Maltol (BioDeep_00000002881)

 

Secondary id: BioDeep_00000415930, BioDeep_00000862363

human metabolite PANOMIX_OTCML-2023 Endogenous Chemicals and Drugs


代谢物信息卡片


3-Hydroxy-2-methyl-4-pyrone; 3-Hydroxy-2-methyl-pyran-4-one; Maltol; Deferiprone Impurity B

化学式: C6H6O3 (126.0317)
中文名称: 麦芽酚, 2-甲基-3-羟基-4-吡喃酮
谱图信息: 最多检出来源 Homo sapiens(otcml) 12.27%

分子结构信息

SMILES: CC1=C(C(=O)C=CO1)O
InChI: InChI=1S/C6H6O3/c1-4-6(8)5(7)2-3-9-4/h2-3,8H,1H3

描述信息

Maltol, also known as E636 or fema 2656, belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Some synthetic derivatives of maltol, developed at the University of Urbino, showed limited in vitro antiproliferative activity towards cancer cells lines, perhaps inducing apoptosis in these cells. Maltol is a sweet, baked, and bread tasting compound. Maltol has been detected, but not quantified, in several different foods, such as milk and milk products, nuts, soy beans, pepper (c. annuum), and coffee and coffee products. Maltols sweetness adds to the odor of freshly baked bread, and is used as a flavor enhancer (INS Number 636) in breads and cakes. Related to this property, maltol has been reported to greatly increase aluminum uptake in the body and to increase the oral bioavailability of gallium and iron. Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is a white crystalline powder that is soluble in hot water, chloroform, and other polar solvents. Maltol is registered as a flavor component in the EU. Maltol, like related 3-hydroxy-4-pyrones such as kojic acid, binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+. It is known in the European E number food additive series as E636. Because it has the odor of cotton candy and caramel, maltol is used to impart a sweet aroma to fragrances.
Maltol is a white crystalline powder with a fragrant caramel-butterscotch odor. pH (5\\\\% aqueous solution) 5.3. (NTP, 1992)
3-hydroxy-2-methyl-4-pyrone is a member of 4-pyranones. It has a role as a metabolite.
Maltol is a natural product found in Cercidiphyllum japonicum, Coffea arabica, and other organisms with data available.
3-Hydroxy-2-methyl-4-pyrone is a metabolite found in or produced by Saccharomyces cerevisiae.
Found in chicory, roasted malt, breads, milk, heated butter, uncured smoked pork, cocoa, coffee, roasted barley, roasted peanuts, roasted filbert, soybean etc. Flavour enhancer and flavouring agent
C1907 - Drug, Natural Product > C28269 - Phytochemical
Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].
Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].

同义名列表

78 个代谢物同义名

3-Hydroxy-2-methyl-4-pyrone; 3-Hydroxy-2-methyl-pyran-4-one; Maltol; Deferiprone Impurity B; Maltol, United States Pharmacopeia (USP) Reference Standard; InChI=1/C6H6O3/c1-4-6(8)5(7)2-3-9-4/h2-3,8H,1H3; 5-18-01-00114 (Beilstein Handbook Reference); Maltol (3-Hydroxy-2-methyl-4-pyrone); 4H-Pyran-4-one, 3-hydroxy-2-methyl-; 3-Hydroxy-2-methyl-4-pyrone, 99\\%; 3-Hydroxy-2-methyl-4H-pyran-4-one; 5-Hydroxy-6-methyl-4H-pyran-4-one; 2-hydroxy-3-methyl-4H-pyran-4-one; 2-methyl-3-hydroxy-4H-pyran-4-one; 3-Hydroxy-2-methyl-.gamma.-pyrone; 3-hydroxy-2-methyl-gamma -pyrone; 3-Hydroxy-2-methyl-gamma-pyrone; 3-Hydroxy-2-methyl-pyran-4-one; 3-hydroxyl-2-methyl-4-pyranone; 3-hydroxy-2-methyl-4-oxopyrane; 3-Hydroxy-2-methyl-4-pyranone; 3-hydroxy-2-methylpyran-4-one; Maltol, natural, >=98.5\\%, FG; 2-methyl-3-hydroxy-4-pyranone; 2-Methyl-3-oxy-.gamma.-pyrone; 3-Hydroxy-2-methyl-1,4-pyrone; 3-hydroxy-2-methylpyr-4-one; Maltol, analytical standard; 3-hydroxy-2-methyl-4-pyrone; 3-Hydroxy-2-methyl-g-pyrone; 2-Methyl-3-hydroxy-4-pyrone; 2-Methyl-3-oxy-gamma-pyrone; XPCTZQVDEJYUGT-UHFFFAOYSA-; Maltol, >=99.0\\%, FCC, FG; 2-Methyl pyromeconic acid; 2-Methylpyromeconic acid; 3-Hydroxy-2-methylpyrone; 2-Methyl-3-hydroxypyrone; 3-Hydroxy-2-pyran-4-one; WLN: T6O DVJ B1 CQ; Spectrum4_001871; Maltol (natural); Spectrum5_000462; Spectrum3_001351; Spectrum2_001795; MALTOL [USP-RS]; UNII-3A9RD92BS4; Laricinic acid; Larixinic acid; MALTOL [MART.]; DivK1c_006539; Corps praline; methyl maltol; MALTOL [INCI]; MALTOL [FHFI]; KBio2_001899; KBio2_007035; MALTOL [FCC]; Tox21_300118; KBio1_001483; KSC-11-228-8; Tox21_202215; NCI60_002320; KBio2_004467; Methylmaltol; Larixic acid; KBio3_002381; MALTOL [II]; MALTOL [MI]; Maltol [NF]; 3A9RD92BS4; AI3-18547; FEMA 2656; Palatone; Maltol; Veltol; Talmon; Vetol; e636; Maltol; Maltol



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

23 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AKT1, ALB, CASP3, CAT, CYP2E1, MTOR, NOS2, PIK3C3, PIK3CA, PRKAA2, PTGS2, TYR
Peripheral membrane protein 4 CYP1B1, CYP2E1, MTOR, PTGS2
Endosome membrane 1 TF
Endoplasmic reticulum membrane 5 CYP1B1, CYP2E1, HMOX1, MTOR, PTGS2
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 8 AKT1, ALB, CASP3, GABPA, HMOX1, MTOR, NOS2, PRKAA2
autophagosome 1 PIK3C3
cytosol 10 AKT1, ALB, CASP3, CAT, HMOX1, MTOR, NOS2, PIK3C3, PIK3CA, PRKAA2
dendrite 2 MTOR, PRKAA2
phagocytic vesicle 1 MTOR
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
centrosome 1 ALB
nucleoplasm 7 AKT1, CASP3, GABPA, HMOX1, MTOR, NOS2, PRKAA2
Cell membrane 2 AKT1, TNF
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 2 AKT1, PIK3CA
Golgi apparatus membrane 1 MTOR
Synapse 1 ACAN
cell cortex 1 AKT1
cell surface 2 TF, TNF
glutamatergic synapse 4 ACAN, AKT1, CASP3, PIK3C3
Golgi apparatus 2 ALB, PRKAA2
Golgi membrane 2 INS, MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 CYP2E1
neuronal cell body 3 CASP3, PRKAA2, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 NOS2
Lysosome 2 MTOR, TYR
endosome 1 PIK3C3
plasma membrane 5 AKT1, NOS2, PIK3CA, TF, TNF
Membrane 7 AKT1, CAT, CYP1B1, HMOX1, MTOR, PIK3C3, PRKAA2
apical plasma membrane 1 TF
axon 1 PRKAA2
caveola 1 PTGS2
extracellular exosome 3 ALB, CAT, TF
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 ALB, HMOX1, PTGS2
extracellular space 7 ACAN, ALB, HMOX1, IL6, INS, TF, TNF
lysosomal lumen 1 ACAN
perinuclear region of cytoplasm 5 HMOX1, NOS2, PIK3CA, TF, TYR
intercalated disc 1 PIK3CA
mitochondrion 2 CAT, CYP1B1
protein-containing complex 4 AKT1, ALB, CAT, PTGS2
intracellular membrane-bounded organelle 4 CAT, CYP1B1, CYP2E1, TYR
Microsome membrane 4 CYP1B1, CYP2E1, MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TYR
Secreted 4 ALB, IL6, INS, TF
extracellular region 7 ACAN, ALB, CAT, IL6, INS, TF, TNF
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 2 HMOX1, MTOR
basal part of cell 1 TF
mitochondrial matrix 1 CAT
anchoring junction 1 ALB
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 ACAN
cytoplasmic vesicle 1 TF
microtubule cytoskeleton 1 AKT1
Melanosome membrane 1 TYR
midbody 1 PIK3C3
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Early endosome 1 TF
cell-cell junction 1 AKT1
clathrin-coated pit 1 TF
Golgi-associated vesicle 1 TYR
recycling endosome 2 TF, TNF
Single-pass type II membrane protein 1 TNF
vesicle 2 AKT1, TF
Cytoplasm, perinuclear region 1 NOS2
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 1 TNF
focal adhesion 1 CAT
spindle 1 AKT1
GABA-ergic synapse 2 ACAN, PIK3C3
Peroxisome 3 CAT, NOS2, PIK3C3
basement membrane 1 ACAN
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, NOS2
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 ACAN
axoneme 1 PIK3C3
nuclear speck 1 PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 2 PIK3C3, TF
neuron projection 1 PTGS2
ciliary basal body 2 AKT1, ALB
chromatin 1 GABPA
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 2 ALB, TF
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
Melanosome 1 TYR
cytoplasmic stress granule 1 PRKAA2
basal plasma membrane 1 TF
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 3 CAT, INS, TF
HFE-transferrin receptor complex 1 TF
Golgi lumen 2 ACAN, INS
endoplasmic reticulum lumen 5 ALB, IL6, INS, PTGS2, TF
platelet alpha granule lumen 1 ALB
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 TF
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
perineuronal net 1 ACAN
presynaptic endosome 1 PIK3C3
Single-pass type IV membrane protein 1 HMOX1
clathrin-coated endocytic vesicle membrane 1 TF
death-inducing signaling complex 1 CASP3
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
vesicle coat 1 TF
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
cortical cytoskeleton 1 NOS2
Autolysosome 1 PIK3C3
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
perisynaptic extracellular matrix 1 ACAN
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
ciliary transition fiber 1 ALB
dense body 1 TF
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Wan-Lin Xiao, Na Wang, Lin-Li Yang, Yu-Mei Feng, Pan-Long Chu, Jiao-Jiao Zhang, Shuai-Shuai Liu, Wu-Bin Shao, Xiang Zhou, Li-Wei Liu, Song Yang. Exploiting Natural Maltol for Synthesis of Novel Hydroxypyridone Derivatives as Promising Anti-Virulence Agents in Bactericides Discovery. Journal of agricultural and food chemistry. 2023 May; 71(17):6603-6616. doi: 10.1021/acs.jafc.3c00465. [PMID: 37083434]
  • Orsolya Dömötör, Bernhard K Keppler, Éva A Enyedy. Solution speciation and human serum protein binding of indium(III) complexes of 8-hydroxyquinoline, deferiprone and maltol. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry. 2022 04; 27(3):315-328. doi: 10.1007/s00775-022-01935-6. [PMID: 35243522]
  • Ji-Yue Sha, Jian-Hao Li, Yan-Dan Zhou, Jia-Yu Yang, Wei Liu, Shuang Jiang, Ying-Ping Wang, Rui Zhang, Peng Di, Wei Li. The p53/p21/p16 and PI3K/Akt signaling pathways are involved in the ameliorative effects of maltol on D-galactose-induced liver and kidney aging and injury. Phytotherapy research : PTR. 2021 Aug; 35(8):4411-4424. doi: 10.1002/ptr.7142. [PMID: 34028092]
  • Sofi Imtiyaz Ali, Venkatesalu Venugopalan. Mosquito larvicidal potential of hydroxy-2-methyl-4H-pyran-4-one (MALTOL) isolated from the methanol root extract of Senecio laetus Edgew. and its in-silico study. Natural product research. 2021 May; 35(10):1741-1745. doi: 10.1080/14786419.2019.1634712. [PMID: 31244340]
  • Rosario Schicchi, Anna Geraci, Sergio Rosselli, Alberto Spinella, Antonella Maggio, Maurizio Bruno. Phytochemical investigation of the needles of Abies nebrodensis (Lojac.) Mattei. Natural product research. 2020 Aug; 34(15):2131-2136. doi: 10.1080/14786419.2019.1576044. [PMID: 30873863]
  • Yue-E Tian, Di Sun, Jin-Ming Yang, Zhi-Ping Che, Sheng-Ming Liu, Xiao-Min Lin, Jia Jiang, Gen-Qiang Chen. Synthesis of sulfonate derivatives of maltol and their biological activity against Phytophthora capsici and Bursaphelenchus xylophilus in vitro. Journal of Asian natural products research. 2020 Jun; 22(6):578-587. doi: 10.1080/10286020.2019.1608958. [PMID: 31046458]
  • Sumra Naqvi, Humera Anwer, Syed Waseem Ahmed, Asma Siddiqui, Muhammad Raza Shah, Saima Khaliq, Ayaz Ahmed, Syed Abid Ali. Synthesis and characterization of maltol capped silver nanoparticles and their potential application as an antimicrobial agent and colorimetric sensor for cysteine. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2020 Mar; 229(?):118002. doi: 10.1016/j.saa.2019.118002. [PMID: 31923785]
  • Ji-Yue Sha, Yan-Dan Zhou, Jia-Yu Yang, Jing Leng, Jian-Hao Li, Jun-Nan Hu, Wei Liu, Shuang Jiang, Ying-Ping Wang, Chen Chen, Wei Li. Maltol (3-Hydroxy-2-methyl-4-pyrone) Slows d-Galactose-Induced Brain Aging Process by Damping the Nrf2/HO-1-Mediated Oxidative Stress in Mice. Journal of agricultural and food chemistry. 2019 Sep; 67(37):10342-10351. doi: 10.1021/acs.jafc.9b04614. [PMID: 31461273]
  • Mehmet Ali Demirci, Yaşar Ipek, Fatih Gul, Tevfik Ozen, Ibrahim Demirtas. Extraction, isolation of heat-resistance phenolic compounds, antioxidant properties, characterization and purification of 5-hydroxymaltol from Turkish apple pulps. Food chemistry. 2018 Dec; 269(?):111-117. doi: 10.1016/j.foodchem.2018.06.147. [PMID: 30100412]
  • Xiao-Jie Mi, Jin-Gang Hou, Zi Wang, Ye Han, Shen Ren, Jun-Nan Hu, Chen Chen, Wei Li. The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways. Scientific reports. 2018 10; 8(1):15922. doi: 10.1038/s41598-018-34156-6. [PMID: 30374107]
  • Wei Liu, Zi Wang, Jin-Gang Hou, Yan-Dan Zhou, Yu-Fang He, Shuang Jiang, Ying-Ping Wang, Shen Ren, Wei Li. The Liver Protection Effects of Maltol, a Flavoring Agent, on Carbon Tetrachloride-Induced Acute Liver Injury in Mice via Inhibiting Apoptosis and Inflammatory Response. Molecules (Basel, Switzerland). 2018 Aug; 23(9):. doi: 10.3390/molecules23092120. [PMID: 30142916]
  • Solomiia Kozachok, Łukasz Pecio, Joanna Kolodziejczyk-Czepas, Svitlana Marchyshyn, Pawel Nowak, Jarosław Mołdoch, Wiesław Oleszek. γ-Pyrone compounds: flavonoids and maltol glucoside derivatives from Herniaria glabra L. collected in the Ternopil region of the Ukraine. Phytochemistry. 2018 Aug; 152(?):213-222. doi: 10.1016/j.phytochem.2018.05.009. [PMID: 29783188]
  • Taewoong Rho, Kee Dong Yoon. Application of off-line two-dimensional high-performance countercurrent chromatography on the chloroform-soluble extract of Cuscuta auralis seeds. Journal of separation science. 2018 May; 41(10):2169-2177. doi: 10.1002/jssc.201701498. [PMID: 29450982]
  • Cy V Credille, Yao Chen, Seth M Cohen. Fragment-Based Identification of Influenza Endonuclease Inhibitors. Journal of medicinal chemistry. 2016 07; 59(13):6444-54. doi: 10.1021/acs.jmedchem.6b00628. [PMID: 27291165]
  • Christopher J Adams, Megan N C Grainger, Merilyn Manley-Harris. Isolation of maltol glucoside from the floral nectar of New Zealand mānuka (Leptospermum scoparium). Food chemistry. 2015 May; 174(?):306-9. doi: 10.1016/j.foodchem.2014.11.073. [PMID: 25529685]
  • Yi Zhang, Lu Qu, Lili Liu, Xiaoxia Li, Erwei Liu, Lifeng Han, Shiming Fang, Xiumei Gao, Tao Wang. New maltol glycosides from Flos Sophorae. Journal of natural medicines. 2015 Apr; 69(2):249-54. doi: 10.1007/s11418-014-0877-1. [PMID: 25398298]
  • Ye Han, Qi Xu, Jiang-ning Hu, Xin-yue Han, Wei Li, Li-chun Zhao. Maltol, a food flavoring agent, attenuates acute alcohol-induced oxidative damage in mice. Nutrients. 2015 Jan; 7(1):682-96. doi: 10.3390/nu7010682. [PMID: 25608939]
  • Éva A Enyedy, Orsolya Dömötör, Krisztina Bali, Anasztázia Hetényi, Tiziano Tuccinardi, Bernhard K Keppler. Interaction of the anticancer gallium(III) complexes of 8-hydroxyquinoline and maltol with human serum proteins. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry. 2015 Jan; 20(1):77-88. doi: 10.1007/s00775-014-1211-9. [PMID: 25398250]
  • Megdi Eltayeb, Eleanor Stride, Mohan Edirisinghe. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery. Nanotechnology. 2013 Nov; 24(46):465604. doi: 10.1088/0957-4484/24/46/465604. [PMID: 24164775]
  • Bin Zhou, Chui-Hua Kong, Yong-Hua Li, Peng Wang, Xiao-Hua Xu. Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. Journal of agricultural and food chemistry. 2013 Jun; 61(22):5310-7. doi: 10.1021/jf401605g. [PMID: 23678893]
  • Sameena Mehtab, Gisela Gonçalves, Somnath Roy, Ana Isabel Tomaz, Teresa Santos-Silva, Marino F A Santos, Maria J Romão, Tamás Jakusch, Tamás Kiss, João Costa Pessoa. Interaction of vanadium(IV) with human serum apo-transferrin. Journal of inorganic biochemistry. 2013 Apr; 121(?):187-95. doi: 10.1016/j.jinorgbio.2012.12.020. [PMID: 23411030]
  • Sílvia Chaves, Sónia Canário, Marta P Carrasco, Lurdes Mira, M Amélia Santos. Hydroxy(thio)pyrone and hydroxy(thio)pyridinone iron chelators: physico-chemical properties and anti-oxidant activity. Journal of inorganic biochemistry. 2012 Sep; 114(?):38-46. doi: 10.1016/j.jinorgbio.2012.04.019. [PMID: 22687564]
  • Guowen Zhang, Yadi Ma, Lin Wang, Yepeng Zhang, Jia Zhou. Multispectroscopic studies on the interaction of maltol, a food additive, with bovine serum albumin. Food chemistry. 2012 Jul; 133(2):264-70. doi: 10.1016/j.foodchem.2012.01.014. [PMID: 25683394]
  • Isabel Correia, Tamás Jakusch, Enoch Cobbinna, Sameena Mehtab, Isabel Tomaz, Nóra V Nagy, Antal Rockenbauer, João Costa Pessoa, Tamás Kiss. Evaluation of the binding of oxovanadium(IV) to human serum albumin. Dalton transactions (Cambridge, England : 2003). 2012 Jun; 41(21):6477-87. doi: 10.1039/c2dt12193j. [PMID: 22476413]
  • Peter W Winter, Abeer Al-Qatati, Amber L Wolf-Ringwall, Samantha Schoeberl, Pabitra B Chatterjee, B George Barisas, Deborah A Roess, Debbie C Crans. The anti-diabetic bis(maltolato)oxovanadium(IV) decreases lipid order while increasing insulin receptor localization in membrane microdomains. Dalton transactions (Cambridge, England : 2003). 2012 Jun; 41(21):6419-30. doi: 10.1039/c2dt30521f. [PMID: 22569684]
  • T Iglesias-González, C Sánchez-González, M Montes-Bayón, J Llopis-González, A Sanz-Medel. Absorption, transport and insulin-mimetic properties of bis(maltolato)oxovanadium (IV) in streptozotocin-induced hyperglycemic rats by integrated mass spectrometric techniques. Analytical and bioanalytical chemistry. 2012 Jan; 402(1):277-85. doi: 10.1007/s00216-011-5286-7. [PMID: 21842199]
  • Alinanuswe S Mwakaboko, Binne Zwanenburg. Single step synthesis of strigolactone analogues from cyclic keto enols, germination stimulants for seeds of parasitic weeds. Bioorganic & medicinal chemistry. 2011 Aug; 19(16):5006-11. doi: 10.1016/j.bmc.2011.06.057. [PMID: 21757362]
  • Debbie C Crans, Samantha Schoeberl, Ernestas Gaidamauskas, Bharat Baruah, Deborah A Roess. Antidiabetic vanadium compound and membrane interfaces: interface-facilitated metal complex hydrolysis. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry. 2011 Aug; 16(6):961-72. doi: 10.1007/s00775-011-0796-5. [PMID: 21667212]
  • Peiyou Qin, Tingjun Ma, Li Wu, Fang Shan, Guixing Ren. Identification of tartary buckwheat tea aroma compounds with gas chromatography-mass spectrometry. Journal of food science. 2011 Aug; 76(6):S401-7. doi: 10.1111/j.1750-3841.2011.02223.x. [PMID: 22417522]
  • Eva A Enyedy, László Horváth, Anasztázia Hetényi, Tiziano Tuccinardi, Christian G Hartinger, Bernhard K Keppler, Tamás Kiss. Interactions of the carrier ligands of antidiabetic metal complexes with human serum albumin: a combined spectroscopic and separation approach with molecular modeling studies. Bioorganic & medicinal chemistry. 2011 Jul; 19(14):4202-10. doi: 10.1016/j.bmc.2011.05.063. [PMID: 21696966]
  • Xiuping Chen, Fangyun Sun, Lifeng Ma, Jinhua Wang, Hailin Qin, Guanhua Du. In vitro evaluation on the antioxidant capacity of triethylchebulate, an aglycone from Terminalia chebula Retz fruit. Indian journal of pharmacology. 2011 May; 43(3):320-3. doi: 10.4103/0253-7613.81508. [PMID: 21713099]
  • Sang-Jun Lee, Tae Wha Moon, Jaehwan Lee. Increases of 2-furanmethanol and maltol in Korean red ginseng during explosive puffing process. Journal of food science. 2010 Mar; 75(2):C147-51. doi: 10.1111/j.1750-3841.2009.01461.x. [PMID: 20492218]
  • Tamás Jakusch, Annalisa Dean, Tamás Oncsik, Attila Csaba Bényei, Valerio Di Marco, Tamás Kiss. Vanadate complexes in serum: a speciation modeling study. Dalton transactions (Cambridge, England : 2003). 2010 Jan; ?(1):212-20. doi: 10.1039/b914849c. [PMID: 20023952]
  • Tamás Jakusch, Dominik Hollender, Eva Anna Enyedy, Cristina Sánchez González, Maria Montes-Bayón, Alfredo Sanz-Medel, João Costa Pessoa, Isabel Tomaz, Tamás Kiss. Biospeciation of various antidiabetic V(IV)O compounds in serum. Dalton transactions (Cambridge, England : 2003). 2009 Apr; ?(13):2428-37. doi: 10.1039/b817748a. [PMID: 19290378]
  • K S Kang, T Tanaka, E J Cho, T Yokozawa. Evaluation of the peroxynitrite scavenging activity of heat-processed ginseng. Journal of medicinal food. 2009 Feb; 12(1):124-30. doi: 10.1089/jmf.2007.0646. [PMID: 19298205]
  • A M Abd El-Aty, In-Kyung Kim, Mi-Ra Kim, ChiHo Lee, Jae-Han Shim. Determination of volatile organic compounds generated from fresh, white and red Panax ginseng (C. A. Meyer) using a direct sample injection technique. Biomedical chromatography : BMC. 2008 May; 22(5):556-62. doi: 10.1002/bmc.969. [PMID: 18205137]
  • Ki Sung Kang, Noriko Yamabe, Hyun Young Kim, Takako Yokozawa. Role of maltol in advanced glycation end products and free radicals: in-vitro and in-vivo studies. The Journal of pharmacy and pharmacology. 2008 Apr; 60(4):445-52. doi: 10.1211/jpp.60.4.0006. [PMID: 18380916]
  • Yuzhao Zhou, Wesley R Harris, Robert A Yokel. The influence of citrate, maltolate and fluoride on the gastrointestinal absorption of aluminum at a drinking water-relevant concentration: A 26Al and 14C study. Journal of inorganic biochemistry. 2008 Apr; 102(4):798-808. doi: 10.1016/j.jinorgbio.2007.11.019. [PMID: 18207247]
  • Marjan Nassiri-Asl, Schwann Shariati-Rad, Farzaneh Zamansoltani. Anticonvulsant effects of aerial parts of Passiflora incarnata extract in mice: involvement of benzodiazepine and opioid receptors. BMC complementary and alternative medicine. 2007 Aug; 7(?):26. doi: 10.1186/1472-6882-7-26. [PMID: 17686156]
  • T Yokozawa, K S Kang, N Yamabe, H Y Kim. Therapeutic potential of heat-processed Panax ginseng with respect to oxidative tissue damage. Drug discoveries & therapeutics. 2007 Aug; 1(1):30-44. doi: . [PMID: 22504362]
  • Geoffrey C Kite, Charlotte A Stoneham, Nigel C Veitch. Flavonol tetraglycosides and other constituents from leaves of Styphnolobium japonicum (Leguminosae) and related taxa. Phytochemistry. 2007 May; 68(10):1407-16. doi: 10.1016/j.phytochem.2007.03.004. [PMID: 17462679]
  • Eva Anna Enyedy, László Horváth, Krisztina Gajda-Schrantz, Gábor Galbács, Tamás Kiss. An in vitro study of interactions between insulin-mimetic zinc(II) complexes and selected plasma components. Journal of inorganic biochemistry. 2006 Dec; 100(12):1936-45. doi: 10.1016/j.jinorgbio.2006.08.003. [PMID: 17034863]
  • Ki Sung Kang, Takako Yokozawa, Hyun Young Kim, Jeong Hill Park. Study on the nitric oxide scavenging effects of ginseng and its compounds. Journal of agricultural and food chemistry. 2006 Apr; 54(7):2558-62. doi: 10.1021/jf0529520. [PMID: 16569043]
  • Jing Yan, Xiu-Wei Yang. [Studies on the chemical constituents in herb of Ludwigia octovalvis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Dec; 30(24):1923-6. doi: ". [PMID: 16494025]
  • Rao-rao Li, Si-tong Yuan, Zhi-hong Li, Hai-lin Qin. [Studies on chemical constituents in Flos Sophorae Carbonisatus]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Aug; 30(16):1255-7. doi: ". [PMID: 16245902]
  • Katayoun Saatchi, Katherine H Thompson, Brian O Patrick, Maren Pink, Violet G Yuen, John H McNeill, Chris Orvig. Coordination chemistry and insulin-enhancing behavior of vanadium complexes with maltol C6H6O3 structural isomers. Inorganic chemistry. 2005 Apr; 44(8):2689-97. doi: 10.1021/ic048186g. [PMID: 15819554]
  • Vishakha Monga, Katherine H Thompson, Violet G Yuen, Vijay Sharma, Brian O Patrick, John H McNeill, Chris Orvig. Vanadium complexes with mixed O,S anionic ligands derived from maltol: synthesis, characterization, and biological studies. Inorganic chemistry. 2005 Apr; 44(8):2678-88. doi: 10.1021/ic0486926. [PMID: 15819553]
  • Barry D Liboiron, Katherine H Thompson, Graeme R Hanson, Edmond Lam, Nicolas Aebischer, Chris Orvig. New insights into the interactions of serum proteins with bis(maltolato)oxovanadium(IV): transport and biotransformation of insulin-enhancing vanadium pharmaceuticals. Journal of the American Chemical Society. 2005 Apr; 127(14):5104-15. doi: 10.1021/ja043944n. [PMID: 15810845]
  • Seung-Joo Lee, Kwang-Geun Lee. Inhibitory effects of volatile antioxidants found in various beans on malonaldehyde formation in horse blood plasma. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2005 Apr; 43(4):515-20. doi: 10.1016/j.fct.2004.12.004. [PMID: 15721197]
  • Katherine H Thompson, Jessica Chiles, Violet G Yuen, Jeremy Tse, John H McNeill, Chris Orvig. Comparison of anti-hyperglycemic effect amongst vanadium, molybdenum and other metal maltol complexes. Journal of inorganic biochemistry. 2004 May; 98(5):683-90. doi: 10.1016/j.jinorgbio.2004.01.006. [PMID: 15134913]
  • Kenichi Yanagimoto, Hirotomo Ochi, Kwang-Geun Lee, Takayuki Shibamoto. Antioxidative activities of fractions obtained from brewed coffee. Journal of agricultural and food chemistry. 2004 Feb; 52(3):592-6. doi: 10.1021/jf030317t. [PMID: 14759154]
  • Yun-Bae Kim, Sang Hee Oh, Dai-Eun Sok, Mee Ree Kim. Neuroprotective effect of maltol against oxidative stress in brain of mice challenged with kainic acid. Nutritional neuroscience. 2004 Feb; 7(1):33-9. doi: 10.1080/10284150310001653604. [PMID: 15085556]
  • Hongzhu Guo, Kazuo Koike, Wei Li, Dean Guo, Tamotsu Nikaido. Maltol glucosides from the tuber of Smilax bockii. Phytochemistry. 2004 Feb; 65(4):481-4. doi: 10.1016/j.phytochem.2003.10.020. [PMID: 14759545]
  • Sheikh Julfikar Hossain, Hitoshi Aoshima, Hirofumi Koda, Yoshinobu Kiso. Effects of coffee components on the response of GABA(A) receptors expressed in Xenopus oocytes. Journal of agricultural and food chemistry. 2003 Dec; 51(26):7568-75. doi: 10.1021/jf0303971. [PMID: 14664509]
  • R G Buttery, G R Takeoka, M Naim, H Rabinowitch, Y Nam. Analysis of Furaneol in tomato using dynamic headspace sampling with sodium sulfate. Journal of agricultural and food chemistry. 2001 Sep; 49(9):4349-51. doi: 10.1021/jf0105236. [PMID: 11559136]
  • A Wei, K Mura, T Shibamoto. Antioxidative activity of volatile chemicals extracted from beer. Journal of agricultural and food chemistry. 2001 Aug; 49(8):4097-101. doi: 10.1021/jf010325e. [PMID: 11513716]
  • X Li, Y Zheng, M Liu, L Zhang. [A study on maillard reaction and its products during processing of red ginseng]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1999 May; 24(5):274-8, 318. doi: ". [PMID: 12205883]
  • R Soulimani, C Younos, S Jarmouni, D Bousta, R Misslin, F Mortier. Behavioural effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. Journal of ethnopharmacology. 1997 Jun; 57(1):11-20. doi: 10.1016/s0378-8741(97)00042-1. [PMID: 9234160]
  • V Kahn, N Ben-Shalom. Effect of maltol on the oxidation of DL-DOPA, dopamine, N-acetyldopamine (NADA), and norepinephrine by mushroom tyrosinase. Pigment cell research. 1997 Jun; 10(3):139-49. doi: 10.1111/j.1600-0749.1997.tb00475.x. [PMID: 9266600]
  • C Kim, S W Nam, D Y Choi, J H Choi, E S Park, W K Jhoo, H C Kim. A new antithrombotic agent, aspalatone, attenuated cardiotoxicity induced by doxorubicin in the mouse; possible involvement of antioxidant mechanism. Life sciences. 1997; 60(4-5):PL75-82. doi: 10.1016/s0024-3205(96)00637-6. [PMID: 9010492]
  • B L Ellis, A K Duhme, R C Hider, M B Hossain, S Rizvi, D van der Helm. Synthesis, physicochemical properties, and biological evaluation of hydroxypyranones and hydroxypyridinones: novel bidentate ligands for cell-labeling. Journal of medicinal chemistry. 1996 Sep; 39(19):3659-70. doi: 10.1021/jm960220g. [PMID: 8809155]
  • A el-Jammal, D M Templeton. Reversed-phase high-performance liquid chromatography of non-transferrin-bound iron and some hydroxypyridone and hydroxypyrone chelators. Journal of chromatography. B, Biomedical applications. 1994 Aug; 658(1):121-7. doi: 10.1016/0378-4347(94)00225-8. [PMID: 7952112]
  • M F van Ginkel, G B van der Voet, P C D'Haese, M E De Broe, F A de Wolff. Effect of citric acid and maltol on the accumulation of aluminum in rat brain and bone. The Journal of laboratory and clinical medicine. 1993 Mar; 121(3):453-60. doi: . [PMID: 8445293]
  • J F Leterrier, D Langui, A Probst, J Ulrich. A molecular mechanism for the induction of neurofilament bundling by aluminum ions. Journal of neurochemistry. 1992 Jun; 58(6):2060-70. doi: 10.1111/j.1471-4159.1992.tb10947.x. [PMID: 1573393]
  • M A Barrand, B A Callingham, P Dobbin, R C Hider. Dissociation of a ferric maltol complex and its subsequent metabolism during absorption across the small intestine of the rat. British journal of pharmacology. 1991 Mar; 102(3):723-9. doi: 10.1111/j.1476-5381.1991.tb12240.x. [PMID: 1364845]
  • R L Bertholf, M M Herman, J Savory, R M Carpenter, B C Sturgill, C D Katsetos, S R Vandenberg, M R Wills. A long-term intravenous model of aluminum maltol toxicity in rabbits: tissue distribution, hepatic, renal, and neuronal cytoskeletal changes associated with systemic exposure. Toxicology and applied pharmacology. 1989 Mar; 98(1):58-74. doi: 10.1016/0041-008x(89)90134-8. [PMID: 2648649]
  • J H Brock, J Licéaga, G J Kontoghiorghes. The effect of synthetic iron chelators on bacterial growth in human serum. FEMS microbiology immunology. 1988 Jan; 1(1):55-60. doi: 10.1111/j.1574-6968.1988.tb02490.x. [PMID: 3272827]
  • M A Barrand, B A Callingham, R C Hider. Effects of the pyrones, maltol and ethyl maltol, on iron absorption from the rat small intestine. The Journal of pharmacy and pharmacology. 1987 Mar; 39(3):203-11. doi: 10.1111/j.2042-7158.1987.tb06249.x. [PMID: 2883285]
  • K KUBOTA, T KAKU. [On the isolation of maltol from the putrid urine of rabbit]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 1962 Oct; 82(?):1456-7. doi: 10.1248/yakushi1947.82.10_1456. [PMID: 13927260]