394)


Ginsenoside F1 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite and an apoptosis inhibitor. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a 6alpha-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside F1 is a natural product found in Panax ginseng, Panax notoginseng, and Gynostemma yixingense with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity. Ginsenoside F1, an enzymatically modified derivative of Ginsenoside Rg1, demonstrates competitive inhibition of CYP3A4 activity and weaker inhibition of CYP2D6 activity.

   

Protodioscin

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,22.ALPHA.,25R)-26-(.BETA.-D-GLUCOPYRANOSYLOXY)-22-HYDROXYFUROST-5-EN-3-YL O-6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->2)-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL-(1->4))-

C51H84O22 (1048.5454)


Protodioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. It has a role as a metabolite. It is a steroid saponin, a trisaccharide derivative, a beta-D-glucoside, a pentacyclic triterpenoid and a cyclic hemiketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Protodioscin is a natural product found in Dracaena draco, Borassus flabellifer, and other organisms with data available. See also: Fenugreek seed (part of). A spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.

   

L-BOAA

N-Oxalyl-L-alpha-beta-diaminopropionic acid (BOAA,ODAP)

C5H8N2O5 (176.0433)


N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.

   

Araloside_A

(2S,3S,4R,5R,6R)-6-[[(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3-[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxyoxane-2-carboxylic acid

C47H74O18 (926.4875)


Chikusetsusaponin-IV is a triterpenoid saponin. It has a role as a metabolite. Araloside A is a natural product found in Kalopanax septemlobus, Bassia muricata, and other organisms with data available. A natural product found in Panax japonicus var. major. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].

   

formamide

formamide

CH3NO (45.0215)


   

ANTHRACENE

ANTHRACENE

C14H10 (178.0782)


   

CYANURIC ACID

Tricyanic acid

C3H3N3O3 (129.0174)


   

Caprolactam

Caprolactam

C6H11NO (113.0841)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

ethionamide

ethionamide

C8H10N2S (166.0565)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AD - Thiocarbamide derivatives D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Ethionamide (2-ethylthioisonicotinamide) is a second-line anti-tuberculosis antibiotic.

   

dibenzofuran

Dibenzo[b,d]furan

C12H8O (168.0575)


   

Tamsulosin

Tamsulosin

C20H28N2O5S (408.1719)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04C - Drugs used in benign prostatic hypertrophy > G04CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tamsulosin ((R)-(-)-YM12617 free base) is an inhibitor of α1-adrenergic receptor. Tamsulosin is used for the research of prostatic hyperplasia. Tamsulosin attenuates abdominal aortic aneurysm growth in animal models[1].

   

meclizine

meclizine

C25H27ClN2 (390.1863)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AE - Piperazine derivatives D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents D018926 - Anti-Allergic Agents

   

dicyclomine

dicyclomine

C19H35NO2 (309.2668)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AA - Synthetic anticholinergics, esters with tertiary amino group C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

trihexyphenidyl

Trihexylphenedyl

C20H31NO (301.2406)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Diphosphoric acid

Pyrophosphoric acid

H4O7P2 (177.9432)


An acyclic phosphorus acid anhydride obtained by condensation of two molecules of phosphoric acid. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Eprosartan

Eprosartan

C23H24N2O4S (424.1457)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

ACENAPHTHENE

ACENAPHTHENE

C12H10 (154.0782)


   

m-Phenylenediamine

m-Phenylenediamine

C6H8N2 (108.0687)


   

DIBUTYL SUCCINATE

DIBUTYL SUCCINATE

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

Cabergoline

Cabergoline

C26H37N5O2 (451.2947)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CB - Prolactine inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist Cabergoline is an ergot derived-dopamine D2-like receptor agonist that has high affinity for D2, D3, and 5-HT2B receptors (Ki=0.7, 1.5, and 1.2, respectively).

   

SUCCINIMIDE

SUCCINIMIDE

C4H5NO2 (99.032)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals

   

thiamylal

thiamylal

C12H18N2O2S (254.1089)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

R-1,2-PROPANEDIOL

(R)-(-)-1,2-Propanediol

C3H8O2 (76.0524)


(R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

SELENIC ACID

SELENIC ACID

H2O4Se (145.9118)


D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014131 - Trace Elements

   

(2R)-2-hydroxypentanedioic acid

(2R)-2-hydroxypentanedioic acid

C5H8O5 (148.0372)


   

O-Acetylcarnitine

O-acetylcarnitinium

C9H18NO4+ (204.1236)


   

Tazobactam

Tazobactam

C10H12N4O5S (300.0528)


A member of the class of penicillanic acids that is sulbactam in which one of the exocyclic methyl hydrogens is replaced by a 1,2,3-triazol-1-yl group; used (in the form of its sodium salt) in combination with ceftolozane sulfate for treatment of complicated intra-abdominal infections and complicated urinary tract infections. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CG - Beta-lactamase inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D065093 - beta-Lactamase Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C2140 - Adjuvant > C183118 - Beta-lactamase Inhibitor D004791 - Enzyme Inhibitors Tazobactam (CL-298741) is a potent β-lactamases inhibitor and penicillin antibiotic. Tazobactam has antibacterial activity. Tazobactam can be used for pneumonia research[1][2].

   

7-Amino-4-methylcoumarin

7-Amino-4-methylcoumarin

C10H9NO2 (175.0633)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

DL-Tyrosine

L-(-)-Tyrosine

C9H11NO3 (181.0739)


   

Mometasone

Mometasone

C22H28Cl2O4 (426.1365)


D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XC - Corticosteroids, potent, other combinations R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents D003879 - Dermatologic Agents

   

1-Benzyl-1,2,3,4-tetrahydroisoquinoline

Isoquinoline,1,2,3,4-tetrahydro-1-(phenylmethyl)-

C16H17N (223.1361)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists

   

CYTIDINE-5-triphosphATE

cytidine 5-(tetrahydrogen triphosphate)

C9H16N3O14P3 (482.9845)


Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].

   

O,O-Diethyl hydrogen thiophosphate

O,O-Diethyl hydrogen thiophosphate

C4H11O3PS (170.0167)


An organic thiophosphate that is the diethyl ester of phosphorothioic O,O,O-acid.

   

Taurolithocholic acid 3-sulfate

Taurolithocholic acid 3-sulfate

C26H45NO8S2 (563.2586)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

(3S)-3-Methyl-2-oxopentanoic acid

(3S)-3-Methyl-2-oxopentanoic acid

C6H10O3 (130.063)


   
   

ASCARIDOLE

ASCARIDOLE

C10H16O2 (168.115)


A p-menthane monoterpenoid that is p-menth-2-ene with a peroxy group across position 1 to 4. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Coumermycin A1

Coumermycin A1

C55H59N5O20 (1109.3753)


A hydroxycoumarin antibiotic that is obtained from Streptomyces rishiriensis and exhibits potent antibacterial and anticancer activity. D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic D004791 - Enzyme Inhibitors

   

4-quinolone

4-Hydroxyquinoline

C9H7NO (145.0528)


   

L-Azetidine-2-carboxylic acid

2-Azetidinecarboxylic acid, (S)-

C4H7NO2 (101.0477)


The (S)-enantiomer of azetidine-2-carboxylic acid. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.

   

Methacrylyl-CoA

Methacrylyl-CoA

C25H40N7O17P3S (835.1414)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of methacrylic acid.

   

2-Phosphoglycolic Acid

2-Phosphoglycolic Acid

C2H5O6P (155.9824)


The O-phospho derivative of glycolic acid.

   

(S)-2-Hydroxy-2-(isopropyl)succinic acid

(S)-2-Hydroxy-2-(isopropyl)succinic acid

C7H12O5 (176.0685)


   
   

N-Methyl-L-alanine

N-Methyl-L-alanine

C4H9NO2 (103.0633)


A methyl-L-alanine in which one of the the amino hydrogen of L-alanine is replaced by a methyl group.

   

H-Phg-OH

2-Aminophenylacetic acid

C8H9NO2 (151.0633)


   

jasplakinolide

jasplakinolide

C36H45BrN4O6 (708.2522)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals

   

12-oxo-phytodienoic acid

12-oxo-phytodienoic acid

C18H28O3 (292.2038)


D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

Benzoyl-coa

Benzoyl-coa

C28H40N7O17P3S (871.1414)


The simplest member of the class of benzoyl-CoAs that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of benzoic acid.

   

Previtamin D3

Previtamin D3

C27H44O (384.3392)


A hydroxy seco-steroid which is an intermediate in the production of vitamin D3 in human skin.

   

(S)-1-Pyrroline-5-carboxylate

(S)-1-Pyrroline-5-carboxylate

C5H7NO2 (113.0477)


   

5-O-(1-carboxyvinyl)-3-phosphoshikimic acid

5-O-(1-carboxyvinyl)-3-phosphoshikimic acid

C10H13O10P (324.0246)


   

N-Methyl-L-histidine

N-Methyl-L-histidine

C7H11N3O2 (169.0851)


   

beta-cyclocostunolide

beta-cyclocostunolide

C15H20O2 (232.1463)


   
   

2-(alpha-Hydroxyethyl)thiamine diphosphate

2-(alpha-Hydroxyethyl)thiamine diphosphate

C14H23N4O8P2S+ (469.0712)


   

N-(Carboxymethyl)-D-alanine

N-(Carboxymethyl)-D-alanine

C5H9NO4 (147.0532)


   

Deoxy-5-methylcytidylic acid

Deoxy-5-methylcytidylic acid

C10H16N3O7P (321.0726)


   

1-(sn-Glycero-3-phospho)-1D-myo-inositol

1-(sn-Glycero-3-phospho)-1D-myo-inositol

C9H19O11P (334.0665)


A myo-inositol monophosphate derivative that is 1D-myo-inositol substituted at position 1 by an sn-glycero-3-phospho group.

   

(3Z)-phytochromobilin

(3Z)-phytochromobilin

C33H36N4O6 (584.2635)


   

2-Ethoxyethanol

2-Ethoxyethanol

C4H10O2 (90.0681)


   

dichlorobenzene

1,2-DICHLOROBENZENE

C6H4Cl2 (145.969)


A dichlorobenzene carrying chloro substituents at positions 1 and 2. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Epothilone D

Desoxyepothilone b

C27H41NO5S (491.2705)


An epithilone that is epithilone C in which the hydrogen at position 13 of the oxacyclohexadec-13-ene-2,6-dione macrocycle has been replaced by a methyl group. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

decylubiquinone

2,3-Dimethoxy-5-methyl-6-decyl-1,4-benzoquinone

C19H30O4 (322.2144)


   

metolachlor

metolachlor [ANSI, WSSA]

C15H22ClNO2 (283.1339)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Benlate

Benlate

C14H18N4O3 (290.1379)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D016573 - Agrochemicals D010575 - Pesticides

   

pentanol

Isoamyl alcohol

C5H12O (88.0888)


   

Methylparathion

Parathion-methyl

C8H10NO5PS (263.0017)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

alachlor

alachlor

C14H20ClNO2 (269.1182)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

trichlorobenzene

1,2,3-TRICHLOROBENZENE

C6H3Cl3 (179.93)


   

Aminomethylphosphonate

1-Aminomethylphosphonic acid

CH6NO3P (111.0085)


   

1-Pyrroline

3,4-Dihydro-2H-pyrrole

C4H7N (69.0578)


   

Cerebrosterol

(24S)-Cholest-5-ene-3beta,24-diol

C27H46O2 (402.3498)


A 24-hydroxycholesterol that has S configuration at position 24. It is the major metabolic breakdown product of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].

   

22:4n6

(7Z,10Z,13Z,16Z)-Docosa-7,10,13,16-tetraenoic acid

C22H36O2 (332.2715)


The all-cis-isomer of a C22 polyunsaturated fatty acid having four double bonds in the 7-, 10-, 13- and 16-positions. One of the most abundant fatty acids in the early human brain.

   

2,4-Quinolinediol

4-Hydroxyquinolin-2(1H)-one

C9H7NO2 (161.0477)


   

Homocysteic acid

DL-Homocysteic acid

C4H9NO5S (183.0201)


   

5-Fluorouridine monophosphate

5-Fluorouridine monophosphate

C9H12FN2O9P (342.0264)


   

Diethyl sulfate

Diethyl sulfate

C4H10O4S (154.03)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D009153 - Mutagens

   

Ethlenethiourea

2-Mercaptoimidazoline

C3H6N2S (102.0252)


   

4,4-Methylenedianiline

4,4′-methylenedianiline

C13H14N2 (198.1157)


D009676 - Noxae > D002273 - Carcinogens

   

CHLOROACETYL CHLORIDE

CHLOROACETYL CHLORIDE

C2H2Cl2O (111.9483)


   

Quintozene

Pentachloronitrobenzene

C6Cl5NO2 (292.8372)


D016573 - Agrochemicals D010575 - Pesticides

   

Normorphine

Normorphine

C16H17NO3 (271.1208)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist

   

(±)-nicotine

3-(1-methylpyrrolidin-2-yl)pyridine

C10H14N2 (162.1157)


An N-alkylpyrrolidine that consists of N-methylpyrrolidine bearing a pyridin-3-yl substituent at position 2.

   

Spiroxamine

UNII:OUT5YHB7BO

C18H35NO2 (297.2668)


D016573 - Agrochemicals D010575 - Pesticides

   

Goltix

METAMITRON

C10H10N4O (202.0855)


   

Tocopheryl acetate

DL-alpha-Tocopherol acetate

C31H52O3 (472.3916)


D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols D018977 - Micronutrients > D014815 - Vitamins

   

Dendrolasin

Dendrolasin

C15H22O (218.1671)


   

XE991

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

C26H20N2O (376.1576)


   

Azidopine

Azidopine

C27H26F3N5O5 (557.1886)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels

   
   
   

adrenic acid

Docosa-7,10,13,16-tetraenoic acid

C22H36O2 (332.2715)


   

Mycalolide-B

Mycalolide-B

C52H74N4O17 (1026.5049)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins