Brassinolide (BioDeep_00000014715)

Main id: BioDeep_00000006995

Secondary id: BioDeep_00000036282, BioDeep_00000230890

human metabolite PANOMIX_OTCML-2023 Endogenous BioNovoGene_Lab2019


代谢物信息卡片


6H-BENZ(C)INDENO(5,4-E)OXEPIN-6-ONE, 1-(2,3-DIHYDROXY-1,4,5-TRIMETHYLHEXYL)HEXADECAHYDRO-8,9-DIHYDROXY-10A,12A-DIMETHYL-, (1R-(1.ALPHA.(1S*,2R*,3R*,4R*),3A.BETA.,3B.ALPHA.,6A.BETA.,8.BETA.,9.BETA.,10A.ALPHA.,10B.BETA.,12A.ALPHA.))-

化学式: C28H48O6 (480.3450708)
中文名称: 表油菜素内酯, 油菜素内酯, 芸苔素内酯, 欧洲油菜素, 天丰素, 布拉西诺内酯, 油菜素内酯(BR), 油菜素内酯(BR), 油菜素内酯(BR)
谱图信息: 最多检出来源 Viridiplantae(plant) 0.27%

分子结构信息

SMILES: C1C[C@]([H])([C@H](C)[C@@H](O)[C@H](O)[C@H](C)C(C)C)[C@@]2(C)CC[C@@]3([H])[C@](COC(=O)[C@@]4([H])C[C@H](O)[C@H](O)C[C@]34C)([H])[C@@]21[H]
InChI: InChI=1S/C28H48O6/c1-14(2)15(3)24(31)25(32)16(4)18-7-8-19-17-13-34-26(33)21-11-22(29)23(30)12-28(21,6)20(17)9-10-27(18,19)5/h14-25,29-32H,7-13H2,1-6H3/t15-,16+,17+,18-,19+,20+,21-,22+,23-,24-,25-,27-,28-/m1/s1

描述信息

24-epi-brassinolide is a 2alpha-hydroxy steroid, a 3alpha-hydroxy steroid, a 22-hydroxy steroid, a 23-hydroxy steroid and a brassinosteroid.
24-epi-Brassinolide is a natural product found in Arabidopsis thaliana, Vicia faba, and other organisms with data available.
Constituent of bee collected rape pollen (Brassica napus). Brassinolide is found in many foods, some of which are coconut, grass pea, red huckleberry, and strawberry guava.
Brassinolide is found in brassicas. Brassinolide is a constituent of bee collected rape pollen (Brassica napus).
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D060406 - Brassinosteroids
Brassinolide is a predominant plant growth modulator that regulate plant cell elongation.
Brassinolide is a predominant plant growth modulator that regulate plant cell elongation.
Epibrassinolide (24-Epibrassinolide) is a ubiquitously occurring plant growth hormone which shows great potential to alleviate heavy metals and pesticide stress in plants[1]. Epibrassinolide is a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth[2].
Epibrassinolide (24-Epibrassinolide) is a ubiquitously occurring plant growth hormone which shows great potential to alleviate heavy metals and pesticide stress in plants[1]. Epibrassinolide is a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth[2].

同义名列表

30 个代谢物同义名

6H-BENZ(C)INDENO(5,4-E)OXEPIN-6-ONE, 1-(2,3-DIHYDROXY-1,4,5-TRIMETHYLHEXYL)HEXADECAHYDRO-8,9-DIHYDROXY-10A,12A-DIMETHYL-, (1R-(1.ALPHA.(1S*,2R*,3R*,4R*),3A.BETA.,3B.ALPHA.,6A.BETA.,8.BETA.,9.BETA.,10A.ALPHA.,10B.BETA.,12A.ALPHA.))-; 6H-Benz(C)indeno(5,4-E)oxepin-6-one, 1-(2,3-dihydroxy-1,4,5-trimethylhexyl)hexadecahydro-8,9-dihydroxy-10a,12a-dimethyl-, (1R-(1alpha(1S*,2R*,3R*,4R*),3abeta,3balpha,6abeta,8beta,9beta,10aalpha,10bbeta,12aalpha))-; 3H-Benz[c]indeno[5,4-e]oxepin-3-one, 10-[(1S,2R,3R,4R)-2,3-dihydroxy-1,4,5-trimethylhexyl]hexadecahydro-5,6-dihydroxy-7a,9a-dimethyl-, (3aS,5S,6R,7aR,7bS,9aS,10R,12aS,12bS)-; (1R,3aS,3bS,6aS,8S,9R,10aR,10bS,12aS)-1-((1S,2R,3R,4R)-2,3-Dihydroxy-1,4,5-trimethylhexyl)hexadecahydro-8,9-dihydroxy-10a,12a-dimethyl-6H-benz(C)indeno(5,4-E)oxepin-6-one; (1S,2R,4R,5S,7S,11S,12S,15R,16S)-15-[(2S,3R,4R,5R)-3,4-dihydroxy-5,6-dimethylheptan-2-yl]-4,5-dihydroxy-2,16-dimethyl-9-oxatetracyclo[9.7.0.0²,⁷.0¹²,¹⁶]octadecan-8-one; (1S,2R,4R,5S,7S,11S,12S,15R,16S)-15-[(2S,3R,4R,5R)-3,4-dihydroxy-5,6-dimethylheptan-2-yl]-4,5-dihydroxy-2,16-dimethyl-9-oxatetracyclo[9.7.0.02,7.012,16]octadecan-8-one; 2alpha,3alpha,22alpha,23alpha-tetrahydroxy-24alpha-methyl-B-homo-7-oxa-5alpha-cholestan-6-one; B-HOMO-7-OXAERGOSTAN-6-ONE, 2,3,22,23-TETRAHYDROXY-, (2.ALPHA.,3.ALPHA.,5.ALPHA.,22R,23R)-; (22R,23R,24R)-2.ALPHA.,3.ALPHA.,22,23-TETRAHYDROXY-B-HOMO-7-OXA-5.ALPHA.-ERGOSTAN-6-ONE; B-HOMO-7-oxaergostan-6-one, 2,3,22,23-tetrahydroxy-, (2alpha,3alpha,5alpha,22R,23R)-; (22R,23R,24R)-2alpha,3alpha,22,23-Tetrahydroxy-b-homo-7-oxa-5alpha-ergostan-6-one; (22R,23R)-2alpha,3alpha,22,23-tetrahydroxy-7a-homo-7-oxa-5alpha-ergostan-6-one; 2,3,22,23-Tetrahydroxy-24-methyl-B-homo-7-oxacholestan-6-one; brassinolide, (2alpha,3alpha,5alpha.22R,23R)-isomer; brassinolide, (2alpha,3alpha,5alpha,22S,23S)-isomer; 24-Epibrassinolide;B1105;BP55; Epibrassinolide, >=85\\%; 24(R)-Epibrassinolide; 24-epi-Brassinolide; 24-epibrassinolide; Epibrassinolide R; Epibrassinolide; Brassin lactone; UNII-49CN25465Y; Sunergist ebr; brassinolide; ST 28:1;O6; 49CN25465Y; BP55; B1105



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(5)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

32 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Lijiang Hou, Zihui Liu, Dongzhi Zhang, Shuhan Liu, Zhenzhen Chen, Qiufang Wu, Zengzhen Shang, Jingshun Wang, Junwei Wang. BR regulates wheat root salt tolerance by maintaining ROS homeostasis. Planta. 2024 May; 260(1):5. doi: 10.1007/s00425-024-04429-8. [PMID: 38777878]
  • Dan Zhang, Lulu Zhang, Chengwei Yuan, Kuizhi Zhai, Wansheng Xia, Yusui Duan, Bingnan Zhao, Jianzhou Chu, Xiaoqin Yao. Brassinolide as potential rescue agent for Pinellia ternata grown under microplastic condition: Insights into their modulatory role on photosynthesis, redox homeostasis, and AsA-GSH cycling. Journal of hazardous materials. 2024 May; 470(?):134116. doi: 10.1016/j.jhazmat.2024.134116. [PMID: 38547753]
  • Dengyun Wu, Dan Zhang, Zixin Geng, Wang Gao, Mengting Tong, Jianzhou Chu, Xiaoqin Yao. Waterlogging faced by bulbil expansion improved the growth of Pinellia ternata and its effect reinforced by brassinolide. Plant physiology and biochemistry : PPB. 2024 Jan; 207(?):108377. doi: 10.1016/j.plaphy.2024.108377. [PMID: 38271862]
  • Ya-Qi An, Bo-Shi Bi, Han Xu, De-Jun Ma, Zhen Xi. Co-application of Brassinolide and Pyraclostrobin Improved Disease Control Efficacy by Eliciting Plant Innate Defense Responses in Arabidopsis thaliana. Journal of agricultural and food chemistry. 2024 Jan; 72(1):916-932. doi: 10.1021/acs.jafc.3c07006. [PMID: 38115548]
  • Bicky Kumar, Madan Pal, Pranjal Yadava, Krishan Kumar, Sapna Langyan, Abhishek Kumar Jha, Ishwar Singh. Physiological and biochemical effects of 24-Epibrassinolide on drought stress adaptation in maize (Zea mays L.). PeerJ. 2024; 12(?):e17190. doi: 10.7717/peerj.17190. [PMID: 38560461]
  • Faride Gholami, Mohamad Reza Amerian, Hamid Reza Asghari, Amin Ebrahimi. Assessing the effects of 24-epibrassinolide and yeast extract at various levels on cowpea's morphophysiological and biochemical responses under water deficit stress. BMC plant biology. 2023 Nov; 23(1):593. doi: 10.1186/s12870-023-04548-6. [PMID: 38008746]
  • Saeed Karami Mehrian, Nasser Karimi, Fatemeh Rahmani. 24-Epibrassinolide alleviates diazinon oxidative damage by escalating activities of antioxidant defense systems in maize plants. Scientific reports. 2023 11; 13(1):19631. doi: 10.1038/s41598-023-46764-y. [PMID: 37949961]
  • Kun Ye, Weijian Shen, Yichen Zhao. External application of brassinolide enhances cold resistance of tea plants (Camellia sinensis L.) by integrating calcium signals. Planta. 2023 Nov; 258(6):114. doi: 10.1007/s00425-023-04276-z. [PMID: 37943407]
  • A T Ribeiro, G S Teodoro, K C da Silva, Y C Pereira-Matos, B L Batista, A K S Lobato. 24-Epibrassinolide alleviates drought effects in young Carapa guianensis plants, improving the hydraulic safety margin, gas exchange and antioxidant defence. Plant biology (Stuttgart, Germany). 2023 Aug; ?(?):. doi: 10.1111/plb.13563. [PMID: 37549227]
  • Xiatong Zhao, Ke Ma, Zhong Li, Weidong Li, Xin Zhang, Shaoguang Liu, Ru Meng, Boyu Lu, Xiaorui Li, Jianhong Ren, Liguang Zhang, Xiangyang Yuan. Transcriptome Analysis Reveals Brassinolide Signaling Pathway Control of Foxtail Millet Seedling Starch and Sucrose Metabolism under Freezing Stress, with Implications for Growth and Development. International journal of molecular sciences. 2023 Jul; 24(14):. doi: 10.3390/ijms241411590. [PMID: 37511348]
  • Jian-Ping An, Zhi-Ying Liu, Xiao-Wei Zhang, Da-Ru Wang, Fanchang Zeng, Chun-Xiang You, Yuepeng Han. Brassinosteroid signaling regulator BIM1 integrates brassinolide and jasmonic acid signaling during cold tolerance in apple. Plant physiology. 2023 Jul; ?(?):. doi: 10.1093/plphys/kiad371. [PMID: 37392474]
  • Marta Pintó-Marijuan, Martina Turon-Orra, Alba González-Betancort, Paula Muñoz, Sergi Munné-Bosch. Improved production and quality of peppers irrigated with regenerated water by the application of 24-epibrassinolide. Plant science : an international journal of experimental plant biology. 2023 Jun; 334(?):111764. doi: 10.1016/j.plantsci.2023.111764. [PMID: 37301327]
  • Shahla Sheikhi, Amin Ebrahimi, Parviz Heidari, Mohamad Reza Amerian, Sajad Rashidi-Monfared, Hadi Alipour. Exogenous 24-epibrassinolide ameliorates tolerance to high-temperature by adjusting the biosynthesis of pigments, enzymatic, non-enzymatic antioxidants, and diosgenin content in fenugreek. Scientific reports. 2023 Apr; 13(1):6661. doi: 10.1038/s41598-023-33913-6. [PMID: 37095206]
  • Palak Bakshi, Pooja Sharma, Rekha Chouhan, Bilal Ahmad Mir, Sumit G Gandhi, Renu Bhardwaj, Pravej Alam, Parvaiz Ahmad. Interactive effect of 24-epibrassinolide and plant growth promoting rhizobacteria inoculation restores photosynthetic attributes in Brassica juncea L. under chlorpyrifos toxicity. Environmental pollution (Barking, Essex : 1987). 2023 Mar; 320(?):120760. doi: 10.1016/j.envpol.2022.120760. [PMID: 36464116]
  • M P Saraiva, C F Maia, B L Batista, A K da S Lobato. Ionic homeostasis and redox metabolism upregulated by 24-epibrassinolide are crucial for mitigating nickel excess in soybean plants, enhancing photosystem II efficiency and biomass. Plant biology (Stuttgart, Germany). 2023 Mar; 25(2):343-355. doi: 10.1111/plb.13496. [PMID: 36484563]
  • Kuiju Niu, Ruiting Zhu, Yong Wang, Chunxu Zhao, Huiling Ma. 24-epibrassinolide improves cadmium tolerance and lateral root growth associated with regulating endogenous auxin and ethylene in Kentucky bluegrass. Ecotoxicology and environmental safety. 2023 Jan; 249(?):114460. doi: 10.1016/j.ecoenv.2022.114460. [PMID: 38321679]
  • Xiuquan Lan, Jiayuan Li, Jiancheng Chen, Jing Liu, Feishu Cao, Changjun Liao, Zengyu Zhang, Minghua Gu, Yanyan Wei, Fangke Shen, Xianghua Wei, Xianbao Luo, Xiuling Zhang. Effects of foliar applications of Brassinolide and Selenium on the accumulation of Arsenic and Cadmium in rice grains and an assessment of their health risk. International journal of phytoremediation. 2023; 25(2):161-171. doi: 10.1080/15226514.2022.2066064. [PMID: 35575119]
  • Lin Zhang, Chengwei Song, Dalong Guo, Lili Guo, Xiaogai Hou, Huafang Wang. Identification of differentially expressed miRNAs and their target genes in response to brassinolide treatment on flowering of tree peony (Paeonia ostii). Plant signaling & behavior. 2022 12; 17(1):2056364. doi: 10.1080/15592324.2022.2056364. [PMID: 35343364]
  • Qian Ma, Enguo Wu, Honglu Wang, Yuhao Yuan, Yu Feng, Jiajia Liu, Lin Zhao, Baili Feng. Exogenous 24-epibrassinolide boosts plant growth under alkaline stress from physiological and transcriptomic perspectives: The case of broomcorn millet (Panicum miliaceum L.). Ecotoxicology and environmental safety. 2022 Dec; 248(?):114298. doi: 10.1016/j.ecoenv.2022.114298. [PMID: 36403299]
  • Hongfei Zhou, Weiwei Zhuang, Huimin Huang, Nengfang Ma, Jun Lei, Guihua Jin, Shijia Wu, Shipeng Zhou, Xingling Zhao, Linhua Lan, Hongping Xia, Fugen Shangguan. Effects of natural 24-epibrassinolide on inducing apoptosis and restricting metabolism in hepatocarcinoma cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Dec; 107(?):154428. doi: 10.1016/j.phymed.2022.154428. [PMID: 36115171]
  • De-Wei Mu, Nai-Jie Feng, Dian-Feng Zheng, Hang Zhou, Ling Liu, Guan-Jie Chen, BaoMing Mu. Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings. Scientific reports. 2022 11; 12(1):20439. doi: 10.1038/s41598-022-24747-9. [PMID: 36443368]
  • Neha, Twinkle, Sumanta Mohapatra, Geetika Sirhindi, Vivek Dogra. Seed priming with brassinolides improves growth and reinforces antioxidative defenses under normal and heat stress conditions in seedlings of Brassica juncea. Physiologia plantarum. 2022 Nov; 174(6):e13814. doi: 10.1111/ppl.13814. [PMID: 36326060]
  • Chen Chen, Xuan-Min Wu, Liu Pan, Ya-Ting Yang, Hai-Bo Dai, Bing Hua, Min-Min Miao, Zhi-Ping Zhang. Effects of Exogenous α-Naphthaleneacetic Acid and 24-Epibrassinolide on Fruit Size and Assimilate Metabolism-Related Sugars and Enzyme Activities in Giant Pumpkin. International journal of molecular sciences. 2022 Oct; 23(21):. doi: 10.3390/ijms232113157. [PMID: 36361943]
  • Yaoyuan Zhang, Hanxiao Miao, Chao Wang, Junjie Zhang, Xiangyu Zhang, Xiaoxi Shi, Songfeng Xie, Tingdong Li, Pingchuan Deng, Changyou Wang, Chunhuan Chen, Hong Zhang, Wanquan Ji. Genetic identification of the pleiotropic gene Tasg-D1/2 affecting wheat grain shape by regulating brassinolide metabolism. Plant science : an international journal of experimental plant biology. 2022 Oct; 323(?):111392. doi: 10.1016/j.plantsci.2022.111392. [PMID: 35868348]
  • Wenjuan Li, Jiaojiao Zhang, Xiaoyi Tian, Hui Liu, Khawar Ali, Qunwei Bai, Bowen Zheng, Guang Wu, Hongyan Ren. Two Conserved Amino Acids Characterized in the Island Domain Are Essential for the Biological Functions of Brassinolide Receptors. International journal of molecular sciences. 2022 Sep; 23(19):. doi: 10.3390/ijms231911454. [PMID: 36232750]
  • Chenchen Guo, Ying Chen, Dengyun Wu, Yu Du, Mengyue Wang, Cunqi Liu, Jianzhou Chu, Xiaoqin Yao. Transcriptome Analysis Reveals an Essential Role of Exogenous Brassinolide on the Alkaloid Biosynthesis Pathway in Pinellia Ternata. International journal of molecular sciences. 2022 Sep; 23(18):. doi: 10.3390/ijms231810898. [PMID: 36142812]
  • Yepu Li, Qi Dong, Danni Wu, Ying Yin, Wenchao Du, Hongyan Guo. A 24-epibrassinolide treatment and intercropping willow with alfalfa increase the efficiency of the phytoremediation of cadmium-contaminated soil. The Science of the total environment. 2022 Sep; 854(?):158471. doi: 10.1016/j.scitotenv.2022.158471. [PMID: 36063946]
  • Zhijuan Sun, Dianming Guo, Zhichao Lv, Chuanjie Bian, Changqing Ma, Xiaoli Liu, Yike Tian, Caihong Wang, Xiaodong Zheng. Brassinolide alleviates Fe deficiency-induced stress by regulating the Fe absorption mechanism in Malus hupehensis Rehd. Plant cell reports. 2022 Sep; 41(9):1863-1874. doi: 10.1007/s00299-022-02897-4. [PMID: 35781542]
  • Azizolah Ghasemi, Salim Farzaneh, Sajjad Moharramnejad, Raouf Seyed Sharifi, Ahmed Fathy Youesf, Arkadiusz Telesinski, Hazem M Kalaji, Jacek Mojski. Impact of 24-epibrassinolide, spermine, and silicon on plant growth, antioxidant defense systems, and osmolyte accumulation of maize under water stress. Scientific reports. 2022 08; 12(1):14648. doi: 10.1038/s41598-022-18229-1. [PMID: 36030324]
  • Chen Chen, Hong Chen, Chao Han, Zemao Liu, Fangyuan Yu, Qikui Wu. 24-Epibrassinolide Promotes Fatty Acid Accumulation and the Expression of Related Genes in Styrax tonkinensis Seeds. International journal of molecular sciences. 2022 Aug; 23(16):. doi: 10.3390/ijms23168897. [PMID: 36012162]
  • Muhammad Ali Mumtaz, Yuanyuan Hao, Sajid Mehmood, Huangying Shu, Yan Zhou, Weiheng Jin, Chuhao Chen, Lin Li, Muhammad Ahsan Altaf, Zhiwei Wang. Physiological and Transcriptomic Analysis provide Molecular Insight into 24-Epibrassinolide mediated Cr(VI)-Toxicity Tolerance in Pepper Plants. Environmental pollution (Barking, Essex : 1987). 2022 Aug; 306(?):119375. doi: 10.1016/j.envpol.2022.119375. [PMID: 35500717]
  • Guihua Zeng, Feifei Gao, Chan Li, Dandan Li, Zhumei Xi. Characterization of 24-epibrassinolide-mediated modulation of the drought stress responses: Morphophysiology, antioxidant metabolism and hormones in grapevine (Vitis vinifera L.). Plant physiology and biochemistry : PPB. 2022 Aug; 184(?):98-111. doi: 10.1016/j.plaphy.2022.05.019. [PMID: 35636336]
  • Mengru Zhang, Mengfei Song, Marzieh Davoudi, Feng Cheng, Juan Yin, Gaohui Zha, Zhengan Yang, Jinfeng Chen, Qunfeng Lou. The mutation of C-24 reductase, a key enzyme involved in brassinolide biosynthesis, confers a novel compact plant architecture phenotype to cucumber. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2022 Aug; 135(8):2711-2723. doi: 10.1007/s00122-022-04144-6. [PMID: 35788747]
  • Seisuke Takimoto, Bunta Nishikawa, Midori Matsuo, Shiori Hinata, Taiki Hisatomi, Ayumi Yamagami, Takeshi Nakano, Yoshiaki Nakagawa, Hisashi Miyagawa. Structure modification of nonsteroidal brassinolide-like compound, NSBR1. Bioscience, biotechnology, and biochemistry. 2022 Jul; 86(8):1004-1012. doi: 10.1093/bbb/zbac074. [PMID: 35687006]
  • Jinhua Lv, Tianyu Dong, Yanping Zhang, Yu Ku, Ting Zheng, Haifeng Jia, Jinggui Fang. Metabolomic profiling of brassinolide and abscisic acid in response to high-temperature stress. Plant cell reports. 2022 Apr; 41(4):935-946. doi: 10.1007/s00299-022-02829-2. [PMID: 35044540]
  • Qifang Jin, Zhong Wang, Yanni Chen, Yiping Luo, Na Tian, Zhonghua Liu, Jianan Huang, Shuoqian Liu. Transcriptomics analysis reveals the signal transduction mechanism of brassinolides in tea leaves and its regulation on the growth and development of Camellia sinensis. BMC genomics. 2022 Jan; 23(1):29. doi: 10.1186/s12864-021-08179-9. [PMID: 34991475]
  • Xiaodong Zheng, Yuchao Li, Changqing Ma, Baoyin Chen, Zhijuan Sun, Yike Tian, Caihong Wang. A mutation in the promoter of the arabinogalactan protein 7-like gene PcAGP7-1 affects cell morphogenesis and brassinolide content in pear (Pyrus communis L.) stems. The Plant journal : for cell and molecular biology. 2022 01; 109(1):47-63. doi: 10.1111/tpj.15548. [PMID: 34695268]
  • C Guo, M Li, Y Chen, X Xu, C Liu, J Chu, X Yao. Seed bulb size influences the effects of exogenous brassinolide on yield and quality of Pinellia ternata. Plant biology (Stuttgart, Germany). 2022 Jan; 24(1):117-126. doi: 10.1111/plb.13314. [PMID: 34693612]
  • Ying Ren, Xianrong Che, Jingwei Liang, Sijia Wang, Lina Han, Ziyi Liu, Hui Chen, Ming Tang. Brassinosteroids Benefit Plants Performance by Augmenting Arbuscular Mycorrhizal Symbiosis. Microbiology spectrum. 2021 12; 9(3):e0164521. doi: 10.1128/spectrum.01645-21. [PMID: 34908500]
  • Pengfei Liu, Zhengqiang Jin, Chunyan Dai, Lanping Guo, Xiuming Cui, Ye Yang. Potassium enhances cadmium resistance ability of Panax notoginseng by brassinolide signaling pathway-regulated cell wall pectin metabolism. Ecotoxicology and environmental safety. 2021 Dec; 227(?):112906. doi: 10.1016/j.ecoenv.2021.112906. [PMID: 34673418]
  • Natalie M Clark, Trevor M Nolan, Ping Wang, Gaoyuan Song, Christian Montes, Conner T Valentine, Hongqing Guo, Rosangela Sozzani, Yanhai Yin, Justin W Walley. Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nature communications. 2021 10; 12(1):5858. doi: 10.1038/s41467-021-26165-3. [PMID: 34615886]
  • Ya-Juan Song, Yi Li, Yan Leng, Shi-Weng Li. 24-epibrassinolide improves differential cadmium tolerance of mung bean roots, stems, and leaves via amending antioxidative systems similar to that of abscisic acid. Environmental science and pollution research international. 2021 Oct; 28(37):52032-52045. doi: 10.1007/s11356-021-14404-5. [PMID: 33999324]
  • Courtney M Matzke, Hasan J Hamam, Paige M Henning, Kyra Dougherty, Joel S Shore, Michael M Neff, Andrew G McCubbin. Pistil Mating Type and Morphology Are Mediated by the Brassinosteroid Inactivating Activity of the S-Locus Gene BAHD in Heterostylous Turnera Species. International journal of molecular sciences. 2021 Sep; 22(19):. doi: 10.3390/ijms221910603. [PMID: 34638969]
  • Yicheng Wang, Zuolin Mao, Huiyan Jiang, Zongying Zhang, Nan Wang, Xuesen Chen. Brassinolide inhibits flavonoid biosynthesis and red-flesh coloration via the MdBEH2.2-MdMYB60 complex in apple. Journal of experimental botany. 2021 09; 72(18):6382-6399. doi: 10.1093/jxb/erab284. [PMID: 34128531]
  • Marc Somssich, Filip Vandenbussche, Alexander Ivakov, Norma Funke, Colin Ruprecht, Kris Vissenberg, Dominique VanDer Straeten, Staffan Persson, Dmitry Suslov. Brassinosteroids Influence Arabidopsis Hypocotyl Graviresponses through Changes in Mannans and Cellulose. Plant & cell physiology. 2021 Sep; 62(4):678-692. doi: 10.1093/pcp/pcab024. [PMID: 33570567]
  • Pinar Obakan Yerlikaya, Elif Damla Arısan, Ajda Coker Gurkan, Osman Orcun Okumus, Tugba Yenigun, Utku Ozbey, Melissa Kara, Narcin Palavan Unsal. Epibrassinolide prevents tau hyperphosphorylation via GSK3β inhibition in vitro and improves Caenorhabditis elegans lifespan and motor deficits in combination with roscovitine. Amino acids. 2021 Sep; 53(9):1373-1389. doi: 10.1007/s00726-021-03027-2. [PMID: 34386848]
  • Luiz Felipe da Silva Cunha, Victor Pereira de Oliveira, Antonio Wellinton Silva do Nascimento, Breno Ricardo Serrão da Silva, Bruno Lemos Batista, Abdulaziz Abdullah Alsahli, Allan Klynger da Silva Lobato. Leaf application of 24-epibrassinolide mitigates cadmium toxicity in young Eucalyptus urophylla plants by modulating leaf anatomy and gas exchange. Physiologia plantarum. 2021 Sep; 173(1):67-87. doi: 10.1111/ppl.13182. [PMID: 32767360]
  • Ling Cheng, Man Li, Wanling Min, Mengke Wang, Rongqing Chen, Wenfei Wang. Optimal Brassinosteroid Levels Are Required for Soybean Growth and Mineral Nutrient Homeostasis. International journal of molecular sciences. 2021 Aug; 22(16):. doi: 10.3390/ijms22168400. [PMID: 34445112]
  • Zengxiu Feng, Hongyong Shi, Minghui Lv, Yuang Ma, Jia Li. Protein farnesylation negatively regulates brassinosteroid signaling via reducing BES1 stability in Arabidopsis thaliana. Journal of integrative plant biology. 2021 Jul; 63(7):1353-1366. doi: 10.1111/jipb.13093. [PMID: 33764637]
  • Flávia Raphaela Carvalho Miranda Guedes, Camille Ferreira Maia, Breno Ricardo Serrão da Silva, Bruno Lemos Batista, Mohammed Nasser Alyemeni, Parvaiz Ahmad, Allan Klynger da Silva Lobato. Exogenous 24-Epibrassinolide stimulates root protection, and leaf antioxidant enzymes in lead stressed rice plants: Central roles to minimize Pb content and oxidative stress. Environmental pollution (Barking, Essex : 1987). 2021 Jul; 280(?):116992. doi: 10.1016/j.envpol.2021.116992. [PMID: 33784567]
  • Palak Bakshi, Rekha Chouhan, Pooja Sharma, Bilal Ahmad Mir, Sumit G Gandhi, Marco Landi, Bingsong Zheng, Anket Sharma, Renu Bhardwaj. Amelioration of Chlorpyrifos-Induced Toxicity in Brassica juncea L. by Combination of 24-Epibrassinolide and Plant-Growth-Promoting Rhizobacteria. Biomolecules. 2021 06; 11(6):. doi: 10.3390/biom11060877. [PMID: 34204730]
  • Imran Khan, Samrah Afzal Awan, Rizwana Ikram, Muhammad Rizwan, Nosheen Akhtar, Humaira Yasmin, Riyaz Z Sayyed, Shafaqat Ali, Noshin Ilyas. Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. Physiologia plantarum. 2021 Jun; 172(2):696-706. doi: 10.1111/ppl.13237. [PMID: 33034387]
  • A Avalbaev, R Yuldashev, K Fedorova, N Petrova, E Fedina, R Gilmanova, F Karimova, F Shakirova. 24-epibrassinolide-induced growth promotion of wheat seedlings is associated with changes in the proteome and tyrosine phosphoproteome. Plant biology (Stuttgart, Germany). 2021 May; 23(3):456-463. doi: 10.1111/plb.13233. [PMID: 33369832]
  • Nitza Soto, Karoll Ferrer, Katy Díaz, César González, Lautaro Taborga, Andrés F Olea, Héctor Carrasco, Luis Espinoza. Synthesis and Biological Activity of New Brassinosteroid Analogs of Type 24-Nor-5β-Cholane and 23-Benzoate Function in the Side Chain. International journal of molecular sciences. 2021 May; 22(9):. doi: 10.3390/ijms22094808. [PMID: 34062717]
  • Yajie Yang, Linchun Mao, Weiliang Guan, Xiaobo Wei, Yelin Shao, Zisheng Luo, Xingyu Lin, Li Li. Exogenous 24-epibrassinolide activates detoxification enzymes to promote degradation of boscalid in cherry tomatoes. Journal of the science of food and agriculture. 2021 Apr; 101(6):2210-2217. doi: 10.1002/jsfa.10840. [PMID: 33006387]
  • Anastasiia Starodubtseva, Tetiana Kalachova, Oksana Iakovenko, Vera Stoudková, Vladimir Zhabinskii, Vladimir Khripach, Eric Ruelland, Jan Martinec, Lenka Burketová, Volodymyr Kravets. BODIPY Conjugate of Epibrassinolide as a Novel Biologically Active Probe for In Vivo Imaging. International journal of molecular sciences. 2021 Mar; 22(7):. doi: 10.3390/ijms22073599. [PMID: 33808421]
  • Daylin Fernández Pacheco, Leonardo González Ceballos, Armando Zaldo Castro, Marcos R Conde González, Laura González de la Torre, Lia Pérez Rostgaard, Luis Espinoza, Katy Díaz, Andrés F Olea, Yamilet Coll García. Synthesis of New Steroidal Carbamates with Plant-Growth-Promoting Activity: Theoretical and Experimental Evidence. International journal of molecular sciences. 2021 Feb; 22(5):. doi: 10.3390/ijms22052330. [PMID: 33652675]
  • Jipeng Chen, Xiaoxiao Li, Xiaoxue Ye, Peng Guo, Zhubing Hu, Guoning Qi, Fuqiang Cui, Shenkui Liu. An S-ribonuclease binding protein EBS1 and brassinolide signaling are specifically required for Arabidopsis tolerance to bicarbonate. Journal of experimental botany. 2021 02; 72(4):1449-1459. doi: 10.1093/jxb/eraa524. [PMID: 33165537]
  • Yanyan Wang, Zefeng Zhai, Yueting Sun, Chen Feng, Xiang Peng, Xiang Zhang, Yuqin Xiao, Xin Zhou, Weili Wang, Jiale Jiao, Tianhong Li. Genome-Wide Identification of the B-BOX Genes that Respond to Multiple Ripening Related Signals in Sweet Cherry Fruit. International journal of molecular sciences. 2021 Feb; 22(4):. doi: 10.3390/ijms22041622. [PMID: 33562756]
  • Yiyang Zhang, Hui Liao. Epibrassinolide improves the growth performance of Sedum lineare upon Zn stress through boosting antioxidative capacities. PloS one. 2021; 16(9):e0257172. doi: 10.1371/journal.pone.0257172. [PMID: 34492083]
  • Lingling Dou, Yaru Sun, Shuye Li, Changwei Ge, Qian Shen, Huaizhu Li, Wenbo Wang, Jiayi Mao, Guanghui Xiao, Chaoyou Pang. Transcriptomic analyses show that 24-epibrassinolide (EBR) promotes cold tolerance in cotton seedlings. PloS one. 2021; 16(2):e0245070. doi: 10.1371/journal.pone.0245070. [PMID: 33524020]
  • Faroza Nazir, Qazi Fariduddin, Anjuman Hussain, Tanveer Alam Khan. Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu- triggered oxidative burst in tomato. Ecotoxicology and environmental safety. 2021 Jan; 207(?):111081. doi: 10.1016/j.ecoenv.2020.111081. [PMID: 32927154]
  • Sufu Gan, Wilfried Rozhon, Elisabeth Varga, Jyotirmoy Halder, Franz Berthiller, Brigitte Poppenberger. The acyltransferase PMAT1 malonylates brassinolide glucoside. The Journal of biological chemistry. 2021 Jan; 296(?):100424. doi: 10.1016/j.jbc.2021.100424. [PMID: 33600798]
  • Ke Yang, Xin-Lin Gong, Guo-Cheng Li, Ling-Qiao Huang, Chao Ning, Chen-Zhu Wang. A gustatory receptor tuned to the steroid plant hormone brassinolide in Plutella xylostella (Lepidoptera: Plutellidae). eLife. 2020 12; 9(?):. doi: 10.7554/elife.64114. [PMID: 33305735]
  • Liliya V Kolomeichuk, Marina V Efimova, Ilya E Zlobin, Vladimir D Kreslavski, Ol'ga K Murgan, Irina S Kovtun, Vladimir A Khripach, Vladimir V Kuznetsov, Suleyman I Allakhverdiev. 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants. Photosynthesis research. 2020 Dec; 146(1-3):151-163. doi: 10.1007/s11120-020-00708-z. [PMID: 31939071]
  • Yanluo Xie, Yao Luo, Mingping Sheng, He Peng, Yuanming Gu, Heng Xu, Yun Zhao. 24-Epibrassinolide combined with heavy metal resistant bacteria enhancing phytoextraction of Amaranthus hypochondriacus L. in Cd-contaminated soil. Journal of hazardous materials. 2020 11; 399(?):123031. doi: 10.1016/j.jhazmat.2020.123031. [PMID: 32516649]
  • Rongrong Ren, Xian Yang, Aiting Song, Chenchen Li, Haijun Yang, Yunyan Kang. Control of Phytophthora melonis damping-off treated with 24-epibrassinolide and a histological study of cucumber hypocotyl. Protoplasma. 2020 Nov; 257(6):1519-1529. doi: 10.1007/s00709-020-01523-y. [PMID: 32621043]
  • Ynglety Cascaes Pereira, Fernanda Rodrigues da Silva, Breno Ricardo Serrão da Silva, Flávio José Rodrigues Cruz, Douglas José Marques, Allan Klynger da Silva Lobato. 24-epibrassinolide induces protection against waterlogging and alleviates impacts on the root structures, photosynthetic machinery and biomass in soybean. Plant signaling & behavior. 2020 11; 15(11):1805885. doi: 10.1080/15592324.2020.1805885. [PMID: 32787497]
  • Kaan Adacan, Pınar Obakan-Yerlikaya, Elif Damla Arisan, Ajda Coker-Gurkan, Resul Ismail Kaya, Narçın Palavan-Unsal. Epibrassinolide-induced autophagy occurs in an Atg5-independent manner due to endoplasmic stress induction in MEF cells. Amino acids. 2020 Jul; 52(6-7):871-891. doi: 10.1007/s00726-020-02857-w. [PMID: 32449072]
  • Mengyu Wang, Congxi Cai, Jiayao Lin, Han Tao, Wei Zeng, Fen Zhang, Huiying Miao, Bo Sun, Qiaomei Wang. Combined treatment of epi-brassinolide and NaCl enhances the main phytochemicals in Chinese kale sprouts. Food chemistry. 2020 Jun; 315(?):126275. doi: 10.1016/j.foodchem.2020.126275. [PMID: 32004982]
  • Cengiz Kaya, Muhammad Ashraf, Mohammed Nasser Alyemeni, Parvaiz Ahmad. Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria × annassa) by up-regulating the ascorbate-glutathione cycle. Plant physiology and biochemistry : PPB. 2020 Jun; 151(?):486-499. doi: 10.1016/j.plaphy.2020.04.002. [PMID: 32302942]
  • Jinlong Liu, Rongchen Yang, Ni Jian, Long Wei, Liaoliao Ye, Ruihua Wang, Huiling Gao, Qingsong Zheng. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance. Plant, cell & environment. 2020 06; 43(6):1348-1359. doi: 10.1111/pce.13757. [PMID: 32176351]
  • Ting-Ting Li, Jing-di Zhang, Jia-Quan Tang, Zhi-Cheng Liu, Ya-Qian Li, Jie Chen, Li-Wen Zou. Combined Use of Trichoderma atroviride CCTCCSBW0199 and Brassinolide to Control Botrytis cinerea Infection in Tomato. Plant disease. 2020 May; 104(5):1298-1304. doi: 10.1094/pdis-07-19-1568-re. [PMID: 32196417]
  • Tássia Fernanda Santos Neri Soares, Denise Cunha Fernandes Dos Santos Dias, Ariadne Morbeck Santos Oliveira, Dimas Mendes Ribeiro, Luiz Antônio Dos Santos Dias. Exogenous brassinosteroids increase lead stress tolerance in seed germination and seedling growth of Brassica juncea L. Ecotoxicology and environmental safety. 2020 Apr; 193(?):110296. doi: 10.1016/j.ecoenv.2020.110296. [PMID: 32092579]
  • Bruno Sousa, Cristiano Soares, Francisca Oliveira, Maria Martins, Simão Branco-Neves, Beatriz Barbosa, Inês Ataíde, Jorge Teixeira, Manuel Azenha, Ricardo Antunes Azevedo, Fernanda Fidalgo. Foliar application of 24-epibrassinolide improves Solanum nigrum L. tolerance to high levels of Zn without affecting its remediation potential. Chemosphere. 2020 Apr; 244(?):125579. doi: 10.1016/j.chemosphere.2019.125579. [PMID: 32050351]
  • Praveen Gupta, Chandra Shekhar Seth. Interactive role of exogenous 24 Epibrassinolide and endogenous NO in Brassica juncea L. under salinity stress: Evidence for NR-dependent NO biosynthesis. Nitric oxide : biology and chemistry. 2020 04; 97(?):33-47. doi: 10.1016/j.niox.2020.01.014. [PMID: 32045686]
  • Yutong Li, Yue Wu, Weibiao Liao, Linli Hu, Mohammed Mujitaba Dawuda, Xin Jin, Zhongqi Tang, Jianjun Yang, Jihua Yu. Nitric oxide is involved in the brassinolide-induced adventitious root development in cucumber. BMC plant biology. 2020 Mar; 20(1):102. doi: 10.1186/s12870-020-2320-y. [PMID: 32138654]
  • Li Chen, Chan Long, Dan Wang, Jinyan Yang. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere. 2020 Mar; 242(?):125112. doi: 10.1016/j.chemosphere.2019.125112. [PMID: 31669993]
  • Bozhi Yang, Shudong Zhou, Lijun Ou, Feng Liu, Liying Yang, Jingyuan Zheng, Wenchao Chen, Zhuqing Zhang, Sha Yang, Yanqing Ma, Xuexiao Zou. A novel single-base mutation in CaBRI1 confers dwarf phenotype and brassinosteroid accumulation in pepper. Molecular genetics and genomics : MGG. 2020 Mar; 295(2):343-356. doi: 10.1007/s00438-019-01626-z. [PMID: 31745640]
  • Olga L Kandelinskaya, Helena R Grischenko, Vladimir A Кhripach, Vladimir N Zhabinskii, Lylia E Kartizhova, Yuriy K Shashko, Olga V Kosmachevskaya, Elvira I Nasybullina, Alexey F Topunov. Anabolic/anticatabolic and adaptogenic effects of 24-epibrassinolide on Lupinus angustifolius: Causes and consequences. Steroids. 2020 02; 154(?):108545. doi: 10.1016/j.steroids.2019.108545. [PMID: 31758963]
  • Faisal Aldukhi, Aniket Deb, Chuankai Zhao, Alexander S Moffett, Diwakar Shukla. Molecular Mechanism of Brassinosteroid Perception by the Plant Growth Receptor BRI1. The journal of physical chemistry. B. 2020 01; 124(2):355-365. doi: 10.1021/acs.jpcb.9b09377. [PMID: 31873025]
  • Woxiu Zhong, Chengcheng Xie, Dan Hu, Siyi Pu, Xi Xiong, Jun Ma, Lingxia Sun, Zhuo Huang, Mingyan Jiang, Xi Li. Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress. Ecotoxicology and environmental safety. 2020 Jan; 187(?):109831. doi: 10.1016/j.ecoenv.2019.109831. [PMID: 31654868]
  • Azamat Avalbaev, Marina Bezrukova, Chulpan Allagulova, Alsu Lubyanova, Guzel Kudoyarova, Kristina Fedorova, Dilara Maslennikova, Ruslan Yuldashev, Farida Shakirova. Wheat germ agglutinin is involved in the protective action of 24-epibrassinolide on the roots of wheat seedlings under drought conditions. Plant physiology and biochemistry : PPB. 2020 Jan; 146(?):420-427. doi: 10.1016/j.plaphy.2019.11.038. [PMID: 31805496]
  • Katarzyna Retzer, Maria Akhmanova, Nataliia Konstantinova, Kateřina Malínská, Johannes Leitner, Jan Petrášek, Christian Luschnig. Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nature communications. 2019 12; 10(1):5516. doi: 10.1038/s41467-019-13543-1. [PMID: 31797871]
  • Jiayin Hou, Qian Sun, Junjie Li, Golam Jalal Ahammed, Jingquan Yu, Hua Fang, Xiaojian Xia. Glutaredoxin S25 and its interacting TGACG motif-binding factor TGA2 mediate brassinosteroid-induced chlorothalonil metabolism in tomato plants. Environmental pollution (Barking, Essex : 1987). 2019 Dec; 255(Pt 2):113256. doi: 10.1016/j.envpol.2019.113256. [PMID: 31563783]
  • Hao Jiang, Buyun Tang, Zhouli Xie, Trevor Nolan, Huaxun Ye, Gao-Yuan Song, Justin Walley, Yanhai Yin. GSK3-like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in Arabidopsis. The Plant journal : for cell and molecular biology. 2019 12; 100(5):923-937. doi: 10.1111/tpj.14484. [PMID: 31357236]
  • Mengru Zhao, Lingyun Yuan, Jie Wang, Shilei Xie, Yushan Zheng, Libing Nie, Shidong Zhu, Jinfeng Hou, Guohu Chen, Chenggang Wang. Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature. BMC genomics. 2019 Nov; 20(1):810. doi: 10.1186/s12864-019-6191-2. [PMID: 31694527]
  • Pravej Alam, Thamer H Albalawi, Fahad H Altalayan, Md Afroz Bakht, Mohammad Abass Ahanger, Vaseem Raja, Muhammad Ashraf, Parvaiz Ahmad. 24-Epibrassinolide (EBR) Confers Tolerance against NaCl Stress in Soybean Plants by Up-Regulating Antioxidant System, Ascorbate-Glutathione Cycle, and Glyoxalase System. Biomolecules. 2019 10; 9(11):. doi: 10.3390/biom9110640. [PMID: 31652728]
  • Li'e Zhang, Qing Han, Jiawei Xiong, Ting Zheng, Jifu Han, Huanbin Zhou, Honghui Lin, Yanhai Yin, Dawei Zhang. Sumoylation of BRI1-EMS-SUPPRESSOR 1 (BES1) by the SUMO E3 Ligase SIZ1 Negatively Regulates Brassinosteroids Signaling in Arabidopsis thaliana. Plant & cell physiology. 2019 Oct; 60(10):2282-2292. doi: 10.1093/pcp/pcz125. [PMID: 31290980]
  • Tanveer Alam Khan, Mohammad Yusuf, Aqeel Ahmad, Zoobia Bashir, Taiba Saeed, Qazi Fariduddin, Shamsul Hayat, Hans-Peter Mock, Tingquan Wu. Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food chemistry. 2019 Aug; 289(?):500-511. doi: 10.1016/j.foodchem.2019.03.029. [PMID: 30955642]
  • Mansi Sharma, Priyanka Mahajan, Harminder Pal Singh, Daizy Rani Batish, Ravinder Kumar Kohli. 24-Epibrassinolide pre-treatment reduces alkaline-induced oxidative stress in red rice seedlings. Environmental science and pollution research international. 2019 Aug; 26(22):23192-23197. doi: 10.1007/s11356-019-05474-7. [PMID: 31187379]
  • Hye Jo Min, Li Hua Cui, Tae Rin Oh, Jong Hum Kim, Tae-Wuk Kim, Woo Taek Kim. OsBZR1 turnover mediated by OsSK22-regulated U-box E3 ligase OsPUB24 in rice BR response. The Plant journal : for cell and molecular biology. 2019 08; 99(3):426-438. doi: 10.1111/tpj.14332. [PMID: 30920691]
  • Yonca Surgun-Acar, Fahriye Zemheri-Navruz. 24-Epibrassinolide promotes arsenic tolerance in Arabidopsis thaliana L. by altering stress responses at biochemical and molecular level. Journal of plant physiology. 2019 Jul; 238(?):12-19. doi: 10.1016/j.jplph.2019.05.002. [PMID: 31121523]
  • Muzaffer Hussain, Tanveer Alam Khan, Mohammad Yusuf, Qazi Fariduddin. Silicon-mediated role of 24-epibrassinolide in wheat under high-temperature stress. Environmental science and pollution research international. 2019 Jun; 26(17):17163-17172. doi: 10.1007/s11356-019-04938-0. [PMID: 31001773]
  • Ali Anwar, Yansu Li, Chaoxing He, Xianchang Yu. 24-Epibrassinolide promotes NO3- and NH4+ ion flux rate and NRT1 gene expression in cucumber under suboptimal root zone temperature. BMC plant biology. 2019 May; 19(1):225. doi: 10.1186/s12870-019-1838-3. [PMID: 31146677]
  • Qiuyun Wu, Junwei Wang, Shuxiang Mao, Haoran Xu, Qi Wu, Mantian Liang, Yiming Yuan, Mingyue Liu, Ke Huang. Comparative transcriptome analyses of genes involved in sulforaphane metabolism at different treatment in Chinese kale using full-length transcriptome sequencing. BMC genomics. 2019 May; 20(1):377. doi: 10.1186/s12864-019-5758-2. [PMID: 31088374]
  • Arnon Setsungnern, Chairat Treesubsuntorn, Paitip Thiravetyan. Exogenous 24-epibrassinolide enhanced benzene detoxification in Chlorophytum comosum via overexpression and conjugation by glutathione. The Science of the total environment. 2019 Apr; 662(?):805-815. doi: 10.1016/j.scitotenv.2019.01.258. [PMID: 30708296]
  • Maria Filek, Apolonia Sieprawska, Janusz Kościelniak, Jana Oklestkova, Barbara Jurczyk, Anna Telk, Jolanta Biesaga-Kościelniak, Anna Janeczko. The role of chloroplasts in the oxidative stress that is induced by zearalenone in wheat plants - The functions of 24-epibrassinolide and selenium in the protective mechanisms. Plant physiology and biochemistry : PPB. 2019 Apr; 137(?):84-92. doi: 10.1016/j.plaphy.2019.01.030. [PMID: 30769236]
  • Sukhmeen Kaur Kohli, Shagun Bali, Ruchi Tejpal, Vandana Bhalla, Vinod Verma, Renu Bhardwaj, A A Alqarawi, Elsayed Fathi Abd Allah, Parvaiz Ahmad. In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-Epibrassinolide and Salicylic Acid. Scientific reports. 2019 03; 9(1):3524. doi: 10.1038/s41598-019-39712-2. [PMID: 30837530]